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Abstract
In this paper, the existence of at least one positive solution for third-order differential
equation boundary value problems with Riemann-Stieltjes integral boundary
conditions is discussed. By applying the shooting method and the comparison
principle, we obtain some new results which extend the known ones. Meanwhile, an
example is worked out to demonstrate the main results.
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1 Introduction
It is well known that third-order equations arise from many branches of applied mathe-
matics and physics. For example, in the deflection of a curved beam having a constant or
varying cross section, a three layer beam, electromagnetic waves or gravity driven flows
[]. There have been extensive studies on third-order differential equation BVPs (bound-
ary value problems), for example [–]. Most of these results are obtained via applying
the topological degree theory, the fixed point theorems on cones, the lower and upper so-
lution method, the critical point theory and monotone technique. We refer the reader to
[–] and the references therein.

Recently, the attention has shifted to BVPs with Stieltjes integral boundary condition
since this kind of conditions has been considered a single framework of multipoint and
integral type boundary conditions. For more comments on the Riemann-Stieltjes integral
boundary condition and its importance, we refer the reader to [, ] and other related
work such as [, ].

In the existing literature, there are very few papers dealing with third-order differential
equations with Riemann-Stieltjes integral boundary conditions. We found that Graef and
Webb [] studied the following problem:

{
u′′′(t) = g(t)f (t, u(t)), t ∈ (, ),
u() = α[u], u′(p) = , u′′() + β[u] = λ[u′′],
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where p > 
 , and α[u], β[u], and λ[v] are linear functional on C[, ] given by a Riemann-

Stieltjes integral. The existence of multiple positive solutions is obtained by the application
of the fixed point index theory.

In , Jankowski [] used a fixed point theorem to establish the existence of at least
three non-negative solutions of some nonlocal BVPs to the third-order differential equa-
tion

⎧⎪⎨
⎪⎩

x′′′(t) + h(t)f (t, x(α(t))) = , t ∈ (, ),
x() = x′′() = ,
x() = βx(η) + λ[x], β > ,η ∈ (, ),

where λ denotes a linear functional on C(J) given by λ[x] =
∫ 

 x(t) d�(t) involving a Stielt-
jes integral with a suitable function � of bounded variation.

In [], the author applied the method of lower and upper solutions to generate an itera-
tive technique and discussed the existence of solutions of nonlinear third-order ordinary
differential equations with integral boundary conditions. Pang and Xie [] investigated the
existence of concave positive solutions and established corresponding iterative schemes
for a third-order differential equation with Riemann-Stieltjes integral boundary conditions
using the monotone iterative technique.

It is well known that the classical shooting method could be effectively used to establish
the existence and multiplicity results for differential equation BVPs. To some extent, this
approach has an advantage over the traditional methods. Readers can see [–] and the
references therein for details.

Using the shooting method, Henderson [] obtained solutions of the three point BVP
for the second-order equation

y′′ = f
(
x, y, y′), y(x) = y, y(x) – y(x) = y,

where f : (a, b) ×R
 →R is continuous, a < x < x < x < b, and y, y ∈R.

In [], by applying the shooting method and the comparison principle, Wang investi-
gated the existence results of positive solutions for the Riemann-Stieltjes integrals BVPs

{
u′′(t) + a(t)f (u(t)) = ,  < t < ,
u() = , u() = α

∫ η

 u(s) ds,

where f ∈ C([,∞); [,∞)) and  < η < , α ≥  are given constants,  < αη < .
However, to the best of our knowledge, no paper has considered the existence of positive

solutions for third-order differential equation with the shooting method till now. Moti-
vated by the excellent work mentioned above, in this paper, we try to employ the shooting
method to establish the criteria for the existence of positive solutions to the following
third-order differential equation with integral boundary condition:

{
u′′′(t) + h(t)f (u(t), u′(t)) = ,  < t < ,
u′() = α[u′], u′′() = , u() = β[u],

(.)
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where α[u] =
∫ 

 u(s) dA(s), β[u] =
∫ 

 u(s) dB(s), and α[u], β[u] are linear functions on
C[, ] given by the Riemann-Stieltjes integral, A(t), B(t) are suitable functions of a
bounded variation.

Set

f x = lim
v→x

sup max
u∈[,+∞)

f (u, v)
v

, fx = lim
v→x

inf min
u∈[,+∞)

f (u, v)
v

.

In this paper, we always assume

(H) f ∈ C([,∞) × [,∞); [,∞)), f (u, v) �≡ ;
(H) h ∈ C([, ]; [,∞));
(H)

∫ 
 dA(t) > ,  <

∫ 
 dB(t) < .

2 Preliminaries
Define an operator A : C[, ] → C[, ] as

Ay(t) =
∫ 


G(t, s)y(s) ds (.)

for t ∈ [, ], where

G(t, s) =


 –
∫ 

 dB(t)

{∫ s
 dB(t),  ≤ s ≤ t ≤ ,

 –
∫ 

s dB(t),  ≤ t ≤ s ≤ ,

is the Green function for the following first-order differential equation:

{
u′(t) = y(t),  < t < ,
u() = β[u].

Let y = u′, then BVP (.) is equivalent to the following second-order BVP:

{
y′′(t) + h(t)f (Ay(t), y(t)) = ,  < t < ,
y() = α[y], y′() = .

(.)

Lemma . If y is a positive solution of (.), then u is a positive solution of (.).

Proof Assume y is a positive solution of (.), then y(t) >  for t ∈ (, ) and it follows from
u(t) = Ay(t) that u(t) satisfies (.). Assume on the contrary that there is a t ∈ (, ) such
that u(t) = mint∈(,) u(t) ≤ , then u′(t) =  and u′′(t) ≥ , which yields y(t) = u′(t) = .
This contradicts the assumption that y is a positive solution of (.). Hence, u(t) >  for all
t ∈ (, ). �

The principle of the shooting method converts the BVP into an IVP (initial value prob-
lem) by finding suitable initial values m such that equation (.) comes with the initial
value condition as

{
y′′(t) + h(t)f (Ay(t), y(t)) = ,  < t < ,
y() = m, y′() = .

(.)
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Under the assumptions (H)-(H), denote by y(t, m) the solution of the IVP (.). We
assume that f is strong continuous enough to guarantee that y(t, m) is uniquely defined
and that it depends continuously on both t and m. The discussion of this problem can be
found in []. Therefore the solution of IVP (.) exists.

Denote

k(m) =
y(, m)∫ 

 y(t, m) dA(t)
, ϕ(m) = y(, m) –

∫ 


y(t, m) dA(t).

Then solving (.) is equivalent to finding a m∗ such that k(m∗) =  or ϕ(m∗) = .

Lemma . (Sturm comparison theorem) [] Let ϕ and ϕ be non-trivial solutions of
the equations

y′′ + q(x)y = , y′′ + q(x)y = ,

respectively, on an interval I ; here q and q are continuous functions such that q(x) ≤ q(x)
on I . Then between any two consecutive zeros x and x of ϕ, there exists at least one zero
of ϕ unless q(x) ≡ q(x) on (x, x).

Lemma . Let y(t, m), z(t, m), Z(t, m) be the solution of the IVPs, respectively,

y′′(t) + F(t)y(t) = , y() = m, y′() = ,

z′′(t) + g(t)z(t) = , z() = m, z′() = ,

Z′′(t) + G(t)Z(t) = , Z() = m, Z′() = ,

and suppose that F(t), g(t), and G(t) are continuous functions defined on [, ] such that

g(t) ≤ F(t) ≤ G(t), t ∈ [, ].

If Z(t, m) does not vanish in (, ], then for any  ≤ ξ ≤ s ≤ , we have

z(ξ , m)
z(s, m)

≤ y(ξ , m)
y(s, m)

≤ Z(ξ , m)
Z(s, m)

, (.)

and hence, for any  ≤ s ≤ , we have

z(, m)∫ 
 z(s, m) dA(s)

≤ y(, m)∫ 
 y(s, m) dA(s)

≤ Z(, m)∫ 
 Z(s, m) dA(s)

. (.)

Proof The proof for (.) can be found in []. The continuity of the integrands implies the
existence of the Riemann integral. In view of the definition of Stieltjes integral, by using
the inequality of the limit, we have (.). �

Lemma . Assume that (H)-(H) hold and  <
∫ 

 dA(t) < , then BVP (.) has no pos-
itive solution.

Proof If BVP (.) has a positive solution y(t), then y(t, m) is the positive solution of IVP
(.). For m > , we compare the solution y(t, m) of IVP given by (.) with the solution
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z(t) = m of

z′′(t) + z(t) = , z() = m, z′() = .

By Lemma ., we have

y(, m)∫ 
 y(s, m) dA(s)

≥ z()∫ 
 z(s) dA(s)

=
m

m
∫ 

 dA(s)
=

∫ 
 dA(s)

.

In fact, y(, m) =
∫ 

 y(s, m) dA(s). That is,
∫ 

 dA(s) ≥ .
Hence, we need

∫ 
 dA(s) ≥ , and we assume

∫ 
 dA(s) >  in (H) in order to satisfy

(.). �

3 Main results
In the following, we assume that A(t) has continuous derivative function α(t) and α(t) > 
for t ∈ [, ] such that

∫ 
 dA(t) =

∫ 
 α(t) dt > .

For the sake of convenience, we denote

max
≤t≤

{
h(t)

}
= hL, min

≤t≤

{
h(t)

}
= hl,

max
≤t≤

{
α(t)

}
= αL, min

≤t≤

{
α(t)

}
= αl.

It is obvious that αL ≥ αl > .

Lemma . Assume that (H)-(H) hold. Then there exist a solution x = A ∈ (, π
 ) such

that

g(x) :=
αl sin x

x
≥  (.)

and a solution x = A ∈ (, π
 ) such that

g(x) :=
αL sin x

x
≤ . (.)

Proof From (H) and the Figure , we can easily get Lemma .. �

Figure 1 The function sin(x)
x .
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Theorem . Assume that (H)-(H) hold. Suppose one of the following conditions holds:
(i)  ≤ f  < A

hL , f∞ > Ā

hl ;

(ii)  ≤ f ∞ < A

hL , f > Ā

hl .
Then problem (.) has at least one positive solution, where

A = min{A, A}, Ā = max{A, A},

and A, A are defined in (.) and (.), respectively.

Proof As we mentioned above, BVP (.) having a positive solution is equivalent to BVP
(.) having a positive solution.

(i) Since  ≤ f  < A

hL , there exists a positive number r such that

f (Ay, y)
y

<
A

hL ≤ A


hL ,  < y ≤ r. (.)

Let  < m∗
 < r, from the Sturm comparison theorem and the concavity of y(t, m∗

 ) for t ∈
[, ], we have

 ≤ h(t)f
(
Ay

(
t, m∗


)
, y

(
t, m∗


))

< hL A


hL y
(
t, m∗


)

= A
 y

(
t, m∗


)
, t ∈ (, ]. (.)

Let Z(t) = m∗
 cos(At) for t ∈ [, ], then Z(t) satisfies the following IVP:

Z′′(t) + A
 Z(t) = , Z() = m∗

 , Z′() = . (.)

From (.), Lemma ., and Lemma ., we have

k
(
m∗


)

=
y(, m∗

 )∫ 
 y(t, m∗

 ) dA(t)
≤ Z(, m∗

 )∫ 
 Z(t, m∗

 ) dA(t)
=

∫ 
 cos(At) dA(t)

≤ 
αl

∫ 
 cos(At) dt

=
A

αl sin A
≤ , (.)

that is, ϕ(m∗
 ) ≤ .

On the other hand, the second inequality in (i) implies that there exists a number L large
enough such that

f (Ay, y)
y

>
Ā

hl ≥ A


hl , y ≥ L, (.)

and there exists a positive number ε < A small enough that

f (Ay, y)
y

>
(A + ε)

hl , y ≥ L. (.)

Next, we will find a positive number m∗
 such that ϕ(m∗

) ≥ .
There exist a value m∗

 and a positive number σ such that

 <
A

A + ε
≤ σ ≤  and y

(
t, m∗


) ≥ L for t ∈ (,σ ].
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Since the solution y(t, m) is concave and y′(, m) = , it hits the line y = L at most one
time for the constant L defined in (.) and t ∈ (, ]. We denote the intersecting time by
δ̄m provided it exists. Henceforth, denote Im = (, δ̄m] ⊆ (, ]. If y(, m) ≥ L, then δ̄m = .

The discussion is divided into three steps.
Step . We claim that there exists a value m large enough such that  ≤ y(t, m) ≤ L for

t ∈ [δ̄m , ] and y(t, m) ≥ L for t ∈ Im .
Otherwise, provided y(t, m) ≤ L for all t ∈ [, ] as m → ∞, then by integrating both

sides of equation (.) from  to t, we have

y(t, m) = m –
∫ t


(t – s)h(s)f

(
Ay(s, m), y(s, m)

)
ds. (.)

Hence, from (.) and the continuity of f (Ay, y), we have

m = y(, m) +
∫ 


( – s)h(s)f

(
Ay(s, m), y(s, m)

)
ds ≤ L + Lf hL. (.)

Since A is defined in (.) as a continuous operator that depends on y, for f (Ay, y) there
exists a maximum for y ∈ [, L]. Denote Lf = maxy∈[,L] f (Ay, y). If we choose m > L + Lf hL,
(.) will lead to a contradiction.

Since y(t, m) is continuous and concave, there exists a number m large enough such
that y(t, m) ≥ L for t ∈ Im .

Step . There exists a monotonically increasing sequence {mk} such that the sequence
δ̄mk is increasing on mk . That is,

Im ⊂ Im ⊂ · · · ⊂ Imk · · · ⊆ (, ]

and y(t, mk) ≥ L for t ∈ Imk .
We prove that

δ̄mk– < δ̄mk , k = , , . . . for mk– < mk . (.)

Since f guarantees that y(t, m) is uniquely defined, the solution y(t, mk–) and y(t, mk) have
no intersection in the interval [δ̄mk– , ). It follows from

y(, mk) = mk > mk– = y(, mk–)

that

y(δ̄mk– , mk) > y(δ̄mk– , mk–).

Thus we have (.).
When k = , see the relationship of m and Im in Figure .
Step . Seek a value m∗

 and a positive number σ such that  < A
A+ε

≤ σ ≤  and y(t, m∗
) ≥

L for t ∈ (,σ ].
Following step , step , and the extension principle of solutions, there exists a positive

integer n large enough such that

δ̄mn ≥ A

A + ε
.
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Figure 2 The relationship of m and Im .

If we taken m∗
 = mn, σ = δ̄mn , then

σ (A + ε) ≥ A. (.)

In the following, we prove that k(m∗
) ≥  for the selected m∗

 and σ .
Set z(t) = m∗

 cosσ (A + ε)t, then z(t) satisfies the following IVP:

z′′(t) + σ (A + ε)z(t) = , z() = m∗
, z′() = , (.)

where σ ≤ . From (.), we have

f (Ay, y)
y

>
σ (A + ε)

hl , y ≥ L.

Further, noting that y(, m∗
) > L (this time σ = ) or y(, m∗

) ≤ y(σ , m∗
) = L, then by

Lemma . and Lemma . we have

k
(
m∗


)

=
y(, m∗

)∫ 
 y(t, m∗

) dA(t)
≥ z(, m∗

)∫ 
 z(t, m∗

) dA(t)
=

∫ 
 cos[σ (A + ε)t] dA(t)

≥ 
αL

∫ 
 cos[σ (A + ε)t] dt

=
σ (A + ε)

αL sin[σ (A + ε)]
≥ A

αL sin A
≥ , (.)

which implies ϕ(m∗
) ≥ .

From (.) and (.), we can find a m∗ between m∗
 and m∗

 such that y(t, m∗) is the
solution of (.). So that u(t, m∗) = Ay(t, m∗) is the solution of (.).

Now, we prove for (ii).
Set z(t) = m∗

 cosσ (A + ε)t and Z(t) = m∗
 cos(At) for t ∈ [, ], then z(t) and Z(t) satisfy

the following IVPs, respectively:

z′′(t) + σ (A + ε)z(t) = , z() = m∗
, z′() = , (.)

Z′′(t) + A
Z(t) = , Z() = m∗

, Z′() = , (.)

where σ ≤ .
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Similar to (.) and (.), it follows from (.) and (.)-(.) that

k
(
m∗


)

=
y(, m∗

)∫ 
 y(t, m∗

) dA(t)
≤ z(, m∗

)∫ 
 z(t, m∗

) dA(t)
=

∫ 
 cos[σ (A + ε)t] dA(t)

≤ 
αl

∫ 
 cos[σ (A + ε)t] dt

=
σ (A + ε)

αl sin[σ (A + ε)]
≤ A

αl sin A
≤ , (.)

where  < σ ≤ A
A+ε

≤ , and

k
(
m∗


)

=
y(, m∗

)∫ 
 y(t, m∗

) dA(t)
≥ Z(, m∗

)∫ 
 Z(t, m∗

) dA(t)
=

∫ 
 cos(At) dA(t)

≥ 
αL

∫ 
 cos(At) dt

=
A

αL sin A
≥ . (.)

From (.) and (.), we can find a m∗ between m∗
 and m∗

 such that y(t, m∗) is the
solution of (.). So u(t, m∗) = Ay(t, m∗) is the solution of (.). The proof of the theorem
is complete. �

Example Consider the BVP

{
u′′′(t) + h(t)f (u(t), u′(t)) = ,  < t < ,
u′() =

∫ 
 u′(t) dA(t), u′′() = , u() =

∫ 
 u(t) dB(t),

(.)

where

h(t) =



t +



, α(t) =



t +



, t ∈ [, ],

f (u, v) = cos u +



v + , for u ∈ [, +∞), v ∈ [, +∞).

Simple calculation shows that

hL = , hl =



, αL =



, αl =



, f ∞ =



, f = ∞.

We can find the proper A = 
 and A = 

 such that αl sin A
A

≥  and αL sin A
A

≤ . Therefore
(H)-(H) and the condition (ii) of Theorem . are satisfied. It implies that (.) has at
least one positive solution u(t).
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