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Abstract
Migratory birds are critical to the prevalence of many epidemic diseases. In this paper,
a new two species eco-epidemiological model with disease in the migratory prey is
formulated. A modified Leslie-Gower functional scheme, with saturated incidence
and recovery rate are considered in this new model. Through theoretical analysis,
a series of conditions are established to ensure the extinction, permanence of the
disease, and to keep the system globally attractive. It was observed that if the lower
threshold value R∗ > 1, the infective population of the periodic system is permanent,
whereas if the upper threshold value R∗ ≤ 1, then the disease will go to extinction.
Our results also show that predation could be a good choice to control disease and
enhance permanence.

Keywords: migratory birds; Leslie-Gower functional response; saturated incidence
and recovery rate

1 Introduction
Nowadays, an important issue in applied mathematics is to study the influence of epidemi-
ological parameters on ecological systems. Since Kermac-Mckendric () first proposed
the SIR systems, many attentions have been paid to this field. In , Hadeler and Freed-
man described a model for predator and prey with parasitic infection []. From then on,
more and more predator-prey models were proposed and discussed under the frame work
of eco-epidemiology; see [–] and references therein. The biological significance of these
works is that we can see how epidemic diseases affect the interactions of prey and preda-
tors and how predators act as biological control to disease transmissions. In nature, mi-
gratory birds are responsible for the prevalence of many epidemic diseases, such as WNV,
which was introduced in the Middle East by migrating white storks [], HPAI that broke
in Mexico in  and was introduced by some wild migrating birds [, ], and so on.
However, there are few papers analyzing the role of migratory birds, especially by mathe-
matical models and analysis, except the works of Chatterjee et al. [–], Gao et al. []
and Zhang et al. [].

In [], Chatterjee and Chattopadhyay assumed the prey population migrated with dis-
ease and proposed a one-season eco-epidemiological predator-prey model for migratory
birds. In [], Chatterjee et al. modified and analyzed their model in [] by taking time lags
into consideration. Their analysis showed that we could control the outbreak of the disease
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by making use of the time lag factor suitably. In [], the author introduced standard inci-
dence into the model and obtained the stability of equilibrium point in the presence or ab-
sence of environmental fluctuations. Chatterjee (in []) discussed an eco-epidemiological
model with a nonautonomous recruitment rate and a general functional response. They
showed that the contact rate, the predation, and the recovery rate were central to the ex-
tinction of the disease. In [], Gao et al. considered a competitive model for migratory
birds and economical birds population. They analyzed the model and discussed dynamics
of the model. Zhang et al. in [] proposed a time-dependent model for migratory birds
with saturated incidence rate. They also analyzed the dynamics of the system, such as per-
manence, extinction, and global attractivity of the model. In [], for simplicity, only the
bilinear predation rate was considered for migratory birds and the diversity of the func-
tional responses was not referred to.

As we all know, the functional response is a critical factor in the research of the pop-
ulation dynamics for predator-prey models. The mutual interference between predator
and prey can influence the relationship between them. In the past decades, more and
more different forms of ratio-dependent functional responses were proposed, such as
of the Crowley-Martin type, the Beddington-DeAngelis type, the Leslie-Gower type, the
Hassell-Varley type, and so on []. In this paper, we consider a modified Leslie-Gower
functional response, in which the Leslie-Gower term is P(t)

ki(t)+S(t)+I(t) , i = , , to describe the
dynamics between migratory preys and their predators.

To construct the model for migratory birds, we suppose that the prey population, includ-
ing the susceptible population, S, and the infected population, I , migrate into the system.
The incidence rate and recovery rate are assumed to take saturated forms which are more
realistic as many researchers suggested, that is, β(t)SI

+γ (t)S and f (t)
+α(t)I . Then without predation,

the SI model can be expressed as follows:

⎧
⎨

⎩

Ṡ(t) = �(t) – β(t)S(t)I(t)
+γ (t)S(t) – d(t)S(t) + f (t)I(t)

+α(t)I(t) ,

İ(t) = β(t)S(t)I(t)
+γ (t)S(t) – e(t)I(t) – f (t)I(t)

+α(t)I(t) ,
(.)

where �(t), β(t) denote the instantaneous recruitment rate of the prey population and
the force of the infective (contact rate) at time t. f (t) represents the recovery rate of the
infected prey from the disease. d(t), e(t) denote the natural death rate and the mortality
rate including the natural death rate and the diseased death rate for susceptible and infec-
tive prey population at time t, respectively. Obviously, d(t) ≤ e(t) for all t ≥ . γ (t) >  and
α(t) >  measure the force of the inhibition effect at time t.

We assume that the predator population P eat both the susceptible and the infective prey
in a form of modified Leslie-Gower scheme. Inspired by the above factors, we propose a
nonautonomous differential equation for migratory birds,

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ(t) = �(t) – β(t)S(t)I(t)
+γ (t)S(t) – d(t)S(t) + f (t)I(t)

+α(t)I(t) – c(t)S(t)P(t)
w(t)+S(t)+I(t) ,

İ(t) = β(t)S(t)I(t)
+γ (t)S(t) – e(t)I(t) – f (t)I(t)

+α(t)I(t) – c(t)I(t)P(t)
w(t)+S(t)+I(t) ,

Ṗ(t) = P(t)[r(t) – c(t)P(t)
w(t)+σ (t)S(t)+I(t) ],

(.)

and the initial conditions are

S() > , I() > , P() > . (.)
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Denote the set � = {(S, I, P) ∈ R : S > , I > , P > }, then we can prove that it is a pos-
itively invariant set of system (.). In fact, letting the right equations of system (.) by
Fi(S, I, P) (i = , , ) and X = (S, I, P)T ∈ R, then system (.) can be rewritten in a vector
form as F(X) = [F(X), F(X), F(X)]T , where F ∈ C∞(R). Thus, system (.) becomes

Ẋ = F(X) (.)

with X() = X ∈ R
+. Therefore, for any X() ∈ R

+ satisfying Xi = , then Fi(X)|Xi= ≥ 
(i = , , ). Thus, the set � is positively invariant. (For more details, please see [].)

The other parameters for model (.) are defined as shown below:
• r(t) is the growth rate of the predator population.
• c(t) (c(t)) is the maximum value of per capita rate of S (respectively, I) due to P at

time t. Because the predators catch the infected prey more easily than the healthy
ones, we have c(t) ≤ c(t).

• c(t) is the maximum value of the per capita rate of P due to S and I at time t ([]).
• w(t) denotes the level of environment protection to prey at time t and w(t) has a

similar meaning to w(t).
• σ (t) denotes the effects on the predator by absorbing the susceptible prey and σ (t) ≤ 

for all t ≥ .
The rest of this paper is organized as follows. In Section , we analyze the nonau-

tonomous differential equations for migratory birds and establish a set of sufficient condi-
tions to discuss the extinction, the permanence of the disease, and keep the system globally
attractive. In Section , some results are presented for the periodic system. In Section ,
we verify our theoretical results and outline a discussion by making comparison among
the new model (.), the SI model (.) and the model in [] with the help of numerical
simulation. Finally, some conclusions are given in Section .

2 The analysis of the model
To proceed, we give some appropriate definitions and notations and list them in the fol-
lowing.

For convenience, we denote

f u = sup
t≥

f (t), f v = inf
t≥

f (t), f =

t

∫ t


f (s) ds,

where f (t) is a continuous and bounded function that defined on R+ = [, +∞). Moreover,
we make some assumptions as below:

(B) �(t), β(t), γ (t), α(t), d(t), e(t), f (t), σ (t), r(t), wi(t) (i = , ) and ci(t) (i = , , ) are
all nonnegative, continuous functions and bounded on R+;

(B) there are constants ωi >  (i = , , , , , ) satisfying

lim inf
t→+∞

∫ t+ω

t
�(θ ) dθ > , lim inf

t→+∞

∫ t+ω

t
d(θ ) dθ > ,

lim inf
t→+∞

∫ t+ω

t
r(θ ) dθ > , lim inf

t→+∞

∫ t+ω

t
e(θ ) dθ > ,

lim inf
t→+∞

∫ t+ω

t

c(θ )
w(θ )

dθ > , lim inf
t→+∞

∫ t+ω

t

c(θ )
w(θ )

dθ > ;

(B) dm > , wm
 > , wm

 > .
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Theorem . Under assumptions (B)-(B), if there is a constant ω >  satisfying

lim inf
t→+∞

∫ t+ω

t

c(θ )
w(θ ) + M

dθ > , (.)

where the constant M = max{( �
d )u, }, then both the prey population and the predator pop-

ulation are permanent.

Proof First of all, suppose that (S, I, P) is an arbitrary positive solution of model (.) with
initial conditions (.). By the first two equations of (.), we have

Ṡ(t) + İ(t) ≤ �(t) – d(t)
(
S(t) + I(t)

)
,

for all t ≥ . Then applying the conclusion of Lemma . in [] and the comparison the-
orem, there are constants M = max{( �

d )u, } and T >  satisfying

S(t) + I(t) ≤ M, for all t ≥ T. (.)

Applying (.) to system (.), we obtain

Ṗ(t) ≤ P(t)
[

r(t) –
c(t)

w(t) + M
P(t)

]

,

for all t ≥ T. Using the condition (.), Lemma  in [], and the comparison theorem,
there are constants M = max{( wr+Mr

c
)u, } and T (≥ T) satisfying

P(t) ≤ M, for all t ≥ T. (.)

Second, from inequality (.) and system (.), we have

Ṡ(t) + İ(t) ≥ �(t) –
[

e(t) +
c(t) + c(t)

w(t)
M

]
(
S(t) + I(t)

)
, for all t ≥ T.

Applying Lemma . in [] again, there are constants m = min{( �
e+M(c+c)/w

)v, } and
T > T satisfying

S(t) + I(t) ≥ m, for all t ≥ T. (.)

Next, considering the last equation of model (.)

Ṗ(t) ≥ P(t)
[

r(t) –
c(t)
w(t)

P(t)
]

.

Applying Lemma  in [] and the comparison theorem, we see that there exist constants
m = min{( wr

c
)v, } and T > T satisfying

P(t) ≥ m, for all t ≥ T. (.)
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Thus, by (.)-(.), we have the following results:

m ≤ lim inf
t→+∞

(
S(t) + I(t)

) ≤ lim sup
t→+∞

(
S(t) + I(t)

) ≤ M,

m ≤ lim inf
t→+∞ P(t) ≤ lim sup

t→+∞
P(t) ≤ M.

It completes the proof. �

Now we give the results about the permanence of the infective prey. Suppose S(t), p(t)
are an arbitrary fixed solution of the system

Ṡ(t) = �(t) –
c(t)
w(t)

M
 – d(t)S

and

ṗ(t) = p
(

r(t) +
c(t)
w

(t)
σ (t)M

 –
c(t)
w(t)

p
)

,

respectively, where M = 
m

+ M + M, then we can obtain the theorem about the per-
manence of the infective prey population as follows.

Theorem . Under assumptions (B), (B), (B), if there exist constants λ >  and ω > 
satisfying

lim inf
t→+∞


λ

∫ t+λ

t

(
β(θ )S(θ )

 + γ (θ )S(θ )
– e(θ ) – f (θ ) –

c(θ )p(θ )
w(θ ) + S(θ )

)

dθ > 

and

lim inf
t→+∞

∫ t+ω

t

(

�(θ ) –
c(θ )
w(θ )

M


)

dθ > , (.)

then the infected prey population I is permanent.

Proof Our proof is motivated by the work of Zhang and Teng [] and Niu []. Choose
an arbitrary solution of system (.) and denote it by (S(t), I(t), P(t)). Then, by (.)-(.),
there are constants  < ε, ε < , and t >  satisfying

∫ t+λ

t

(
β(θ )(S(θ ) – ε)

 + γ (θ )(S(θ ) – ε)
– e(θ ) – f (θ ) –

c(θ )(p(θ ) + ε)
w(θ ) + S(θ ) – ε

)

dθ > ε (.)

and

S(t) ≤ M, I(t) ≤ M, M–
 ≤ P(t) ≤ M, (.)

for all t ≥ t.
First of all, we prove that there is a constant α > , being independent of any positive

solution of system (.) and satisfying

lim sup
t→∞

I(t) > α. (.)
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Consider the auxiliary equation

ẋ(t) = �(t) – d(t)x(t) –
(

β(t)Mα +
c(t)
w(t)

M


)

. (.)

Applying Lemma  in [], we see that for the given constants ε >  and M > , there
are positive constants δ = δ(ε) > , G = G(ε, M) > , satisfying for any t ∈ R+ and
x ∈ [, M], if β(t)Mα < δ for all t ≥ t,

∣
∣x(t, t, x) – S(t)

∣
∣ < ε, for all t ≥ t + G. (.)

Here, x(t, t, x) is the solution of equation (.) with initial value x(t) = x.
In addition, we consider the equation

v̇(t) = v
(

r(t) –
c(t)
w(t)

v +
c(t)
w

(t)
(
σ (t)M

 + Mα
)
)

. (.)

Based on Lemma  in [], for the given constants ε >  and M > , there are positive
constants δ = δ(ε) > , G = G(ε, M) > , satisfying that, for any t ∈ R+ and M–

 ≤
v ≤ M, if c(t)

w
(t) Mα < δ for all t ≥ t, we have

∣
∣v(t, t, v) – p(t)

∣
∣ < ε, for all t ≥ t + G, (.)

and here, v(t, t, v) is the solution of equation (.) with initial value v(t) = v.
Choose a constant α = 

 { δ
βuM+ , δ

(c/w
)uM+ } and suppose (.) is not true, then for

the positive solution (S(t), I(t), P(t)) of system (.), there exists a Z ∈ R+
 satisfying initial

condition (S(), I(), P()) = Z and

lim sup
t→∞

I(t) < α.

Thus, from the definition of a superior limit, we see that there is a constant t (> t) such
that

I(t) < α, (.)

for all t ≥ t. Hence, from model (.), we obtain

Ṡ(t) ≥ �(t) – d(t)S(t) –
c(t)
w(t)

M
 – β(t)αM.

Let x(t), v(t) be the solution of equations (.), (.), which satisfy the conditions x(t) =
S(t) and v(t) = P(t), respectively. Applying the comparison theorem, we have

S(t) ≥ x(t), P(t) ≤ v(t),

for all t ≥ t. So by (.), (.) we get

S(t) ≥ S(t) – ε, for all t ≥ t + G, (.)
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and

P(t) ≤ p(t) + ε, for all t ≥ t + G. (.)

Then, from the equation for I(t) in system (.), we further have

İ(t) ≥ I(t)
[

β(t)(S(t) – ε)
 + γ (t)(S(t) – ε)

–
(
e(t) + f (t)

)
–

c(t)(p(t) + ε)
w(t) + S(t) – ε

]

, for all t ≥ T∗,

where T∗ = t + G + G, thus

I(t) ≥ I
(
T∗) exp

(∫ t

T∗

[
β(θ )(S(θ ) – ε)

 + γ (θ )(S(θ ) – ε)
–

(
e(θ ) + f (θ )

)
–

c(θ )(p(θ ) + ε)
w(θ ) + S(θ ) – ε

]

dθ

)

.

Therefore, from (.), we have I(t) → +∞, as t → +∞, which contradicts (.). Hence,
(.) is true.

Second, we claim that it is impossible that I(t) ≤ α, for all t ≥ t. From this claim, we
have two cases. In the first case, there exists a T ≥ T∗, such that I(t) ≥ α for all t ≥ T and
in the second case, I(t) oscillates about α for all large t.

Obviously, we merely have to take the second case into consideration. Now, we are in a
position to prove I(t) ≥ α exp(–(hH + hλ)) � m for sufficiently large t, where

h = lim sup
t≥

[

e(t) + f (t) +
c(t)
w(t)

M

]

,

h = lim sup
t≥

[

β(t)S(t) + e(t) + f (t) +
c(t)(y(t) + ε)

w(t) + S(t)

]

,

and

H = max{B, B}.

Let t∗
 , t∗

 be sufficiently large such that

I
(
t∗

)

= I
(
t∗

)

= α; I(t) < α, for all t ∈ (
t∗
 , t∗


)
.

If t∗
 – t∗

 ≤ H , then considering the second equation of model (.) and integrating it from
t∗
 to t, we have

I(t) = I
(
t∗

)

exp

(∫ t

t∗

[
β(θ )S(θ )

 + γ (θ )S(θ )
– e(θ ) –

f (θ )
 + α(θ )I(θ )

–
c(θ )P(θ )

w(θ ) + S(θ ) + I(θ )

]

dθ

)

≥ I
(
t∗

)

exp

(∫ t

t∗

[

–e(θ ) – f (θ ) –
c(θ )
w(θ )

M

]

dθ

)

≥ α exp(–hH), for all t ∈ [
t∗
 , t∗


]
. (.)

If t∗
 – t∗

 > H , taking a similar proof as that in (.), (.), we obtain

S(t) ≥ S(t) – ε, P(t) ≤ p(t) + ε, for all t ∈ [
t∗
 + H , t∗


]
. (.)
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Then for any t ∈ [t∗
 , t∗

], when t ≤ t∗
 + H , we have

I(t) ≥ α exp(–hH).

When t > t∗
 + H , we choose a nonnegative integer q such that t ∈ [t∗

 + H + qλ, t∗
 + H +

(q + )λ), then by (.), (.), and (.) we have

I(t) = I
(
t∗
 + H

)

× exp

(∫ t

t∗ +H

[
β(θ )S(θ )

 + γ (θ )S(θ )
– e(θ ) –

f (θ )
 + α(θ )I(θ )

–
c(θ )P(θ )

w(θ ) + S(θ ) + I(θ )

]

dθ

)

≥ α exp(–hH)

× exp

(∫ t

t∗ +H

[
β(θ )(S(θ ) – ε)

 + γ (θ )(S(θ ) – ε)
– e(θ ) – f (θ ) –

c(θ )(p(θ ) + ε)
w(θ ) + S(θ ) – ε

]

dθ

)

= α exp(–hH) exp

{[∫ t∗ +H+qλ

t∗ +H
+

∫ t

t∗ +H+qλ

]

×
(

β(θ )(S(θ ) – ε)
 + γ (θ )(S(θ ) – ε)

– e(θ ) – f (θ ) –
c(θ )(p(θ ) + ε)

w(θ ) + S(θ ) – ε

)

dθ

}

≥ α exp(–hH)

× exp

(∫ t

t∗ +H+qλ

[
β(θ )(S(θ ) – ε)

 + γ (θ )(S(θ ) – ε)
– e(θ ) – f (θ ) –

c(θ )(p(θ ) + ε)
w(θ ) + S(θ ) – ε

]

dθ

)

≥ α exp
(
–(hH + hλ)

)

� m.

Thus, we finally obtain

I(t) ≥ m, for all t ∈ [
t∗
 , t∗


]
.

This completes the proof. �

Next we turn to a discussion of how to control the disease and have the following result.

Theorem . Under assumptions (B), (B), (B), if there are constants ξ ,λ∗ >  satisfying
(B) lim inft→∞

∫ t+ξ

t β(θ ) dθ > ,
(B) lim supt→+∞


λ∗

∫ t+λ∗
t ( β(θ )S∗

(θ )
+γ (θ )S∗

(θ ) – e(θ ) – f (θ )
+α(θ )S∗

(θ ) – c(θ )p∗
(θ )

w(θ )+S∗
(θ ) ) dθ ≤ ,

where S∗
(t), p∗

(t) are fixed solutions of the following equations:

Ṡ(t) = �(t) – d(t)S

and

ṗ(t) = p
(

r(t) –
c(t)
w(t)

p
)

,

respectively, then the infected prey I will go to extinction.
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Proof First of all, we prove that there is a constant t ≥ T satisfying I(t) < σ , where σ is a
sufficiently small positive constant.

By assumption (B), there are constants η >  and T >  satisfying

∫ t+ξ

t
β(θ ) dθ ≥ η, for all t ≥ T.

For any sufficiently small  < σ < , let σ = min{ λ∗ησ

ξ
, 

ησ }. If (B) holds, we can see that
there exist δ >  and T ≥ T satisfying

∫ t+λ∗

t

(
β(θ )(S∗

(θ ) + δ)
 + γ (θ )(S∗

(θ ) + δ)
– e(θ ) –

f (θ )
 + α(θ )(S∗

(θ ) + δ)
–

c(θ )(p∗
(θ ) – δ)

w(θ ) + S∗
(θ ) + δ

)

dθ ≤ σ,

for all t ≥ T. Let n be an integer such that ξ

λ∗ ≤ n ≤ ξ

λ∗ +  and λ = nλ
∗, then

∫ t+λ

t

(
β(θ )(S∗

(θ ) + δ)
 + γ (θ )(S∗

(θ ) + δ)
– e(θ ) –

f (θ )
 + α(θ )(S∗

(θ ) + δ)

–
c(θ )(p∗

(θ ) – δ)
w(θ ) + S∗

(θ ) + δ
– β(θ )σ

)

dθ

≤
∫ t+nλ∗

t

(
β(θ )(S∗

(θ ) + δ)
 + γ (θ )(S∗

(θ ) + δ)
– e(θ ) –

f (θ )
 + α(θ )(S∗

(θ ) + δ)

–
c(θ )(p∗

(θ ) – δ)
w(θ ) + S∗

(θ ) + δ

)

dθ

–
∫ t+ξ

t
β(θ )σ dθ

≤ nσ – ησ

≤ –


ησ . (.)

By the first two equations of system (.), Lemma . in [], and applying the compari-
son theorem, we see that there is a constant T ≥ T satisfying

S(t) + I(t) ≤ S∗
(t) + δ, for all t ≥ T.

Moreover, from model (.), we also see that there is a T ≥ T satisfying

P(t) ≥ p∗
(t) – δ, for all t ≥ T.

Denote T = max{T, T}, h = supt≥T {β(t)(S∗
(t) + δ) + e(t) + f (t) + c(t)p∗

(t)
w(t)+S∗

(t) + β(t)}, so for
all t ≥ T , it yields

İ(t) ≤ I(t)
[

β(t)(S∗
(t) + δ – I(t))

 + γ (t)(S∗
(t) + δ – I(t))

– e(t) –
f (t)

 + α(t)(S∗
(t) + δ)

–
c(θ )(p∗

(t) – δ)
w(θ ) + S∗

(t) + δ

]

.

(.)
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Suppose that I(t) ≥ σ for all t ≥ T , then let q∗ ≥  be an integer satisfying t ∈ [T +q∗λ, T +
(q∗ + )λ), and we integrate (.) from T to t, yielding

I(t) ≤ I(T) exp

(∫ t

T

[
β(θ )(S∗

(θ ) + δ)
 + γ (θ )(S∗

(θ ) + δ)
– e(θ ) –

f (θ )
 + α(θ )(S∗

(θ ) + δ)

–
c(θ )(p∗

(θ ) – δ)
w(θ ) + S∗

(θ ) + δ
– β(θ )σ

]

dθ

)

= I(T) exp

{[∫ T+q∗λ

T
+

∫ t

T+q∗λ

]

×
(

β(θ )(S∗
(θ ) + δ)

 + γ (θ )(S∗
(θ ) + δ)

– e(θ ) –
f (θ )

 + α(θ )(S∗
(θ ) + δ)

–
c(θ )(p∗

(θ ) – δ)
w(θ ) + S∗

(θ ) + δ
– β(θ )σ

)

dθ

}

≤ I(T) exp

(

–


ησq∗

)

exp(λh).

Thus, I(t) →  as t → +∞, which contradicts I(t) ≥ σ , and we can see that there must be
a t ≥ T such that I(t) < σ .

Next, we prove that

I(t) ≤ σ exp(hλ) (.)

for all t ≥ t. If the above inequality is not true, then there is a t > t satisfying I(t) >
σ exp(hλ). Therefore, there must be a constant t ∈ (t, t) satisfying I(t) = σ and I(t) > σ

for all t ∈ (t, t). Then we can choose an integer l ≥  such that t ∈ [t + lλ, t +(l +)λ)
and integrate (.) from t to t, and we have

σ exp(hλ) < I(t)

≤ I(t) exp

(∫ t

t

[
β(t)(S∗

(t) + δ – I(t))
 + γ (t)(S∗

(t) + δ – I(t))
– e(t) –

f (t)
 + α(t)(S∗

(t) + δ)

–
c(t)(p∗

(t) – δ)
w(t) + S∗

(t) + δ

]

dt
)

≤ I(t) exp

{[∫ t+lλ

t

+
∫ t

t+lλ

]

×
(

β(t)(S∗
(t) + δ)

 + γ (t)(S∗
(t) + δ)

– e(t) –
f (t)

 + α(t)(S∗
(t) + δ)

–
c(t)(p∗

(t) – δ)
w(t) + S∗

(t) + δ
– β(t)σ

)

dt
}

≤ σ exp

(

–


ησ l

)

exp(λh).

It is a contradiction. Therefore, (.) holds.
Finally, as σ is an arbitrarily small constant, we can obtain I(t) → , as t → +∞.
This completes the proof. �
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Next, the global attractivity of the model will be discussed. First, the definition will be
given below.

Definition . ([]) The system (.) is said to be globally attractive if any two solutions
(S(t), I(t), P(t)) and (S(t), I(t), P(t)) of system (.) with initial conditions (.) satisfy

lim
t→+∞

∣
∣S(t) – S(t)

∣
∣ = , lim

t→+∞
∣
∣I(t) – I(t)

∣
∣ = , lim

t→+∞
∣
∣P(t) – P(t)

∣
∣ = .

Theorem . Under assumptions (B), (B), (B), if there exist constants μi >  (i = , , )
satisfying lim inft→∞ Ai(t) > , where

A(t) = μd(t) – μβ(t) – μ

[
c(t)
w(t)

M +
(c(t) – c(t))

w
 (t)

MM

]

– μ
c(t)M

w
 (t)

– μ
c(t)σ (t)

w
(t)

M,

A(t) = μ
β(t)

( + γ (t)M) + μ
[
d(t) – e(t)

]
– μM

(c(t) – c(t))(w(t) + M)
w

 (t)
(.)

– μα(t)f (t) – μM
c(t)(σ (t) + )

w
(t)

,

A(t) = –μ
c(t)M

w
 (t)

(
w(t) + M

)
– μ

c(t)(w(t) + M)
w

 (t)
+ μ

c(t)[w(t) + σ (t)m]
[w(t) + (σ (t) + )M] ,

then system (.) is globally attractive.

Proof Let x = S + I , then model (.) can be rewritten as follows:

ẋ(t) = �(t) – d(t)x –
[
e(t) – d(t)

]
I –

c(t)
w(t) + x

P(x – I) –
c(t)

w(t) + x
PI,

İ(t) = I
[

β(t)(x – I)
 + γ (t)(x – I)

– e(t) –
c(t)P

w(t) + x
–

f (t)
 + α(t)I

]

,

Ṗ(t) = P
[

r(t) –
c(t)

w(t) + σ (t)x + ( – σ (t))I
P
]

.

(.)

Suppose that (x(t), I(t), P(t)), (x(t), I(t), P(t)) are two arbitrary solutions of model
(.). By (.), (.), we obtain

m ≤ xk(t) ≤ M, Ik(t) ≤ M, Pk(t) ≤ M, for all t ≥  and k = , . (.)

Define a Liapunov function

V (t) = μ
∣
∣x(t) – x(t)

∣
∣ + μ

∣
∣ln I(t) – ln I(t)

∣
∣ + μ

∣
∣ln P(t) – ln P(t)

∣
∣.

Then we have

D+(
V (t)

)
= μ sgn(x – x)

{

–d(t)(x – x) –
(
e(t) – d(t)

)
(I – I)

– c(t)
[

Px

w(t) + x
–

Px

w(t) + x

]

+
(
c(t) – c(t)

)
[

PI

w(t) + x
–

PI

w + x

]}
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+ μ sgn(I – I)
{

β(t)(x – I)
 + γ (t)(x – I)

–
β(t)(x – I)

 + γ (t)(x – I)
–

c(t)P

w(t) + x

+
c(t)P

w(t) + x
–

f (t)
 + α(t)I

+
f (t)

 + α(t)I

}

+ μ sgn(P – P)
{

–
c(t)P

w(t) + σ (t)x + ( – σ (t))I

+
c(t)P

w(t) + σ (t)x + ( – σ (t))I

}

≤ μ

{

–d(t)|x – x| –
(
d(t) – e(t)

)|I – I| +
c(t)
w(t)

M|x – x|

+
[

c(t)M

w(t)
+

(c(t) – c(t))M

w(t)
+

c(t)M


w
 (t)

]

|P – P|

+
(
c(t) – c(t)

) M

w(t)
|I – I|

+
(
c(t) – c(t)

)MM

w
 (t)

|I – I| +
(
c(t) – c(t)

)MM

w
 (t)

|x – x|
}

+ μ

{

β(t)|x – x| –
β(t)

( + γ (t)M) |I – I| + f (t)α(t)|I – I|

+ c(t)
(M + w(t))

w
 (t)

|P – P| + c(t)
M

w
 (t)

|x – x|
}

+ μ

{

–c(t)
(w(t) + mσ (t))

[w(t) + ( + σ (t))M] |P – P|

+
c(t)σ (t)M

w
(t)

|x – x| +
( + σ (t))M

w
(t)

|I – I|
}

=
{

–μd(t) + μβ(t) + μ

[
c(t)
w(t)

M +
(c(t) – c(t))

w
 (t)

MM

]

+ μ
c(t)M

w
 (t)

}

|x – x| + μ
c(t)σ (t)M

w
(t)

|x – x|

+
{

–μ
β(t)

( + γ (t)M) – μ
[
d(t) – e(t)

]
}

|I – I|

+
{

μM
(c(t) – c(t))(w(t) + M)

w
 (t)

+ μα(t)f (t)

+ μMc(t)
( + σ (t))

w
(t)

}

|I – I|

+
{

μ
c(t)M

w
 (t)

(
w(t) + M

)
+ μ

c(t)(w(t) + M)
w(t)

– μ
c(t)[w(t) + mσ (t)]

[w(t) + ( + σ (t))M]

}

|P – P|.

Applying the conditions lim inft→∞ Ai(t) >  (i = , , ) and the definition of the inferior
limit, we see that there are constants ᾱ >  and T� >  such that Ai(t) ≥ ᾱ (i = , , ) for
all t ≥ T�. Thus we obtain

D+(
V (t)

) ≤ –ᾱ
(|x – x| + |I – I| + |P – P|

)
, (.)
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for all t ≥ T∗. Integrating (.) from T∗ to t, we obtain

V (t) – V
(
T∗) ≤ –ᾱ

∫ t

T

(∣
∣x(s) – x(s)

∣
∣ +

∣
∣I(s) – I(s)

∣
∣ +

∣
∣P(s) – P(s)

∣
∣
)

ds,

therefore,

ᾱ

∫ t

T

(∣
∣x(s) – x(s)

∣
∣ +

∣
∣I(s) – I(s)

∣
∣ +

∣
∣P(s) – P(s)

∣
∣
)

ds ≤ V
(
T∗) < +∞. (.)

At the same time, by (.), (.), it can be seen that d
dt (x – x), d

dt (I – I), d
dt (P – P)

are all bounded on [,∞). By (.), we see that

lim
t→∞

∣
∣x(t) – x(t)

∣
∣ = , lim

t→∞
∣
∣I(t) – I(t)

∣
∣ = , lim

t→∞
∣
∣P(t) – P(t)

∣
∣ = .

The proof is completed. �

Remark  For model (.), we can also give the condition of the global attractivity for this
SI model without predation as that for model (.) in Theorem ., that is, if

lim inf
t→∞

[
μd(t) – μβ(t)

]
> ,

lim inf
t→∞

[

μ
β(t)

( + γ (t)M) + μ
(
d(t) – e(t)

)
– μα(t)f (t)

]

> ,

then system (.) is globally attractive.

3 Some results for the periodic system
If model (.) is an ω-periodic system, then assumptions (B), (B), (B) can degenerate
into the following forms:

(A) Parameters �(t), β(t), γ (t), α(t), d(t), e(t), f (t), r(t), σ (t), wi(t) (i = , ), and ci(t)
(i = , , ) are all nonnegative, continuous periodic functions which have a period
ω > ,

(A) � > , d > , r > , e > , c/w > , c/w > ,
(A) β > .

Then we have some results for the periodic system as shown below.

Corollary . Under assumptions (A), (A), (B), if

R∗ =
βS/( + γ S)
(e + f + cp

w+S
)

> ,

then the infective prey population I of model (.) is permanent.

Corollary . Under assumptions (A), (A), (B), (A), if

R∗ =
βS∗

/ + γ S∗


(e + f
+αS∗


+ cp∗


w+S∗


)
≤ ,

then the infective prey population I of model (.) goes to extinction.
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Corollary . Under assumptions (B), (B), if dv > , wv
 > , ( c

w
)v > , and there exists a

constant λ >  satisfying

lim inf
t→∞


λ

∫ t+λ

t

(
β(θ )( �

d – cM


wd )v

 + γ (θ )( �
d – cM


wd )v

– e(θ ) – f (θ )

–
c(θ )

w(θ ) + ( �
d – cM


wd )v

(
rw

c
+

σM


w

)u)

dθ > ,

then the infective prey population I of model (.) is permanent.

Corollary . Under assumptions (B), (B), if dv > , wv
 > , ( c

w
)v > , and there exist

constants λ∗ > , λ >  satisfying

lim inf
t→∞

∫ t+γ

t
β(θ ) dθ > ,

lim sup
t→∞


λ∗

∫ t+λ∗

t

(
β(θ )( �

d )u

 + γ (θ )( �
d )u

– e(θ ) –
f (θ )

 + α(θ )( �
d )u

–
c(θ )( rw

c
)v

w(θ ) + ( �
d )u

)

dθ ≤ ,

then the infective prey population I of model (.) goes to extinction.

Remark  For model (.) without predation, assumptions (B), (B), (B) are equivalent
to the following forms:

(D) Parameters �(t), β(t), α(t), γ (t), d(t), e(t), f (t) are all nonnegative, continuous
periodic functions which have a period ω > ,

(D) � > , d > , e > ,
(D) β > .
If assumptions (D), (D), (B), (D) hold, then from Corollaries . and ., we can

obtain the threshold value between extinction and permanence of the infective population
in system (.), that is,

() If R̂ = βS∗
/+γ S∗


(e+f /+αS∗

)
≤ , then the infective prey population of model (.) goes to

extinction;
() If R̂ = βS∗

/+γ S∗


(e+f /+αS∗
)

> , then the infective prey population of model (.) is permanent.

4 Numerical simulation and discussion
In this section, a set of numerical simulations are carried out to confirm and visualize our
theoretical results. The role of predation on the system dynamics is discussed by compar-
ing system (.) with the SI model (.). Moreover, the effects of the functional response
in controlling disease is compared between system (.) and the model in [].

First, for model (.), we choose the parameters �(t) = . + . sin t, d(t) = . +
. sin(t), e(t) = . + . sin t, f (t) = . + . sin t, r(t) = . + . sin t, α(t) = . +
. sin t, γ (t) = . + . sin t, w(t) =  + . cos t, w(t) = . + . sin t, σ (t) = . +
. sin t, c(t) = . + . sin t, c(t) = . + . sin t, c(t) = . + . sin t. Then assumptions
(C), (C), and (B) hold. Let β(t) = . + . sin t, by calculation we see that the upper
threshold value R∗ = . < , which satisfies the conditions in Corollary .. Thus, the
infected prey population will go to extinction (see Figure ). Then, let the infective rate
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increase to β(t) = . + . sin t, being similar to the above calculation, we can obtain the
lower threshold value R∗ = . >  and see that model (.) is permanent from Figure ,
which verifies the conclusion of Corollary ..

Second, let d(t) = . + . sin t, e(t) = . + . sin t, γ (t) = . + . sin t, β(t) = . +
. sin t, and the other parameters are the same as in Figure . Considering system (.)
with initial conditions (., ., .), (., ., .), (., ., .), (., ., .),
(., ., .). From Figure , we can see that system (.) is globally attractive.

Third, we will study the role of predation on system dynamics through making a com-
parison between model (.) and (.).

(a) (b)

Figure 1 The left figure shows the movement paths of S, I, and P as functions of time t, while the right
one depicts the graph of the trajectory in (S, I, P)-space. The disease goes to extinction.

(a) (b)

Figure 2 The left figure shows the movement paths of S, I, and P as functions of time t, while the right
one depicts the graph of the trajectory in (S, I, P)-space. The disease is permanent.

Figure 3 The periodic solution of system (1.2) is
globally attractive.
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Now, let β(t) = . + . sin t and retain the other parameter values as in Figure , then
we can see that the two upper threshold values are R̂∗ = . < , R∗ = . <  for
models (.) and (.), respectively, which shows that the infected prey I goes to extinction
for both models (see Figure ). Observing that R̂∗ > R∗, which means we have predation,
the infected prey I in model (.) will be extinct more early and easily than in system (.).
The results can also be observed from Figure , in which we choose β(t) = . + . sin t,
c(t) = . + . sin t, e(t) = . + . sin t, and we can obtain the threshold values, R̂∗ =
., R∗ = ., for models (.) and (.). The figure shows that model (.) is disease
free, while the infected prey population for model (.) without predation is permanent.
Then we conclude that the predator can be used as a bio-controller to keep the model
disease free.

Next, let the infection rate increase to β(t) = .+. sin t, we can easily get R̂∗ = . >
, R∗ = . >  and R̂∗ > R∗ for models (.) and (.), respectively. Then we can observe
that all the species of system (.) and (.) enter into a steady state from Figure . There-
fore, we could conclude that predation is benefit for controlling disease and enhancing
permanence in a predator-prey model.

Fourth, some discussions are given for the intermediate case where R∗ >  while R∗ ≤ .
Choose the infection rate β(t) = . + . sin t and retain the other parameter values as
in Figure , then we can see that the two threshold values are R∗ = . >  and R∗ =

(a) (b)

Figure 4 Extinction of the infected prey I for models (1.1) and (1.2), respectively.

(a) (b)

Figure 5 The left figure depicts permanence of the infected prey I for model (1.1), while the right one
shows it is disease free for system (1.2).
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(a) (b)

Figure 6 Permanence of the infected prey I for models (1.1) and (1.2).

(a) (b)

Figure 7 Extinction of the infected prey I for model (1.2) when the two threshold values are
R∗ = 1.0881 > 1 and R∗ = 0.9982 < 1.

. <  for model (.). From Figure , it can be shown that the infected prey I goes to
extinction. Changing the infection rate from β(t) = . + . sin t to β(t) = . + . sin t,
then we have the upper threshold values R∗ = . and R∗ = ., respectively, which
are also greater than , however, by Figure (a)-(b), it can be seen that the infected prey
population is permanent. From Figure , it could be concluded that if the lower threshold
value R∗ ≤ , the infected prey could go to extinction. In addition, comparing Figure (a)
and Figure , it could be shown that the condition we obtained for the extinction of the
infected prey is only a sufficient condition. What is the sufficient necessary condition?
This will be left as our future consideration.

Last but not least, we turn to the role of the functional response in controlling disease.
In [], we considered a predator-prey model with a linear predation rate for migratory
birds, that is,

Ṡ(t) = �(t) –
β(t)S(t)I(t)
 + α(t)S(t)

– d(t)S(t) + f (t)I(t) – k(t)S(t)P(t),

İ(t) =
β(t)S(t)I(t)
 + α(t)S(t)

–
(
e(t) + f (t)

)
I(t) – k(t)I(t)P(t),

Ṗ(t) = r(t)P(t)
[

 –
P(t)
K(t)

]

+ k′
(t)S(t)P(t) – k′

(t)I(t)P(t),

(.)
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(a) (b)

Figure 8 Permanence of the infected prey I for model (1.2), the only difference between these graphs
is the infection rate. (a) β(t) = 0.53 + 0.1 sin t, R∗ = 1.3027 > 1, (b) β(t) = 0.73 + 0.1 sin t, R∗ = 1.7692 > 1.

(a) (b)

Figure 9 Extinction of the infected prey I for models (4.1) and (1.2), respectively, with
β(t) = 0.7 + 0.1 sin t.

by theoretical analysis, we showed that if R′∗ = βS̃/(+αS̃)
(e+f +k ỹ)

≤ , then the infective prey pop-
ulation of system (.) goes to extinction. However, in this paper, we assume that the
predator eat both the susceptible and the infected prey population with modified Leslie-
Gower schemes and we obtain the upper threshold value R∗ to determine the extinction of
the infection. Now we give a numerical simulation to study the effects of different preda-
tion rates in controlling the disease. Let �(t) = . + . sin t, d(t) = . + . sin(t), e(t) =
. + . sin(t), f (t) = . + . sin(t), r(t) = . + . sin t, β(t) = . + . sin t, K(t) =
. + . sin t, w(t) =  + . cos t, w(t) = . + . sin t, c(t) = k(t) = . + . sin t,
c(t) = k(t) =  + . cos t, c(t) = r(t) = . + . sin t, γ (t) = . + . sin t, k′

(t) = . + sin t,
k′

(t) = . + . cos t, σ (t) = . + . sin t, and α(t) = . + . sin t for system (.) while
α(t) =  for system (.). Then we can obtain the upper threshold values R∗ = . < 
for model (.) and R′∗ = . <  for model (.), from which we see that the infected
prey I goes to extinction for both models, and Figure  confirms it. Moreover, obviously,
R∗ < R′∗ and we can conclude that the modified Leslie-Gower functional predation rate
may be a good choice that can be used to control the disease more easily and effectively.

5 Conclusion
In this paper, a new nonautonomous predator-prey model for migratory birds has been
considered. The main results for permanence, extinction of the disease, and global attrac-
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tivity of the system are obtained in Theorems .-.. Theorem . shows that the predator
and prey in the model are permanent if the condition (.), which is the inferior limit of
the minimum loss of the predator on interval [t, t + ω] for some constant ω > , is estab-
lished.

In Theorem ., s(t) is the density of the susceptible prey without infected prey at time
t, satisfying Ṡ(t) = �(t) – c(t)

k(t) M
 – d(t)S. It is shown that s(t) is a globally attractive state of

the susceptible prey. In addition, p(t) is the density of the predator without any infected
prey at time t, satisfying ṗ(t) = p(r(t) + c(t)

k
 (t)σ (t)M

 – c(t)
k(t) p). From Lemma  of [], it can

be shown that p(t) is also a globally attractive state of the predator. Then β(t)S(t) – e(t) –
f (t) – c(t)p(t)

k(t)+S(t) is the available minimum growth rate of the infected prey at time t. Thus,
the left hand of inequality (.) implies an inferior limit of the available minimum growth
rate of the infected prey in the mean on the interval [t, t + λ]. By Theorem ., the infected
prey will be permanent when the inferior limit is positive.

Theorem . implies that the infected prey will be extinct when the superior limit of the
available maximum growth rate of the infected prey in the mean on interval [t, t + λ∗] for
some constant λ∗ >  is non-positive.

In Theorem ., through constructing a Liapunov function, a diagonal dominance con-
dition for the global attractivity of system (.) is presented.
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