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Abstract
In this paper, we consider the problem for passivity analysis and passive control of
uncertain discrete switched systems with interval time-varying delay and linear
fractional perturbations via a simple switching signal design. A new
Lyapunov-Krasovskii functional is used to propose some LMI conditions that design
the switching signal to guarantee the passivity and passive switching control of
discrete switched time-delay systems. Jensen and Park inequalities combined with
delay-partitioning approach are investigated to improve the conservativeness of the
obtained results. Finally, some numerical examples and a water quality model
illustrate the main proposed results.
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1 Introduction
The linear control systems and the complex or uncertain feedback systems can be bridged
by the framework of switched linear systems []. The switched system is an important
class of hybrid systems, which consists of some subsystems and a switching signal. The
switching signal will handle the switching among subsystems. Many complicate nonlin-
ear system behaviors can be produced under switching, such as multiple limit cycles and
chaos [, ]. Switched systems are often encountered in many practical systems including
automated highway systems, automotive engine control systems, chemical process, con-
strained robotics, mutlirate control, power systems and power electronics, robot manu-
facture, stepper motors, and water quality control [–]. It is also well known that insta-
bility or bad performance may be introduced by the existence of delay in a system [–].
Time-delay phenomena are often confronted in many practical engineering systems, such
as chemical engineering systems, hydraulic systems, inferred grinding models, neural net-
work circuits, nuclear reactor, and rolling mill systems. Hence, the problems of stability
and stabilization for discrete switched systems with time delay have been investigated in
recent years [, , –].

In the recent years, there are two interesting and well-known issues investigated for
switched systems. () The stability property for each subsystem cannot guarantee that
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the overall system is stable under arbitrary switching [, , , –]. () The stability
of a switched system may be achieved by selecting the switching signal even when each
subsystem is unstable [, , , , –]. In [], a design of switching signal is pro-
posed to ensure the stability and stabilization of discrete switched systems with interval
time-varying delay. In [], the switching is identified to guarantee the stability of discrete
switched time-delay system. In recent years, the passivity property was provided in di-
verse aspects, such as complexity analysis [], fuzzy control [], time-delay systems [,
–], neural networks systems [, ], and signal processing []. The passivity theory
was first introduced in circuit analysis, which is a promising approach to keep the inter-
nal stability of systems. Furthermore, linear fractional perturbations in [, , , , ]
are more generalized than parameter ones in [, , , , ]. In this paper, a simple
design scheme for switching signal in passivity analysis and passive control is proposed
for discrete switched systems with interval time-varying delay and linear fractional per-
turbations. In [], a delay-partitioning approach was proposed to improve the conser-
vativeness of the developed results. In this paper, a new delay-partitioning approach is
investigated to make more accurate evaluation for the allowable upper bound of interval
time-varying delay. In [], Jensen and Park inequalities are used to improve the main
proposed results. To the best knowledge of the authors, results that combine the delay-
partitioning approach and Jensen and Park inequalities are not reported in the past. Some
numerical examples are made to demonstrate the obtained results. The practical applica-
tion of a water quality model is also provided to illustrate the proposed results. From the
simulation result, our proposed approach in this paper provides less conservative results.
The main contribution of this paper can be highlighted as follows:

() The less conservative passivity analysis and passive switching control for discrete
switched systems with linear fractional perturbations and interval time-varying
delay via a switching signal design are considered.

() The proposed approach provides less LMI variables and a shorter program running
time than some previous ones in the past.

() Jensen and Park inequalities combined with the delay-partitioning approach are
used to improve the conservativeness of the developed results.

() The proposed design scheme for switching signal is more flexible than those in
[–]. The proposed approach for switching signal design scheme can be easily
applied to continuous switched time-delay systems.

In the past, some new relevant results and approaches had been proposed to achieve the
performance of switched systems [–]. In [], the Borne-Gentina practical stability
of continuous switched systems is considered by the aggregation techniques. In [], the
stability and H∞ control of switched systems with interval time-varying delay are guar-
anteed by input-output scaled small gain theorem approach. In [], the stability for dis-
crete switched nonlinear systems with unstable subsystems is considered by the T-S fuzzy
model approach. In [], the passivity of discrete switched nonlinear systems is studied
by multiple storage functions and multiple supply rates approach. The proposed results
in this paper can be considered and improved by the above developed approaches.

The notation used throughout this paper is as follows. For a matrix A, we denote
the transpose by AT , symmetric positive (negative) definite by A >  (A < ); A ≤ B
(A < B) means that B – A is a symmetric positive semidefinite (definite) matrix; I de-
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notes the identity matrix. Define N = {, , . . . , N}, A\B = {x|x ∈ A and x /∈ B}, L(,∞) =
{w(k)|∑∞

k= wT (k)w(k) < ∞}.

2 Problem statement and preliminaries
In this paper, we consider the following uncertain discrete switched system with time de-
lay:

x(k + ) =
[
Aσ + �Aσ (k)

]
x(k) +

[
Bσ + �Bσ (k)

]
x
(
k – r(k)

)

+
[
Dσ + �Dσ (k)

]
w(k), (a)

z(k) =
[
Azσ + �Azσ (k)

]
x(k) +

[
Bzσ + �Bzσ (k)

]
x
(
k – r(k)

)

+
[
Dzσ + �Dzσ (k)

]
w(k), (b)

x(θ ) = ϕ(θ ), θ = –rM, –rM + , . . . , , (c)

where x(k) ∈ �n, xk is the state defined by xk(θ ) := x(k + θ ), ∀θ ∈ {–rM, –rM + , . . . , },
w(k) ∈ �p is a disturbance input, z(k) ∈ �p is a regulated output, σ is a switching sig-
nal in the finite set {, , . . . , N} and will be selected to preserve the performance of the
system, ϕ(k) ∈ �n denotes the initial function, the time-varying delay r(k) is a function
from {, , , , . . .} to {, , , . . .} such that  < rm ≤ r(k) ≤ rM , where rm and rM are two
given positive integers. The matrices Ai, Bi, Di, Azi, Bzi, Dzi, i = , , . . . , N , are given con-
stant matrices of appropriate dimensions; �Ai(k), �Bi(k), �Di(k), �Azi(k), �Bzi(k), and
�Dzi(k) are some perturbed matrices satisfying the following conditions:

[
�Ai(k) �Bi(k) �Di(k)

]
= Mi · �i(k) · [NAi NBi NDi

]
, (d)

[
�Azi(k) �Bzi(k) �Dzi(k)

]
= Mzi · �zi(k) · [NZAi NZBi NZDi

]
, (e)

�i(k) =
[
I – �i(k)�i

]–
�i(k), �i�

T
i < I, (f)

�zi(k) =
[
I – �zi(k)�zi

]–
�zi(k), �zi�

T
zi < I, (g)

where Mi ∈ �n×q, Mzi ∈ �p×q, NAi, NBi, NDi, NZAi, NZBi, and NZDi, i = , , . . . , N , �i and
�zi are some given constant matrices of appropriate dimensions; and �i(k) and �zi(k) are
some unknown matrices satisfying

�T
i (k)�i(k) ≤ I, �T

zi(k)�zi(k) ≤ I. (h)

Now we propose the following switching domains:

�i(Ui) =
{

x ∈ �n : xT Uix ≥ 
}

, i = , , . . . , N , (a)

where the matrices Ui > , i = , , . . . , N , will be selected from our developed results, and

� = �, � = �\�, � = �\�\�, . . . ,

�N = �N\�\ · · · \�N–.
(b)
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From the above definition of the domains, the switching signal can be selected by

σ
(
x(k)

)
= i, ∀x(k) ∈ �i, (c)

where �i is defined in (b).
The following lemmas will be used to obtain the main proposed result.

Lemma  If there exist some constants  ≤ αi ≤ , i ∈ N ,
∑N

i= αi = , some matrices Ui > ,
i ∈ N , such that

N∑

i=

αi · Ui > ,

we have

N⋃

i=

�i = �n and �i ∩ �j = 
, ∀i 	= j,

where 
 is the empty set, and �i is defined in (b).

Proof By the definition of �i in (b), �i ∩�j = 
 is trivial. For any x ∈ �n with
∑N

i= αi ·Ui >
, we have

xT

[ N∑

i=

αi · Ui

]

x =
N∑

i=

αi · xT Uix ≥ , ∀x ∈ �n.

This condition implies

xT Uix ≥  for some i ∈ N .

From (a) and (b) we have

x ∈ �i(Ui) for some i ∈ N ,

x ∈ �j(Uj) for some i, j ∈ N , i ≥ j.

The proof is completed. �

Remark  In the recent years, some proposed switching domains are shown as follows:
(a) In [], the switching domains are selected as

�i(P, U , Ai) =
{

x ∈ �n : xT[
(rM – rm) · U – AT

i P – PAi
]
x < 

}
, i = , , . . . , N ,

where the matrices P > , U > , � = �,� = �\�, . . . ,�N = �N\(
⋃N–

i= �i).
(b) In [], the switching domains are selected as

�i(P, U , Ai) =
{

x ∈ �n : xT(
AT

i PAi
)
x ≤ xT Ux

}
, i = , , . . . , N ,

where the matrices P > , U > , � = �,� = �\�, . . . ,�N = �N\�\ · · · \�N–.
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(c) In [], the switching domains are selected as

�i(P, U , Ai) =
{

x ∈ �n : xT(
AT

i PAi
)
x ≤ xT Uix

}
, i = , , . . . , N ,

where the matrices P > , Ui > , i = , , . . . , N , and �i is defined in (b).

In this paper, the switching domains are defined in (a)-(b) with

�i(Ui) =
{

x ∈ �n : xT Uix ≥ 
}

,

where the matrices Ui = UT
i , i = , , . . . , N . The proposed approach in this paper does

not depend on the system parameters Ai, which shows that the proposed scheme is more
simple and flexible than the above results. It can be easily extended to continuous switched
systems to design the switching signal under consideration.

Lemma  [] For a given symmetric matrix S =
[ S S

∗ S

]
, the following conditions are

equivalent:
() S < ,
() S < , S – SS–

ST
 < .

Lemma  [] Suppose that �i(k) is defined in (f) and satisfies (h). Then for real matrices
Ui, Wi, and Xi with Xi = XT

i , the following conditions are equivalent:
(I) The following inequality is satisfied:

Xi + Ui�i(k)Wi + W T
i �T

i (k)UT
i < .

(II) There exists a scalar εi >  such that

⎡

⎢
⎣

Xi Ui εi · W T
i

∗ –εi · I εi · �T
i

∗ ∗ –εi · I

⎤

⎥
⎦ < ,

where the matrix �i is defined in (f).

Lemma  (Discrete Jensen inequality []) For any matrix R > , integers r < r, and a
vector function ω(i) ∈ �n, the following inequality is satisfied:

–(r – r) ·
k–r–∑

i=k–r

ωT (i)Rω(i) ≤ –

[k–r–∑

i=k–r

ω(i)

]T

R

[k–r–∑

i=k–r

ω(i)

]

.

Lemma  (Park inequality in []) For any matrices V ∈ �n×n > , M, M ∈ �n×m, a pos-
itive real number  < α < , and a vector ω ∈ �m, there exists a matrix X ∈ �n×n such that

[
V X
∗ V

]

> .
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Then the following inequality is satisfied:

–
[


α

ωT MT
 VMω +


 – α

ωT MT
 VMω

]

≤ –ωT

[
M

M

]T [
V X
∗ V

][
M

M

]

ω.

Definition  The discrete switched system of (a)-(h) with the switching signal in (c) is
called passive if there exists a constant γ >  such that

–γ ·
�∑

k=

wT (k)w(k) ≤  ·
�∑

k=

zT (k)w(k)

for all � >  and zero initial condition x(θ ) = , θ = –rM, –rM + , . . . , . If the parameter �

is selected as ∞, then the disturbance input w belongs to L(,∞).

In this paper, the following partitions are selected:

 < rm = r < r < r < · · · < rp– < rp = rM,

where p is the partition number, and ri, i = , , . . . , p, are some positive integers.

Theorem  For some selected integers  < rm = r < r < r < · · · < rp– < rp = rM , constants
 ≤ αj ≤ , j = , , . . . , N , and

∑N
i= αi = , system (a)-(h) is passive by the designed switch-

ing signal in (c) if there exist some n × n symmetric matrices P > , Q > , Q > , R > ,
R > , R > , S > , T > , V > , V > , Uj, W, W, an n × n matrix X, and constants
εj > , j = , , . . . , N such that the following LMI conditions are satisfied:

R + W > , R + W > , (a)
[

Q W

∗ Q

]

> ,

[
Q W

∗ Q

]

> ,

[
V X
∗ V

]

> , (b)

�i
j =

[
�i

j �j

∗ �j

]

< , i = , , . . . , p, j = , , . . . , N , (c)

N∑

i=

αi · Ui > , (d)

where �i
j, �j, �j, �j, �j, �j are defined by

�i
j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j  �j �j �j

∗ �i
j �i

j �i
j �j

∗ ∗ �i
j �j 

∗ ∗ ∗ �i
j 

∗ ∗ ∗ ∗ �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j �j   �j �j

�j �j   �j �j

     
     

�j �j  �j �j �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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�j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j  �j   
∗ �j �j   
∗ ∗ �j  �j 
∗ ∗ ∗ �j  �j

∗ ∗ ∗ ∗ �j 
∗ ∗ ∗ ∗ ∗ �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

i = , , . . . , p, j = , , . . . , N , (e)

�j = –P + T + (rM – rm) · Q – R – R + Uj,

�j = R, �j = R, �j = –AT
zj ,

� = r
M · R + (rM – rm)(Q + R + V + V) + r

m · R,

�j = (Aj – I)T�, �j = AT
j P, � = εj · NT

Aj,

�j = εj · NT
ZAj, γ i

 =
(rM – rm)
(rM – ri–)

, γ i
 =

(rM – rm)
(ri – rm)

,

�i
j = –γ i

 · (R + W) – γ i
 · (R + W) – (rM – rm) · (W – W) – V + X + XT ,

�i
j = γ i

 · (R + W) + V – XT ,

�i
 = γ i

 · (R + W) – X + V, �j = –BT
zj ,

�j = BT
j �, �j = BT

j P, �j = εj · NT
Bj, �j = εj · NT

ZBj,

�i
j = –S – R – γ i

 · (R + W) – (rM – rm) · W – V – V, �j = V + X,

�i
j = –(T – S) – γ i

 · (R + W) – R + (rM – rm) · W – V – V,

�j = –Dzj – DT
zj – γ · I, �j = DT

j �, �j = DT
j P, �j = –Mzj,

�j = εj · NT
Dj, �j = εj · NT

ZDj, �j = –�, �j = �T Mj,

�j = –P, �j = PMj, �j = –εj · I, �j = εj · �T
j ,

�j = –εj · I, �j = εj · �T
zj , �j = –εj · I, �j = –εj · I. (f)

Proof Define the Lyapunov-Krasovskii functional by

V (xk) = xT (k)Px(k) + (rM – rm) ·
–rm∑

j=–rM+

k–∑

i=k–+j

zT (i)Q̂z(i)

+ rM ·
∑

j=–rM+

k–∑

i=k–+j

yT (i)Ry(i)

+ (rM – rm) ·
–rm∑

j=–rM+

k–∑

i=k–+j

yT (i)[R + V + V]y(i)

+ rm ·
∑

j=–rm+

k–∑

i=k–+j

yT (i)Ry(i) +
k––rm∑

i=k–rM

xT (i)Sx(i) +
k–∑

i=k–rm

xT (i)Tx(i), ()

where P > , Q̂ = diag[Q Q] > , R > , R > , R > , V > , S > , T > , y(i) = x(i + ) –
x(i), and z(i) = [x(i)T y(i)T ]T . The difference of functional () along the solutions of system
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(a)-(h) has the form

�V (xk) = V (xk+) – V (xk)

=
[
xT (k + )Px(k + ) – xT (k)Px(k)

]
+ (rM – rm) · zT (k)Q̂z(k)

– (rM – rm) ·
k–rm–∑

i=k–rM

zT (i)Q̂z(i) + r
M · yT (k)Ry(k)

– rM ·
k–∑

i=k–rM

yT (i)Ry(i) + (rM – rm) · yT (k)[R + V + V]y(k)

– (rM – rm) ·
k–rm–∑

i=k–rM

yT (i)[R + V + V]y(i) + r
m · yT (k)Ry(k)

– rm ·
k–∑

i=k–rm

yT (i)Ry(i) + xT (k – rm)Sx(k – rm)

– xT (k – rM)Sx(k – rM) +
[
xT (k)Tx(k) – xT (k – rm)Tx(k – rm)

]
. ()

By the definitions y(i) = x(i + ) – x(i) and z(i) = [x(i)T y(i)T ]T we have

–
k–rm–∑

i=k–rM

zT (i)Q̂z(i) = –
k–r(k)–∑

i=k–rM

[
x(i)
y(i)

]T [
Q 
 Q

][
x(i)
y(i)

]

–
k–rm–∑

i=k–r(k)

[
x(i)
y(i)

]T [
Q 
 Q

][
x(i)
y(i)

]

, (a)

λ =
[
xT (k – rm)Wx(k – rm) – xT(

k – r(k)
)
Wx

(
k – r(k)

)]

–
k–rm–∑

i=k–r(k)

[
yT (i)Wy(i) + xT (i)Wy(i)

]
= , (b)

λ =
[
xT(

k – r(k)
)
Wx

(
k – r(k)

)
– xT (k – rM)Wx(k – rM)

]

–
k–r(k)–∑

i=k–rM

[
yT (i)Wy(i) + xT (i)Wy(i)

]
= . (c)

From the previous derivations we obtain the following result:

�V (xk) + (rM – rm) · (λ + λ) +
[
–zT (k)w(k) – γ · wT (k)w(k)

]

= xT (k + )Px(k + ) – xT (k)[P – T]x(k) + (rM – rm) · xT (k)Qx(k)

– (rM – rm) · xT(
k – r(k)

)
[W – W]x

(
k – r(k)

)

+
[
x(k + ) – x(k)

]T[
r

M · R + (rM – rm)(Q + R + V + V ) + r
m · R

]

· [x(k + ) – x(k)
]

– rM ·
k–∑

i=k–rM

yT (i)Ry(i)
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– (rM – rm) ·
[k–r(k)–∑

i=k–rM

yT (i)[R + W]y(i) +
k–rm–∑

i=k–r(k)

yT (i)[R + W]y(i)

]

– (rM – rm) ·
{k–rm–∑

i=k–rM

yT (i)Vy(i) +
k–rm–∑

i=k–rM

yT (i)Vy(i)

}

– rm ·
[ k–∑

i=k–rm

yT (i)Ry(i)

]

– xT (k – rm)
[
T – (rM – rm) · W – S

]
x(k – rm)

– xT (k – rM)
[
S + (rM – rm) · W

]
x(k – rM)

– (rM – rm) ·
k–r(k)–∑

i=k–rM

[
x(i)
y(i)

]T [
Q W

∗ Q

][
x(i)
y(i)

]

– (rM – rm) ·
k–rm–∑

i=k–r(k)

[
x(i)
y(i)

]T [
Q W

∗ Q

][
x(i)
y(i)

]

+
[
–zT (k)w(k) – γ · wT (k)w(k)

]
. (d)

Without loss of generality, assuming that  ≤ rm < r(k) < rM and ri– ≤ r(k) ≤ ri, i =
, , . . . , p, for some k, by Lemma  we have the following results:

–rM ·
k–∑

i=k–rM

yT (i)Ry(i) ≤ –

[ k–∑

i=k–rM

yT (i)

]T

R

[ k–∑

i=k–rM

yT (i)

]

= –
[
x(k) – x(k – rM)

]T R
[
x(k) – x(k – rM)

]
, (a)

–(rM – rm) ·
[k–r(k)–∑

i=k–rM

yT (i)[R + W]y(i) +
k–rm–∑

i=k–r(k)

yT (i)[R + W]y(i)

]

≤ –
(rM – rm)

(rM – r(k))
· ξ –

(rM – rm)
(r(k) – rm)

· ξ ≤ –γ i
 · ξ – γ i

 · ξ, (b)

–rm ·
k–∑

i=k–rm

yT (i)Ry(i) ≤ –
[
x(k) – x(k – rm)

]T R
[
x(k) – x(k – rm)

]
, (c)

–(rM – rm) ·
k–rm–∑

i=k–rM

yT (i)Vy(i)

= –(rM – rm) ·
[k–r(k)–∑

i=k–rM

yT (i)Vy(i) +
k–rm–∑

i=k–r(k)

yT (i)Vy(i)

]

≤ –
(rM – rm)

(rM – r(k))
· [(x

(
k – r(k)

)
– x(k – rM)

)T V
(
x
(
k – r(k)

)
– x(k – rM)

)]

–
(rM – rm)

(r(k) – rm)
· [(x(k – rm) – x

(
k – r(k)

))T V
(
x(k – rm) – x

(
k – r(k)

))]
, (d)

–(rM – rm) ·
k–rm–∑

i=k–rM

yT (i)Vy(i)

≤ –
[
x(k – rm) – x(k – rM)

]T V
[
x(k – rm) – x(k – rM)

]
, (e)
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where

ξ =
[
x
(
k – r(k)

)
– x(k – rM)

]T (R + W)
[
x
(
k – r(k)

)
– x(k – rM)

]
,

ξ =
[
x(k – rm) – x

(
k – r(k)

)]T (R + W)
[
x(k – rm) – x

(
k – r(k)

)]
.

(f)

Define

ZT (k) =
[
xT (k) xT (k – r(k)) xT (k – rM) xT (k – rm) wT (k)

]
. (a)

By Park inequality in Lemma  with (b) and (d) we have

–(rM – rm) ·
k–rm–∑

i=k–rM

yT (i)Uy(i)

≤ –ZT (k)

[
M

M

]T [
V X
∗ V

][
M

M

]

Z(k)

= ZT (k)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

    
∗ –V + X + XT V – XT –X + V 
∗ ∗ –V X 
∗ ∗ ∗ –V 
∗ ∗ ∗ ∗ 

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z(k), (b)

where M = [ I –I  ] and M = [ –I  I ]. Assuming that σ (x(k)) = j ∈ N , from (a)-
(c), (d), and (a)-(b) we derive the following result:

�V (xk) +
[
–zT (k)w(k) – γ · wT (k)w(k)

] ≤ –xT (k)Ujx(k) + ZT (k) · �̂i
j · Z(k), (a)

where

�̂i
j = �i

j –

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j

�j




�j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�–
j

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j

�j




�j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j

�j




�j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�–
j

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j

�j




�j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

, (b)

�i
j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j  �j �j �j

∗ �i
j �i

j �i
j �j

∗ ∗ �i
j  

∗ ∗ ∗ �i
j 

∗ ∗ ∗ ∗ �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�j = –(Azj + �Azj)T , �j = (Aj + �Aj – I)T�, �j = (Aj + �Aj)T P,

�j = –(Bzj + �Bzj)T , �j = (Bj + �Bj)T�, �j = (Bj + �Bj)T P,

�j = –(Dzj + �Dzj) – (Dzj + �Dzj)T – γ · I,

�j = (Dj + �Dj)T�, �j = (Dj + �Dj)T P,

�klj and �i
klj, k, l = , , . . . , , and � are defined in (f).
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Define

�
i
j =

[
�i

j �j

∗ �j

]

=

[
�i

j �j

∗ �j

]

+ �j�j(k)�T
j + �j�

T
j (k)�T

j , (c)

where

�j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j �j

�j �j

 
 

�j �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, �j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j �j

�j �j

 
 

�j �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�j =

[
�j 

 �j

]

, �j =

[
     �T

j �T
j

    �T
j  

]T

,

�j(k) =

[
�j(k) 

 �zj(k)

]

=

[
I – �j(k)�j 

 I – �zj(k)�zj

]– [
�i(k) 

 �zi(k)

]

=

{[
I 
 I

]

–

[
�j(k) 

 �zj(k)

][
�j 
 �zj

]}– [
�i(k) 

 �zi(k)

]

, (d)

�j =

[
NAj NBj   NDj  

NZAj NZBj   NZDj  

]T

.

By (d) with Lemma  and switching signal in (c) we have

xT (k)Ujx(k) ≥ , ∀x(k) ∈ �j. ()

By Lemmas  and  with (d), the condition �i
j <  in (c) implies �

i
j <  in (c), which

also implies �̂i
j <  in (b). From () by summing (a) from  to � we derive the following

condition:

V (x�) – V (ϕ) +
�∑

k=

[
– · zT (k)w(k) – γ · wT (k)w(k)

] ≤ .

With zero initial condition (ϕ(k) = , –rM ≤ k ≤ ) we have

V (ϕ) = .

By the definition of the functional V (xk) in () we have

V (x�) ≥ .

From the previous derivations the following condition is guaranteed:

–γ ·
�∑

k=

[
wT (k)w(k)

] ≤  ·
�∑

k=

[
zT (k)w(k)

]
.
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By Definition  the system (a)-(h) is passive by the switching signal designed in (c). This
completes this proof. �

Remark  In view of (a) in the proof of Theorem , we have �V (xk) <  when w(k) = .
The internal stability of system (a)-(h) can be achieved by the proposed results.

Remark  The matrix perturbations in (d)-(h) are usually called linear fractional per-
turbations [, , , , ]. The parametric perturbations in [, , , , ] are the
special conditions of system under consideration with �i = , �zi = , i ∈ N .

Remark  The Lyapunov functional proposed in () is different from our previous ones
in [, ]. In this paper, upper and lower bounds of delay are used instead of interval
time-varying r(k) in [, ]. Hence, some complicated derivations can be ignored in this
paper. On the other hand, the discrete Jensen inequality approach is used instead of the
nonnegative inequality approach in [, ]. Since the number and dimension of variables
have been reduced, the LMI program can be formulated easily. In this paper, we also use
a delay-partitioning approach to improve the conservativeness of the developed results.
Uniform or nonuniform partitions can be performed by our proposed results.

3 Passive switching control for uncertain discrete switched system
Next, we consider the passive switching control of the following system:

x(k + ) =
[
Aσ + �Aσ (k)

]
x(k) +

[
Bσ + �Bσ (k)

]
x
(
k – r(k)

)

+
[
Dwσ + �Dwσ (k)

]
w(k) +

[
Duσ + �Duσ (k)

]
u(k), k = , , , . . . , (a)

z(k) =
[
Azσ + �Azσ (k)

]
x(k) +

[
Bzσ + �Bzσ (k)

]
x
(
k – r(k)

)

+
[
Dzwσ + �Dzwσ (k)

]
w(k), k = , , , . . . , (b)

x(θ ) = ϕ(θ ), θ = –rM, –rM + , . . . , , (c)

where u(k) ∈ �υ is the control input, Dui, i = , , . . . , N , are some given constant matri-
ces of appropriate dimensions. Other definitions are shown in system (a)-(h). �Ai(k),
�Bi(k), �Dwi(k), �Dui(k), �Azi(k), �Bzi(k), and �Dzwi(k) are some perturbed matrices
satisfying the following conditions:

[
�Ai(k) �Bi(k) �Dwi(k) �Dui(k)

]

= Mi · �i(k) · [NAi NBi NDWi NDUi
]
, (d)

[
�Azi(k) �Bzi(k) �Dzwi(k)

]
= MZi · �Zi(k) · [NZAi NZBi NZWi

]
, (e)

�i(k) =
[
I – �i(k)�i

]–
�i(k), �i�

T
i < I, (f)

�Zi(k) =
[
I – �zi(k)�zi

]–
�zi(k), �zi�

T
zi < I, (g)

where Mi ∈ �n×q, MZi ∈ �p×q, NAi, NBi, NDWi, NDUi, NZAi, NZBi, NZWi, �i, and �zi, i =
, , . . . , N , are some given constant matrices with appropriate dimensions, �i(k) and �zi(k)
are some unknown matrices satisfying

�T
i (k)�i(k) ≤ I, �T

zi(k)�zi(k) ≤ I. (h)
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The switching domains are also defined by

�i(Ui) =
{

x ∈ �n : xT Uix ≥ 
}

, i = , , . . . , N , (a)

where the matrices Ui > , i = , , . . . , N , will be selected from our developed results, and

� = �, � = �\�, � = �\�\�, . . . ,

�N = �N\�\ · · · \�N–.
(b)

By the definition of domains the switching signal can be designed by

σ
(
x(k)

)
= i, ∀x(k) ∈ �i, (c)

where �i is defined in (b). Now we define the state feedback switching control to achieve
the stabilization and passivity for the switched system in (a)-(h):

u(k) = –Kix(k), when σ
(
x(k)

)
= i, ()

where the state feedback gain Ki ∈ �υ×n will be selected from our developed result.

Lemma  [] For matrices X, Y , and Z with X = XT and Z = ZT , the following statements
are equivalent:

(a)

S =

[
X Y
∗ –Z–

]

< .

(b) There exists a scalar η >  such that

⎡

⎢
⎣

X η · Y 
∗ –η · I Z
∗ ∗ –Z

⎤

⎥
⎦ < .

Lemma  [] Suppose that �i(k) is defined in (f) and satisfies (h). Then for real ma-
trices Vi, Wi, and Xi with Xi = XT

i , the following statements are equivalent:
(a)

Xi + Vi�i(k)Wi + W T
i �T

i (k)V T
i < .

(b) There exists a scalar εi >  such that

⎡

⎢
⎣

Xi εi · Vi W T
i

∗ –εi · I εi · �T
i

∗ ∗ –εi · I

⎤

⎥
⎦ < ,

where the matrix �i is defined in (f).
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Definition  [] The discrete switched system (a)-(h) with switching signal in (c)
and switching control in () is called passive if there exists a constant γ >  such that

–γ ·
�∑

k=

wT (k)w(k) ≤  ·
�∑

k=

zT (k)w(k)

for all � >  and zero initial condition x(θ ) = , θ = –rM, –rM + , . . . , . If the parameter �

is selected as ∞, then the disturbance input w belongs to L(,∞).

Theorem  For some selected integers  < rm = r < r < r < · · · < rp– < rp = rM , constants
γ > ,  ≤ αi ≤ , i ∈ N , and

∑N
i= αi = , system (a)-(h) is passive by the designed switch-

ing signal in (c) and switching control in () with control gains Ki = K̂i/ηi if there exist
n × n symmetric matrices P > , Q > , Q > , R > , R > , R > , S > , T > , V > ,
V > , Uj, W, W, matrices X ∈ �n×n, K̂j ∈ �υ×n, j = , , . . . , N , and constants εj > ,
ηj > , j = , , . . . , N , such that the following LMI conditions are satisfied:

R + W > , R + W > , (a)
[

Q W

∗ Q

]

> ,

[
Q W

∗ Q

]

> ,

[
V X
∗ V

]

> , (b)

�̃i
j =

[
�̃i

j �̃j

∗ �̃j

]

< , i = , , . . . , p, j = , , . . . , N , (c)

N∑

i=

αi · Ui > , (d)

where

�̃i
j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j  �j �j �j

∗ �i
j �i

j �i
j �j

∗ ∗ �i
j �j 

∗ ∗ ∗ �i
j 

∗ ∗ ∗ ∗ �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�̃j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j �j     �j �j

�j �j     �j �j

       
       

�j �j    �j �j �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�̃j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j  �j  �j   
∗ �j  �j �j   
∗ ∗ �j     
∗ ∗ ∗ �j    
∗ ∗ ∗ ∗ �j  �j 
∗ ∗ ∗ ∗ ∗ �j  �j

∗ ∗ ∗ ∗ ∗ ∗ �j 
∗ ∗ ∗ ∗ ∗ ∗ ∗ �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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�j = –P + T + (rM – rm) · Q – R – R + Uj,

�j = R, �j = R, �j = –AT
zj ,

�j = ηj · (Aj – I)T – K̂T
j DT

uj, �j = ηj · AT
j – K̂T

j DT
uj,

�j = ηj · NT
Aj – K̂T

j NT
DUj, �j = NT

ZAj,

γ i
 =

(rM – rm)
(rM – ri–)

, γ i
 =

(rM – rm)
(ri – rm)

,

�i
j = –γ i

 · (R + W) – γ i
 · (R + W) – (rM – rm) · (W – W) – V + X + XT ,

�i
j = γ i

 · (R + W) + V – XT , �i
 = γ i

 · (R + W) – X + V,

�j = –BT
zj , �j = ηj · BT

j , �j = ηj · BT
j ,

�j = ηj · NT
Bj, �j = NT

ZBj,

�i
j = –S – R – γ i

 · (R + W) – (rM – rm) · W – V – V, �j = V + X,

�i
j = –(T – S) – γ i

 · (R + W) – R + (rM – rm) · W – V – V,

�j = –Dzwj – DT
zwj – γ · I, �j = ηj · DT

wj, �j = ηj · DT
wj,

�j = –εj · MZj, �j = ηj · NT
DWj, �j = NT

ZWj, �j = �j = –ηj · I,

� = r
M · R + (rM – rm)(Q + R + V + V) + r

m · R,

�j = �, �j = εj · Mj, �j = P,

�j = εj · Mj, �j = –�, �j = –P,

�j = �j = �j = �j = –εj · I,

�j = εj · �T
j , �j = εj · �T

zj .

Proof For the functional given in (), the derivations in ()-(f) with (a)-() can be for-
mulated as

�V (xk) + (rM – rm) · (λ + λ) +
[
–zT (k)w(k) – γ · wT (k)w(k)

]

≤ –xT (k)Ujx(k) + ZT (k) · �̂i
j · Z(k), (a)

where Z(k) is defined in (a), and

�̂i
j = �̂i

j –

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂j

�̂j




�̂j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�–
j

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂j

�̂j




�̂j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂j

�̂j




�̂j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�–
j

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂j

�̂j




�̂j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

, (b)

�̂i
j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j  �j �j �̂j

∗ �i
j �i

j �i
j �̂j

∗ ∗ �i
j  

∗ ∗ ∗ �i
j 

∗ ∗ ∗ ∗ �̂j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (c)
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�̂j = –(Azj + �Azj)T , �̂j =
(
Aj + �Aj – (Duj + �Duj)Kj – I

)T ,

�̂j =
(
Aj + �Aj – (Duj + �Duj)Kj

)T , �̂j = –(Bzj + �Bzj)T ,

�̂j = (Bj + �Bj)T , �̂j = (Bj + �Bj)T ,

�̂j = –(Dzwj + �Dzwj) – (Dzwj + �Dzwj)T – γ · I, �̂j = (Dwj + �Dwj)T ,

�̂j = (Dwj + �Dwj)T , �j = –�–, �j = –P–,

�klj, k, l = , , . . . ,  and � are defined in (c).
Define

�̃i
j =

[
�̂i

j �̂j

∗ –�̂–
j

]

, ()

where �̂i
j is defined in (c), and

�̂j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂j �̂j

�̂j �̂j

 
 

�̂j �̂j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, �̂j =

[
–�j 

 –�j

]

=

[
� 
 P

]

.

Consider the following matrices with constants ηj > , j = , , . . . , N :

˜̃
�i

j =

⎡

⎢
⎣

�̂i
j ηj · �̂j 

∗ �j �̂j

∗ ∗ –�̂j

⎤

⎥
⎦ =

⎡

⎢
⎣

�i
j �j 

∗ �j �j

∗ ∗ –�j

⎤

⎥
⎦ + �j�̂j(k)�T

j + �j�̂
T
j (k)�T

j ,

where �klj, k, l = , , . . . , , are defined in (c),

�i
j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j  �j �j �j

∗ �i
j �i

j �i
j �j

∗ ∗ �i
j  

∗ ∗ ∗ �i
j 

∗ ∗ ∗ ∗ �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, �j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j �j

�j �j

 
 

�j �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�j =

[
– · ηj · I 

 – · ηj · I

]

, �j =

[
� 
 P

]

,

�j =

[
     MT

j MT
j  

    –MT
Zj    

]T

,

�̂j(k) =

[
�j(k) 

 �zj(k)

]

=

[
I – �j(k)�j 

 I – �zj(k)�zj

]– [
�i(k) 

 �zi(k)

]

=

{[
I 
 I

]

–

[
�j(k) 

 �zj(k)

][
�j 
 �zj

]}– [
�i(k) 

 �zi(k)

]

,
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�j =

[
ηj · NAj – NDUjK̂j ηj · NBj   ηj · NDWj    

NZAj NZBj   NZWj    

]T

, K̂j = ηj · Kj.

By Lemmas  and  the condition in (c) should be imposed to achieve the passivity of
system under consideration. �

4 Illustrative examples
Example  We consider system (a)-(h) with the following parameters:

A =

[
. .
. 

]

, A =

[
 .

. .

]

,

B =

[
–. .

 –.

]

, B =

[
–. 
. .

]

,

D =

[
. 
 .

]

, D =

[
. 
. .

]

,

Az =

[
. 
 .

]

, Az =

[
. 
 .

]

,

Bz =

[
. 

 .

]

, Bz =

[
. 

 .

]

,

Dz =

[
. .
 .

]

, Dz =

[
. 
 .

]

,

M = M =

[
. 
 .

]

, Mz = Mz =

[
. 

 .

]

,

NA = NA =

[
. 

 .

]

, NB = NB =

[
. 

 .

]

,

ND = ND =

[
. 

 .

]

, NZA = NZA = NB,

NZB = NZB = NA, NZD = NZD = ND, � = � = �z = �z = . · I.

()

With p = , rm = r = , r = , rM = r = , γ = ., and α = α = ., the LMI conditions
in Theorem  have a feasible solution with (some matrix solutions for LMI variables are
not listed here)

U =

[
–. –.
–. .

]

, U =

[
. .
. –.

]

.

System (a)-(h) with () is passive with rm = , rM = , γ = . by the switching signal
designed by

σ =

{
, x ∈ �,
, x ∈ �\�,

()
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Table 1 The obtained results for our proposed results

The delay upper bound and switching domains to guarantee the passivity property of systems

Results Number for
elements of
LMI variables

[10] rm = 1, rM = 3 fail to guarantee stability even when�i = 0,
�zi = 0, i = 1, 2

Fail

[13] rm = 1, rM = 3 cannot design a switching signal to
guarantee the stability even when �i = 0, �zi = 0, i = 1, 2

Fail

[14] rm = 1, rM = 3 fail to guarantee the stability even when
�i = 0, �zi = 0, i = 1, 2

Fail

[18] rm = 1, rM = 3 338 (program
running time
about 2 minutes)

�1 = {[x1 x2]T : 1.0102x21 + 0.0016x1x2 – 0.9057x22 ≤ 0},
�2 =�2\�1

rm = 2, rM = 4
�1 = {[x1 x2]T : 0.3961x21 – 0.0012x1x2 – 0.4515x22 ≤ 0},
�2 =�2\�1

Results of
this paper

rm = 1, rM = 4 (p = 2, r1 = 3, α1 = α2 = 0.5) 45 (program
running time
about 5 seconds)

�1 = {[x1 x2]T : –0.5249x21 – 0.033x1x2 + 0.7641x22 ≥ 0},
�2 =�2\�1

where � = {[x x]T : –.x
 – .xx + .x

 ≥ }. Some delay upper bounds
and switching domains in () that guarantee the passivity property (γ = .) for system
(a)-(h) with () are provided in Table  for α = α = ..

Two issues about passivity analysis of switched systems:
. Under arbitrary switching signal, passivity analysis and passive control can be

investigated to guarantee the performance for uncertain discrete switched systems.
. Design of a switching signal (and a switching control) guarantees the passivity

property for uncertain discrete switched systems. This paper is focused on this issue.
Note that the matrices A and A in this example are not Hurwitz (have at least one eigen-
value greater than ) and the results in [, , ] cannot be applied to find any feasible
solution to guarantee the stability for discrete switching systems for any arbitrary switch-
ing.

Example  We consider system (a)-(h) with the following parameters:

A =

[
. .
. .

]

, A =

[
. .
. .

]

,

B =

[
–. .

 –.

]

, B =

[
. .
. .

]

,

Dw =

[
. .
 .

]

, Dw =

[
. 
. .

]

,

Du =

[
 .

. 

]

, Du =

[
 .

. 

]

,

Az =

[
. 
 .

]

, Az =

[
. 
. .

]

,

Bz =

[
. 

 .

]

, Bz =

[
. 
 .

]

, ()
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Dzw =

[
. .
 .

]

, Dzw =

[
. 
 .

]

, M = M =

[
. 
 .

]

,

Mz = Mz =

[
. 

 .

]

, NA = NA =

[
. 

 .

]

,

NB = NB =

[
. 

 .

]

, NDW  = NDW  =

[
. 

 .

]

,

NDU = NDU =

[
. 

 .

]

, NZA = NZA = NA, NZB = NZB = NB,

NZW  = NZW  = NDW , � = � = �z = �z = . · I.

With p = , rm = , r = , rM = , γ = ., and α = α = ., the LMI conditions in Theo-
rem  have a feasible solution with (some matrix solutions for LMI variables are not listed
here)

U =

[
. .
. –.

]

, U =

[
–. –.
–. .

]

,

K̂ =

[
. .

–. –.

]

, K̂ =

[
–. –.
. .

]

,

η = ., η = ..

System (a)-(h) with () is passive with rm = , rM = , γ = . by the switching signal
given in (c) with

σ =

{
, x ∈ �,
, x ∈ �,

()

where

� =
{[

x x
]T ∈ R : .x

 + .xx – .x
 ≥ 

}
and

� = �\�.

The proposed switching control gains in () are given by

K = K̂/η =

[
. .

–. –.

]

, K = K̂/η =

[
–. –.

. .

]

. ()

Under the disturbance inputs w(k) = [ × (.)k –  × (.)k]T shown in Figure  and
zero initial conditions, the regulated outputs z(k) ∈ � of switched system (a)-(h) with
()-() and no perturbations are shown in Figure . Under zero disturbance, the initial
state function ϕ(θ ) = [ –]T , θ = –, –, . . . , –, , and no perturbations, the state tra-
jectories x(k) ∈ � of switched system (a)-(h) with ()-() are shown in Figure . By
Theorem  system (a)-(h) with () and  ≤ r(k) ≤  is passive by the proposed switching
signal in () and switching control in () with control gains in (). With  ≤ r(k) ≤ ,
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Figure 1 The disturbance inputs of switched
system (solid line: w1(k), dashed line: w2(k)).

Figure 2 Regulated outputs of switched system
(solid line: z1(k), dashed line: z2(k)).

Figure 3 State trajectories for switched system
(solid line: x1(k), dashed line: x2(k)).

our previous results in [, ] cannot provide or guarantee any performance of uncer-
tain discrete switched time-delay system. By using Theorem , the maximal delay upper
bounds with respect to γ = . and γ = . that guarantee the passivity property for sys-
tem (a)-(h) with () are provided in Table  for α = α = ., p = , r = , respectively.
The obtained result for passive switching control in this paper is more efficient than our
previous results in [].

There are some major contributions:
(a) Less LMI variable elements are used in this proposed approach. Implementation of

LMI program can be achieved easily.
(b) Under the same passivity requirement, a more spacious range of interval

time-varying delay can be guaranteed by the proposed approach.



Yu et al. Advances in Difference Equations  (2016) 2016:104 Page 21 of 24

Table 2 The obtained results for our proposed results

The delay upper bound to guarantee the stability and passivity property of systems

[10] [11] (switching signal + switching control) rm = 1

Conditions [19] Results of
this paper

Fail (stability
for arbitrary
switching)

rm = 1, rM = 2
(stability for switching
signal design)

γ = 1.5 rM = 7 rM = 8
γ = 0.1 rM = 6 rM = 7
Number for
elements of
LMI variables

348 55

(c) The proposed new Lyapunov functional does not depend on time-varying delay
r(k), and some conservativeness can be reduced.

(d) A simple design scheme for the proposed switching signal can be easily generalized
to continuous switched time-delay systems.

(e) Better passivity of switching systems can be achieved by switching signal design and
switching state feedback control.

(f ) The delay-partition approach and Jensen-Park inequalities are used to reduce the
conservativeness of the proposed results.

Example  The following water quality model is presented in Chapter  of []:

x(k + ) = Aσ x(k) + Bσ x
(
k – r(k)

)
+ Dσ w(k), (a)

z(k) = Azσ x(k) + Bzσ x
(
k – r(k)

)
+ Dzσ w(k), (b)

where the time delay r(k) >  is shown to reflect the mixing effect of biochemical con-
stituents in time instance k, the state vector x(k) ∈ �n is the water-quality constituents
(like algae, ammonia nitrogen, dissolved oxygen, biochemical oxygen demand), the out-
put z(k) ∈ �q is the performance, the disturbance input w(k) ∈ �q is the irregular discharge
of effluents and belongs to L(,∞), and the switching signal σ is located in the finite set
{, , . . . , N}. Typically, the switching rule σ is not known a priori, but we assume that its
instantaneous value is available in real time for practical implementations by water pol-
lution management. In this paper, the passivity problem defined in Definition  will be
investigated. The time-varying delay is defined by  < rm ≤ r(k) ≤ rM , where rm and rM

present the extreme cases of light and heavy waste dump loadings, respectively. Consider
the following parameters of the model (N = ):

A =

[
. .
 .

]

, A =

[
. .
. .

]

,

A =

[
. .
. .

]

, B =

[
. 
. .

]

,

B =

[
–. .

 –.

]

, B =

[
. 
 .

]

,

D =

[
.
.

]

, D =

[
.

.

]

, D =

[
.
.

]

, ()
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Az =
[
. .

]
, Az =

[
. .

]
,

Az =
[
. .

]
, Bz =

[
. .

]
,

Bz =
[
. .

]
, Bz =

[
. .

]
,

Dz = ., Dz = ., Dz = ..

With rm = r = , r = , rM = r = , and α = α = ., α = ., there is a feasible solution
in Theorem  with (some matrix solutions for LMI variables are not listed here)

U =

[
. –.

–. .

]

,

U =

[
–. .
. .

]

,

U =

[
. –.

–. –.

]

.

Hence, we can conclude that the water quality model (a)-(b) with () is passive with
γ =  by the switching signal designed by

σ =

⎧
⎪⎨

⎪⎩

, x(k) ∈ �,
, x(k) ∈ �,
, x(k) ∈ �\�\�,

()

where

� =
{[

x x
]T ∈ � : .x

 – .xx + .x
 ≥ 

}
,

� =
{[

x x
]T ∈ � : –.x

 + .xx + .x
 ≥ 

}\�.

5 Conclusions
In this paper, a simple switching signal design scheme has been investigated to guarantee
the passivity property and passive switching control for uncertain discrete switched sys-
tems with interval time-varying delay and linear fractional perturbations. A new Lyapunov
functional is applied to guaranteed the obtained results. Jensen and Park inequalities com-
bined with delay-partitioning approach are used to improve the conservativeness of the
proposed results. The results proposed in this paper are shown to be less conservative than
some recent reports from numerical examples. The passivity of a water quality model is
guaranteed by selecting a suitable switching signal.
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