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Abstract
In this paper, the block pulse function method is proposed for solving high-order
differential equations associated with multi-point boundary conditions. Although the
orthogonal block pulse functions frequently have been applied to approximate the
solution of ordinary differential equations associated with the initial conditions, the
presented method provides the flexibility with respect to multi-point boundary
conditions in separated or non-separated forms. This technique, which may be
named the augmented block pulse function method, reduces a system of high-order
boundary value problems of ordinary differential equations to a system of algebraic
equations. The illustrated results confirm the computational efficiency, reliability, and
simplicity of the presented method.
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1 Introduction
The systems of ordinary differential equations (ODEs) with different boundary conditions
are well known for their applications in biology, chemistry, physics, engineering, and sci-
ences [–]. There are many different reliable methods which can find the solution of
ODEs for simple forms of boundary conditions. But the mathematical models of many
phenomena in the real world are enforced by more difficult forms of boundary conditions
such as multi-point boundary conditions in separated or non-separated forms.

Because of the importance, the boundary value problems have been solved several times
by many different methods such as the finite difference method, the spline method, the ra-
dial basis functions, the wavelet method, and many other numerical and analytical meth-
ods; see [–] and the references therein. We recall that boundary conditions that are
more difficult imply developing numerical methods to find the solution of the ordinary
differential systems. However, some of these methods are reliable and applicable for solv-
ing ordinary differential equations; the most of these methods provide the solution only
for a particular kind of differential equations or a particular kind of boundary conditions.
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In this study, we describe the application of the block pulse function method for solving
arbitrary-order differential equations.

Recently, orthogonal block pulse functions have been widely discussed and applied to
approximate the solutions of some difficult systems defined in engineering and science
[–]. The most important properties of BPFs are disjointness, orthogonality, and com-
pleteness which cause the popularity among the computational methods.

In this work, we proposed the augmented block pulse function method for solving a
system of arbitrary-order boundary value problem associated with initial conditions or
multi-point boundary conditions in separated or non-separated forms. Let us consider the
following nth-order differential equations with assumption of the existence and unique-
ness of the solution:

L
(
F(x), x

)
= , x ∈ [a, b], ()

associated with n equality conditions and

F(x) =
(
f (n)(x), f (n–)(x), . . . , f ′(x), f (x)

)
. ()

Since the differential equation may be enforced by many different conditions, we consider
the general form including separated and non-separated boundary conditions but we also
can consider boundary conditions or the set of conditions including some or all of these
mentioned types. Let us assume

L
(
f (x), f (x), . . . , f (xk)

)
= ,

L
(
f (x), f (x), . . . , f (xk)

)
= ,

...

Ln
(
f (x), f (x), . . . , f (xk)

)
= ,

()

and x ∈R and x, x, . . . , xk (not necessarily distinct) are given real finite constants. If k = 
the problem becomes the initial value problem and for k =  the problem will be called a
two-point boundary value problem. It is also called a multi-point boundary value prob-
lem if k > . In the particular case of distinct x, x, . . . , xn, the boundary conditions of the
following type:

L
(
f (x)

)
= ,

L
(
f (x)

)
= ,

...

Ln
(
f (xn)

)
= ,

may be called separated and if the conditions are not separated will be called of non-
separated type. In a more general form, the condition may also include the value of the
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derivatives of f (x) so

L
(
F(x), F(x), . . . , F(xk)

)
= ,

L
(
F(x), F(x), . . . , F(xk)

)
= ,

...

Ln
(
F(x), F(x), . . . , F(xk)

)
= .

()

However, these types of systems arising in engineering and sciences have important ap-
plications but it is not possible to solve them analytically for arbitrary choices of L(x) and
Li(x), i = , , . . . , n. Therefore, the numerical methods for obtaining an approximated so-
lution of () with higher accuracy still is of interest for researchers.

To make the article self-contained in Section  a short description on block pulse func-
tions is added. In Section  the description of the method shows BPFs how can be applied
to solve the high-order differential equations with a different kind of boundary conditions.
The numerical results are illustrated in Section  to clarify more details of the proposed
method and expectedly confirm the convergence and applicability of the method. Finally,
a brief conclusion is stated in Section .

2 Block pulse functions
An m-set of BPFs over the interval t ∈ [, ) is defined as follows []:

βi(x) =

⎧
⎨

⎩
, x ∈ [ i

m , i+
m ),

, otherwise,
()

where i = , , . . . , m –  is the translation parameter and βi(x) is called the ith BPF.
There are some properties for BPFs which make them popular for approximation such

as orthogonality, disjointness, and completeness []. A function f (x) over the interval
[, ), can be expanded in a BPFs series with an infinite number of terms

f (x) =
∞∑

i=

ciβi(x), x ∈ [, ), ()

where the coefficients are calculated as follows:

ci = m
∫ 


f (x)βi(x) dx, i = , , . . . . ()

In fact, the series expansion () contains an infinite number of terms for smooth f (x). If
f (x) is a piecewise constant or may be approximated by a piecewise constant, the sum in
() will be terminated after m terms, that is,

f (x) �
m–∑

i=

ciβi(x) = CT
m�m(x), x ∈ [, ), ()

where

Cm = [c, c, . . . , cm–]T and �m(x) =
[
β(x),β(x), . . . ,βm–(x)

]T . ()
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Also, the collocation points can be defined in the following form:

ξl =
l – 
m

, l = , , . . . , m, ()

Now substituting the collocation points leads to

f (ξl) �
m–∑

i=

ciβi(ξl) = CT
m�m(ξl), l = , , . . . , m. ()

The above equations can be rewritten in the following matrix form:

FT = CT
m�m, where F =

[
f (ξ), f (ξ), . . . , f (ξm–)

]T , ()

and �m is the BPF matrix of order m defined by

�m = Im = diag(, , . . . , ). ()

Theorem . [, ] Suppose that f (x) is an arbitrary real bounded function, which is
square integrable in the interval [, ), and

em(x) =f (x) –
m–∑

i=

ciβi(x), x ∈ [, ). ()

Then

∥∥em(x)
∥∥

 ≤ 

√

m
sup

x∈[,)

∣∣f ′(x)
∣∣. ()

We consider the solution of nth-order system () to need at least nth-order differentia-
bility to be able to approximate the highest-order derivative of the unknown function and
prevent the discontinuity seen in (). So we first define

P(x) =
[∫ x


β(s)ds,

∫ x


β(s) ds, . . . ,

∫ x


βm–(s) ds

]T

, ()

P(x) =
[∫ x



∫ x


β(s) ds,

∫ x



∫ x


β(s) ds, . . . ,

∫ x



∫ x


βm–(s)s

]T

, ()

P(x) =
[∫ x



∫ x



∫ x


β(s) ds,

∫ x



∫ x



∫ x


β(s) ds, . . . ,

∫ x



∫ x



∫ x


βm–(s) ds

]T

, ()

...

Pn(x) =
[
Pn(x), Pn(x), . . . , Pm–,n(x)

]T , ()

where

Pin(x) =
∫ x



∫ x


· · ·

∫ x

︸ ︷︷ ︸
n-times

βi(s) dsn =


(n – )!

∫ x


(x–s)n–βi(s) ds, i = , , . . . , m–. ()
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These integrals can be evaluated using the definition of BPFs for i = , , . . . , m –  and are
given as follows:

Pin(x) =

⎧
⎪⎪⎨

⎪⎪⎩

, x ∈ [, i
m ),


n! (x – i

m )n, x ∈ [ i
m , i+

m ),

n! [(x – i

m )n – (x – i+
m )n], x ∈ [ i+

m , ).

()

Remark . More generally, we define the BPFs over the interval [a, b) as

β̄i(x) =

⎧
⎨

⎩
, x ∈ [αi,βi),

, otherwise,
()

where

αi = a +
i(b – a)

m
, βi = a +

(i + )(b – a)
m

, i = , , . . . , m – . ()

Also, the integrals of β̄i(x) can be evaluated as

P̃in(x) =

⎧
⎪⎪⎨

⎪⎪⎩

, x ∈ [a,αi),

n! (x – αi)n, x ∈ [αi,βi),

n! [(x – αi)n – (x – βi)n], x ∈ [βi, b).

()

Note that if we assume

f (n)(x) �
m–∑

i=

ciβi(x) = CT
m�m(x), x ∈ [, ), ()

then f (x) can be approximated using Pin(x), i = , , , . . . , m – , as follows:

f (x) �
m–∑

i=

ciPin(x) +
f (n–)()
(n – )!

xn– + · · · +
f ′′()

!
x + f ′()x + f (), x ∈ [, ). ()

Similarly, by using the collocations points () we have

f (ξl) �
m–∑

i=

ciPin(ξl) +
f (n–)()
(n – )!

ξn–
l + · · · +

f ′′()
!

ξ 
l + f ′()ξl + f (),

l = , , . . . , m, ()

and the matrix form of the above linear system is

FT = CT
m� (n)

m +
f (n–)()
(n – )!

TT
(n–) + · · · +

f ′′()
!

TT
 + f ′()TT

 + f ()TT


= CT
m� (n)

m +
n–∑

j=

f (j)()
j!

TT
j , ()
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where

� (n)
m =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢
⎣

ϕ, ϕ, ϕ, . . . ϕ,m–

 ϕ, ϕ, . . . ϕ,m–

  ϕ, . . . ϕ,m–
...

...
...

. . .
...

   . . . ϕm–,m–

⎤

⎥
⎥⎥
⎥⎥⎥
⎥
⎦

, ()

ϕi,k = Pin(ξk+), i = , , . . . , m – , k = i, i + , . . . , m – , ()

is the nth BPFs integral matrix and

Tj =
[
ξ k

 , ξ k
 , . . . , ξ k

m
]T , j = , , . . . , n – . ()

For example, the matrix of the first time integration is

� ()
m =


m

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

   . . . 
   . . . 
   . . . 
...

...
...

. . .
...

   . . . 

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

, ()

and the second time integration is

� ()
m =


m

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

–    . . . m –  m – 
 –   . . . m –  m – 
  –  . . . m –  m – 
...

...
...

...
. . .

...
...

    . . . – 
    . . .  –

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. ()

The integration of BPFs has the important role to approximate differential terms and the
described matrices in (), (), and () show the sparsity of the systems made by using
BPFs, which affects the computational efficiency.

3 Description of the method
First we describe the method for general form of () and then some particular cases will
be taken to show more features of the method. Assume f (n)(x) is expanded in a series as
follows:

f (n)(x) =
m–∑

i=

ciβ̄i(x), x ∈ [a, b], ()

which gives

f (n–)(x) =
m–∑

i=

ciP̃i(x) + f (n–)(a),
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f (n–)(x) =
m–∑

i=

ciP̃i(x) + f (n–)(a)x + f (n–)(a)

f (n–)(x) =
m–∑

i=

ciP̃i(x) +
f (n–)(a)


x + f (n–)(a)x + f (n–)(a),

...

f (x) =
m–∑

i=

ciP̃in(x) +
f (n–)(a)
(n – )!

xn– +
f (n–)(a)
(n – )!

xn– + · · · + f ′(a)x + f (a).

Without loss of generality, we may assume the values of f k(a), k = , , . . . , n – , are un-
knowns such that

f (n–)(x) =
m–∑

i=

ciP̃i(x) + cm,

f (n–)(x) =
m–∑

i=

ciP̃i(x) + cmx + cm+,

f (n–)(x) =
m–∑

i=

ciP̃i(x) +
cm


x + cm+x + cm+,

...

f (x) =
m–∑

i=

ciP̃in(x) +
cm

(n – )!
xn– + · · · + cm+n–x + cm+n–.

In closed form we can write

f (x) =
m–∑

i=

ciP̃in(x) +
n–∑

k=

f (k)(a)
k!

xk , x ∈ [a, b], ()

or

f (x) =
m–∑

i=

ciP̃in(x) +
n–∑

k=

cm+k

k!
xk , x ∈ [a, b], ()

where cm+k = f (n–k–)(a), k = , , . . . , n – .
This assumption leads to the technique which we named the augmented block pulse

function (ABPF) method. In fact, we develop the BPF method to be flexible for an approx-
imation of the differential equations with different boundaries. We replace the expansion
of f (i)(x), i = , , . . . , n, into the system of () and () and then substitute the collocation
points defined in () as follows:

L
(
F(ξl), ξl

)
= , l = ,  . . . , m, ()
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and

L
(
F(x), F(x), . . . , F(xk)

)
= ,

L
(
F(x), F(x), . . . , F(xk)

)
= ,

...

Ln
(
F(x), F(x), . . . , F(xk)

)
= ,

()

where

F(ξl) =
(
f (n)(ξl), f (n–)(ξl), . . . , f ′(ξl), f (ξl)

)
, l = , , . . . , m. ()

From equations () and (), a nonlinear system of (m+n) equations and (m+n) unknown
coefficients results. Solving this system, we can obtain the unknown coefficients ci, i =
, , . . . , (m + n – ) and therefore the functions f (j)(x), j = , , . . . , n are identified.

Remark . It is worth noting here that we can do a few simple modifications when some
of f (i)(a), i = , , . . . , n – , are given. Particularly if f (i)(a), i = , , . . . , n – , all are given,
the system becomes an initial value problem and there is no need to consider any ci, i =
m, . . . , m + n – . In addition, we can keep the structure of the algorithm and input the
given initial value into the described scheme. Obviously, the first state considers the value
of f (i)(a), i = , , . . . , n – , precisely and the second state find them approximately such
that there are good agreement between precise and approximated values. In this paper,
the reported results are based on the second assumption.

Remark . Definitely we need (n + m) equations which are linear independent to find
a unique solution including (n + m) unknown coefficients. Note that the intersection of
{x, x, . . . , xk} defined in (), and the collocation points defined () should be an empty
set. If there exists any common point, we can simply change the collocation points non-
uniformly such that every collocation point may be chosen from [ i

m , i+
m ), i = , , , . . . ,

m –  in order to include all basis functions and keep the structure of constructed matrices
demonstrated in (), (), and () and for higher order. Obviously, there are many sets of
points that are appropriate candidates for leading to the independent algebraic equations.

4 Numerical examples
In order to assess the accuracy of block pulse function method for solving higher-order
differential equations with multi-point boundary conditions we will consider the follow-
ing examples. The associated computations with the examples were performed using
MAPLE  with  digits precision on a personal computer.

Example  Consider the following ordinary differential equation [, ]:

y()(x) + y(x) = 
(
x cos(x) +  sin(x)

)
, x ∈ [–, ],



Avazzadeh and Heydari Advances in Difference Equations  (2016) 2016:93 Page 9 of 16

with the separated boundary conditions

y(–) = y() = ,

y′′(–) = – cos(–) +  sin(–),

y′′() =  cos() +  sin(),

y()(–) =  cos(–) –  sin(–),

y()() = – cos() –  sin(),

and the exact solution

y(x) =
(
x – 

)
sin(x).

According to the algorithm, we first approximate y()(x) as follows:

y()(x) �
m–∑

i=

ciβ̄i(x), t ∈ [–, ],

where β̄i(x) are the BPFs defined in () on [a, b] = [–, ]. Let us assume m = , by inte-
gration one can find y(j)(x), j = , , . . . , , as follows:

y()(x) =
∑

i=

ciP̃i(x) + c,

y()(x) =
∑

i=

ciP̃i(x) + xc + c,

y()(x) =
∑

i=

ciP̃i(x) +
x


c + xc + c,

y()(x) =
∑

i=

ciP̃i(x) +
x


c +

x


c + xc + c,

y()(x) =
∑

i=

ciP̃i(x) +
x


c +

x


c +

x


c + xc + c,

y(x) =
∑

i=

ciP̃i(x) +
x


c +

x


c +

x


c +

x


c + xc + c.

The chosen uniform collocation points, – 
 , – 

 , – 
 , 

 , 
 , and 

 , should be substituted
into the following equation:

∑

i=

ciβ̄i(x) +
∑

i=

ciP̃i(x) +
x


c +

x


c +

x


c +

x


c

+ xc + c – 
(
x cos(x) +  sin(x)

)
= ,

which gives six algebraic linear equations. Also, we will get other six linear equations as
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Table 1 The observed maximum absolute error for different values of m for Example 1

y(j) m = 6 m = 10 m = 16 m = 32

y 1.8× 10–4 7.1× 10–5 2.8× 10–5 7.1× 10–6

y(1) 5.7× 10–4 2.2× 10–4 8.7× 10–5 2.3× 10–5

y(2) 1.8× 10–3 6.8× 10–4 2.7× 10–4 6.8× 10–5

y(3) 5.8× 10–3 2.3× 10–3 9.3× 10–4 2.4× 10–4

y(4) 2.6× 10–2 8.8× 10–3 3.3× 10–3 7.5× 10–4

y(5) 3.5× 10–1 1.2× 10–1 4.9× 10–2 1.2× 10–2

y(6) 7.2 4.3 2.7 1.3

Figure 1 Plots of the numerical solution by BPFs versus the exact solution (solid-circle) of y, y′ , y′′ ,
y(3), y(4), y(5) in (a)-(f), respectively, when m = 64 for Example 1.

follows:

∑

i=

ciP̃i(–) –



c +




c –



c +



c – c + c = ,

∑

i=

ciP̃i() +



c +




c +



c +



c + c + c = ,

∑

i=

ciP̃i(–) –



c +



c – c + c +  cos(–) –  sin(–) = ,

∑

i=

ciP̃i() +



c +



c + c + c –  cos() +  sin() = ,

∑

i=

ciP̃i(–) – c + c –  cos(–) +  sin(–) = ,

∑

i=

ciP̃i() + c + c +  cos() +  sin() = ,
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Figure 2 Plots of the absolute error functions of y, y′ , y′′ , y(3), y(4), y(5) in (a)-(f), respectively, when
m = 64 for Example 1.

Figure 3 Sixth derivative of the numerical solution by BPFs
versus the exact solution when m = 64 for Example 1.

in which are included  unknown coefficients. Solving the obtained system gives

c = –., c = –., c = –.,

c = ., c = ., c = .,

c = –., c = ., c = .,

c = ., c = –., c = .,

and Table  includes the observed absolute error by these values. The plots of the nu-
merical solution by the proposed method with m =  versus the exact solution and the
absolute error function are depicted in Figures  and , respectively, showing higher accu-
racy. The graph of the sixth derivative of the numerical solution by BPFs versus the exact
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Figure 4 Plots of the numerical solution by BPFs versus the exact solution (solid-circle) of y, y′ , y′′ , y(3)

in (a)-(d), respectively, when m = 64 for Example 2.

solution for m =  is given in Figure . This example with other boundary conditions [,
] also can be reduced to a system of linear equations as described.

Example  Consider the following linear fourth-order nonlocal boundary value problem
[]:

y()(x) + exy()(x) + y(x) =  – ex cosh(x) +  sinh(x), x ∈ [, ],

with the non-separated boundary conditions

y
(




)
=  + sinh

(



)
, y′

(



)
= cosh

(



)
,

y′′
(




)
= sinh

(



)
, y

(



)
– y

(



)
= sinh

(



)
– sinh

(



)
,

and the exact solution

y(x) =  + sinh(x).

Plots of the numerical solution by the proposed method with m =  versus the exact
solution and the absolute error function are depicted in Figures  and , respectively. The
graph of the fourth derivative of the numerical solution by BPFs versus the exact solution
for m =  is given in Figure . Also, Table  presents the observed maximum absolute
error for m =  and m = , using the proposed together with the results obtained by re-
producing kernel method (RKM), given in []. By the comparison of the results obtained
using the presented method in Table  with the RKM, it is easily found that the present
approximations are more efficient.
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Figure 5 Plots of the absolute error functions of y, y′ , y′′ , y(3) in (a)-(d), respectively, when m = 64 for
Example 2.

Figure 6 Fourth derivative of the numerical solution by BPFs
versus the exact solution when m = 64 for Example 2.

Example  Consider the following nonlinear second-order four-point boundary value
problem:

y′′(x) – sin(x)y′(x) + y(x) =
 sin(x)
cos(x)

, x ∈ [, ],

with the non-separated boundary conditions

y() = , y() –
∑

i=

(


 + i

)
y
(

i


)
= .,

and the exact solution

y(x) = tan(x).
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Table 2 The observed maximum absolute error for different values of m for Example 2

x m = 10 m = 16 RKM (m = 151) [25]

0.0 2.9× 10–7 9.8× 10–8 1.1× 10–6

0.1 6.8× 10–8 1.6× 10–8 2.0× 10–7

0.2 7.8× 10–9 6.9× 10–10 5.9× 10–9

0.3 7.5× 10–9 7.7× 10–10 4.4× 10–9

0.4 4.4× 10–8 7.6× 10–9 8.5× 10–8

0.5 1.2× 10–7 3.1× 10–8 2.6× 10–7

0.6 1.9× 10–7 5.8× 10–8 4.3× 10–7

0.7 1.9× 10–7 5.7× 10–8 4.1× 10–7

0.8 2.3× 10–8 2.1× 10–8 2.7× 10–8

0.9 6.1× 10–7 2.4× 10–7 1.2× 10–6

1.0 1.8× 10–6 6.9× 10–7 3.4× 10–6

Figure 7 Plots of the numerical solution by BPFs versus the exact solution (solid-circle) of y, y′ in (a)
and (b), respectively, when m = 32 for Example 3.

Figure 8 Plots of the absolute error functions of y, y′ in (a) and (b), respectively, when m = 32 for
Example 3.

The plots of the numerical solution by the proposed method with m =  versus the exact
solution and the absolute error function are depicted in Figures  and , respectively. The
graph of second derivative of the numerical solution by BPFs versus the exact solution for
m =  is given in Figure .

5 Conclusion
The block pulse functions provide the efficient method to solve high-order ODEs associ-
ated with the general type of multi-point boundary conditions. According to the presented
method, the nth-order ODE defined in (), which can be linear or nonlinear system with
separated and non-separated boundary conditions, will be reduced to the algebraic equa-
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Figure 9 Second derivative of the numerical solution by BPFs
versus the exact solution when m = 32 for Example 3.

tions by using block pulse functions and a polynomial function of degree n – . The most
important privileges of the proposed method are computational efficiency due to sparse
matrices, simplicity, and reliability, so one may increase the number of basis functions and
consequently the accuracy will be improved.
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