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Abstract
This paper proposes an improved stability condition of discrete-time systems with
variable delays. Based on some mathematical techniques, a series of new summation
inequalities are obtained. These new inequalities are less conservative than the
Jensen inequality. Based on these new summation inequalities and the reciprocally
convex combination inequality, a novel sufficient criterion on asymptotical stability of
discrete-time systems with variable delays is obtained by constructing a new
Lyapunov-Krasovskii functional. The advantage of the proposed inequality in this
paper is demonstrated by a classical example from the literature.
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1 Introduction
Time delay is usually encountered in many practical situations such as signal processing,
image processing etc. There has been an increasing research activity on time-delay systems
during the past years [–]. The problem of the delay-dependent stability analysis of time-
delay systems has become a hot research topic in the control community [, ] due to
the fact that stability criteria can provide a maximum admissible upper bound of time de-
lay. The maximum admissible upper bound can be regarded as an important index for the
conservatism of stability criteria [–]. To our knowledge, Jensen’s inequality has been
mostly used as a powerful mathematical tool in the stability analysis of time-delay systems.
However, Jensen’s inequality neglected some terms, which unavoidably introduced some
conservatism. In order to investigate the stability of a linear discrete systems with con-
stant delay, Zhang and Han [] established the following Abel lemma-based finite-sum
inequality, which improved the Jensen inequality to some extent.

Theorem A [] For a constant matrix R ∈ Rn×n with R = RT > , and two integers r and
r with r – r > , the following inequality holds:

r–∑

j=r

ηT (j)Rη(j) ≥ 
ρ

νT
 Rν +

ρ

ρρ
νT

 Rν, ()

where η(j) = x(j + ) – x(j), ν = x(r) – x(r), ν = x(r) + x(r) – 
r–r–

∑r–
j=r+ x(j), ρ = r – r,

ρ = r – r – , ρ = r – r + .
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Seuret et al. [] also obtained a new stability criterion for the discrete-time systems
with time-varying delay via the following novel summation inequality.

Theorem B [] For a given symmetric positive definite matrix R ∈ Rn×n and any sequence
of discrete-time variables z in [–h, ]∩Z → Rn, where h ≥ , the following inequality holds:

∑

i=–h+

yT (i)Ry(i) ≥ 
h

(
�

�

)T (
R 
 ( h+

h– )R

)(
�

�

)
, ()

where y(i) = z(i) – z(i – ), � = z() – z(–h), � = z() + z(–h) – 
h+

∑
i=–h z(i).

In fact, Theorem A is equivalent to Theorem B. These two summation inequalities en-
compass the Jensen inequality. It is worth mentioning that Theorem A and Theorem B can
be regarded as a discrete time version of the Wirtinger-based integral inequality, which
was proved in [].

Recently, Park et al. [] developed a novel class of integral inequalities for quadratic
functions via some intermediate terms called auxiliary functions which improved the
Wirtinger-based integral inequality. Based on the novel inequalities, some new stability
criteria are presented for systems with time-varying delays by constructing some appro-
priate Lyapunov-Krasovskii functionals in [].

The Lyapunov-Krasovskii functional method is the most commonly used method in the
investigation of the stability of delayed systems. The conservativeness of this approach is
mainly from the construction of the Lyapunov-Krasovskii functional and the estimation
of its time derivative. In order to get less conservative results, Jensen’s integral inequal-
ity, Wirtinger’s integral inequality, and a free-matrix-based integral inequality are pro-
posed to obtain a tighter upper bound of the integrals occurring in the time derivative
of the Lyapunov-Krasovskii functional. Many papers have focused on integral inequali-
ties and their applications in stability analysis of continuous-time-delayed systems. How-
ever, only a few papers have studied the summation inequalities and their application in
stability analysis of discrete-time systems with variable delays. The summation inequal-
ities in Theorem A and Theorem B are used to obtain a bound for

∑r–
j=r

ηT (j)Rη(j) or
∑

i=–h+ yT (i)Ry(i).
Motivated by the above works, in order to provide a tighter bound for

∑r–
j=r

ηT (j)Rη(j)
or

∑
i=–h+ yT (i)Ry(i), this paper is aimed at establishing some novel summation inequal-

ities as the discrete-time versions of the integral inequalities obtained in []. In this
paper, we will extend the two summation inequalities given in [, ]. Some new sum-
mation inequalities are proposed to provide a sharper bound than the summation in-
equalities in [, ]. The inequalities in Theorem A and Theorem B are a special case
of Corollary  in our paper. Moreover, a novel estimation to the double summation
as

∑
i=–h+

∑
k=i �x(k)T R�x(k) is also given in this paper. Based on these new summa-

tion inequalities, the reciprocally convex combination inequality, and a new Lyapunov-
Krasovskii functional, a less conservative sufficient criterion on asymptotical stability of
discrete-time systems with variable delays is obtained.

Notations Throughout this paper, Rn and Rn×m denote, respectively, the n-dimensional
Euclidean space and the set of all n × m real matrices. For real symmetric matrices X and
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Y , the notation X ≥ Y (or X > Y ) means that the matrix X – Y is a positive semi-definite
(or positive definite). The symbol ∗ within a matrix represents the symmetric term of the
matrix.

2 Novel summation inequalities
Theorem  For a positive definite matrix R > , any sequence of discrete-time variables y :
[–h, ]∩Z → Rn, and any sequence of discrete-time variables p : [–h, ]∩Z → R satisfying
∑

k=–h+ p(k) = , the following inequality holds:

∑

k=–h+

p(k)
∑

i=–h+

y(i)T Ry(i)

≥ 
h
�T

 R�

∑

k=–h+

p(k) +

[ ∑

i=–h+

y(i)p(i)

]T

R

[ ∑

i=–h+

y(i)p(i)

]
, ()

where � =
∑

k=–h+ y(k).

Proof Let z(i) = y(i) – 
h� – p(i)v, where v ∈ Rn is to be defined later. Then find a vector v̂

to minimize the following energy function J(v):

J(v) =
∑

i=–h+

z(i)T Rz(i). ()

Obviously,

J ′(v) = –
∑

i=–h+

[
y(i)p(i) –


h
�p(i) – p(i)v

]T

R

= –
∑

i=–h+

[
y(i)p(i) – p(i)v

]T R +

h
�T



∑

i=–h+

p(i)R

= –
∑

i=–h+

y(i)T p(i)R + vT R
∑

i=–h+

p(i). ()

If
∑

k=–h+ p(k) > , solving the equation J ′(v) =  gives

v̂ =
∑

i=–h+

y(i)p(i)

[ ∑

i=–h+

p(i)

]–

. ()

Substituting v̂ for v in J(v), we get

J(v̂) =
∑

i=–h+

[
y(i) –


h
� – p(i)v̂

]T

R
[

y(i) –

h
� – p(i)v̂

]

=
∑

i=–h+

[
y(i) –


h
�

]T

R
[

y(i) –

h
�

]
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– 
∑

i=–h+

[
y(i) –


h
�

]T

Rp(i)v̂ +
∑

i=–h+

p(i)v̂T Rv̂

=
∑

i=–h+

[
y(i) –


h
�

]T

R
[

y(i) –

h
�

]
– 

∑

i=–h+

y(i)T Rp(i)v̂

+
∑

i=–h+

p(i)v̂T Rv̂

=
∑

i=–h+

[
y(i) –


h
�

]T

R
[

y(i) –

h
�

]
– 

∑

i=–h+

p(i)y(i)T Rv̂

+
∑

i=–h+

p(i)v̂T Rv̂

=
∑

i=–h+

[
y(i) –


h
�

]T

R
[

y(i) –

h
�

]
– 

∑

i=–h+

p(i)v̂T Rv̂

+
∑

i=–h+

p(i)v̂T Rv̂

=
∑

i=–h+

[
y(i) –


h
�

]T

R
[

y(i) –

h
�

]
–

∑

i=–h+

p(i)v̂T Rv̂

=
∑

i=–h+

y(i)T Ry(i) – 
∑

i=–h+

y(i)T R

h
� +


h

∑

i=–h+

�T
 R�

–
∑

i=–h+

p(i)v̂T Rv̂

=
∑

i=–h+

y(i)T Ry(i) –

h
�T

 R� –
∑

i=–h+

p(i)v̂T Rv̂. ()

By the non-negative characteristic of the energy function J(v), we have

∑

i=–h+

y(i)T Ry(i) ≥ 
h
�T

 R� +


∑
i=–h+ p(i)

[ ∑

i=–h+

y(i)p(i)

]T

R

[ ∑

i=–h+

y(i)p(i)

]
. ()

If
∑

k=–h+ p(k) = , obviously, inequality () holds.
This completes the proof of Theorem . �

By choosing an appropriate sequence p(k), we get the following corollaries.

Corollary  For a positive definite matrix R >  and any sequence of discrete-time vari-
ables y : [–h, ] ∩ Z → Rn, the following inequality holds:

∑

i=–h+

y(i)T Ry(i) ≥ 
h
�T

 R� +

h

h + 
h – 

�T
 R�, ()

where � =
∑

k=–h+ y(k), � =
∑

s=–h+ y(s) – 
h+

∑
k=–h+

∑k
s=–h+ y(s).
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Proof Let p(k) = h –  + k, then
∑

k=–h+ p(k) =  and
∑

i=–h+ p(i) = (h–)h(h+)
 ,

∑

i=–h+

y(i)p(i) =
∑

i=–h+

(h –  + i)y(i)

= –
–∑

k=–h+

k∑

s=–h+

y(s) + (h – )
∑

s=–h+

y(s)

= –
∑

k=–h+

k∑

s=–h+

y(s) + (h + )
∑

s=–h+

y(s)

= (h + )

[ ∑

s=–h+

y(s) –


h + 

∑

k=–h+

k∑

s=–h+

y(s)

]

= (h + )�. ()

By using Theorem , inequality () holds. �

Let �∗
 =

∑
s=–h+ y(s) – 

h+
∑

k=–h+
∑

s=k y(s). Due to

∑

k=–h+

k∑

s=–h+

y(s) +
∑

k=–h+

∑

s=k

y(s) = (h + )
∑

s=–h+

y(s), ()

we have

� =
∑

s=–h+

y(s) –


h + 

∑

k=–h+

k∑

s=–h+

y(s)

= –
∑

s=–h+

y(s) +


h + 

∑

k=–h+

∑

s=k

y(s)

= –�∗
 . ()

Hence, Corollary  is equivalent to Corollary .

Corollary  For a positive definite matrix R >  and any sequence of discrete-time vari-
ables y : [–h, ] ∩ Z → Rn, the following inequality holds:

∑

i=–h+

y(i)T Ry(i) ≥ 
h
�T

 R� +

h

h + 
h – 

�∗


T R�∗
 , ()

where � =
∑

k=–h+ y(k), �∗
 =

∑
s=–h+ y(s) – 

h+
∑

k=–h+
∑

s=k y(s).

Corollary  For a positive definite matrix R >  and any sequence of discrete-time vari-
ables x : [–h, ] ∩ Z → Rn, the following inequality holds:

∑

i=–h+

�x(i)T R�x(i) ≥ 
h
�T

 R� +

h
�T


(h + )

h – 
R�, ()

where �x(i) = x(i) – x(i – ), � = x() – x(–h), � = x() + x(–h) – 
h+

∑
k=–h x(k).
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Proof Let y(i) = �x(i) = x(i) – x(i – ) in Corollary . Then we have

� =
∑

k=–h+

y(k) = x() – x(–h) ()

and

� =
∑

s=–h+

y(s) –


h + 

∑

k=–h+

k∑

s=–h+

y(s)

= x() – x(–h) –


h + 

∑

k=–h+

[
x(k) – x(–h)

]

= x() – x(–h) –


h + 

∑

k=–h+

x(k) +
h

h + 
x(–h)

= x() + x(–h) –


h + 

∑

k=–h

x(k)

= �. ()

Using Corollary , we have completed the proof of Corollary . �

Remark  Corollary  or Corollary  in this paper can be regard as a discrete version of
Wirtinger-based integral inequality proved in []. Corollary  is a special case of Corol-
lary  or Corollary . In fact, Corollary  is equivalent to Theorem A and Theorem B. So
Corollary  or Corollary  in this paper implies Theorem A and Theorem B.

Generally, we have the following result which includes Corollary  as a special case.

Corollary  For a positive definite matrix R > , any sequence of discrete-time variables x :
[–h, ]∩Z → Rn, and any sequence of discrete-time variables p : [–h, ]∩Z → R satisfying∑

k=–h+ p(k) = , the following inequality holds:

∑

i=–h+

�x(i)T R�x(i)

≥ 
h
�T

 R� +


∑
i=–h+ p(i)

[ ∑

i=–h+

p(i)�x(i)

]T

R

[ ∑

i=–h+

p(i)�x(i)

]
, ()

where � = x() – x(–h), �x(i) = x(i) – x(i – ).

To go a step further, suppose that p(i) = h –  + i, p(i) = i + (h – )i + (h–)(h–)
 , then

()
∑

i=–h+ pm(i) = , m = , ,
()

∑
i=–h+ p(i)p(i) = ,

()
∑

i=–h+ p
(i) = (h–)(h–)h(h+)(h+)

 .
Noting that

∑

i=–h+

∑

k=i

y(k) =
∑

i=–h+

(h + i)y(i) ()



Wang et al. Advances in Difference Equations  (2016) 2016:95 Page 7 of 20

and

∑

i=–h+

∑

k=i

∑

m=k

y(m) =
∑

i=–h+

(h + i)(h + i + )


y(i). ()

Then we get

∑

i=–h+

p(i)y(i)

= 
∑

i=–h+

∑

k=i

∑

m=k

y(m) +
(h + )(h + )



∑

i=–h+

y(i) – (h + )
∑

i=–h+

∑

k=i

y(k)

=
(h + )(h + )



[ ∑

i=–h+

y(i) –


h + 

∑

i=–h+

∑

k=i

y(k)

+


(h + )(h + )

∑

i=–h+

∑

k=i

∑

m=k

y(m)

]
. ()

Let p(k) = p(k) in Theorem , we have the following theorem.

Theorem  For a positive definite matrix R >  and any sequence of discrete-time variables
y : [–h, ] ∩ Z → Rn the following inequality holds:

∑

i=–h+

y(i)T Ry(i) ≥ 
h
�T

 R� +
(h + )(h + )
(h – )(h – )h

�T
 R�, ()

where � =
∑

i=–h+ y(i) – 
h+

∑
i=–h+

∑
k=i y(k) + 

(h+)(h+)
∑

i=–h+
∑

k=i
∑

m=k y(m), � =∑
k=–h+ y(k).

Remark  Theorem  gives a new form of summation inequality and the idea which stim-
ulates our interests in establishing a novel combinational summation inequality underly-
ing quadrature rules. Based on Theorem  and Theorem , an improved summation in-
equality can be obtained as follows.

Theorem  For a positive definite matrix R > , any sequence of discrete-time variables
y : [–h, ] ∩ Z → Rn, and any two sequences of discrete-time variables pi : [–h, ] ∩ Z → R
satisfying

∑
k=–h+ pi(k) = , i = , ,

∑
k=–h+ p(k)p(k) = , then the following inequality

holds:

∑

i=–h+

y(i)T Ry(i)

≥ 
h
�T

 R� +


∑
i=–h+ p(i)

[ ∑

i=–h+

y(i)p(i)

]T

R

[ ∑

i=–h+

y(i)p(i)

]

+


∑
i=–h+ p(i)

[ ∑

i=–h+

y(i)p(i)

]T

R

[ ∑

i=–h+

y(i)p(i)

]
, ()

where � =
∑

k=–h+ y(k).
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Proof Let z(i) = y(i)– 
h� – p(i)∑

i=–h+ p(i)

∑
i=–h+ y(i)p(i). Based on the proof of Theorem ,

we have

∑

i=–h+

y(i)T Ry(i)

=

h
�T

 R� +


∑
i=–h+ p(i)

[ ∑

i=–h+

y(i)p(i)

]T

R

[ ∑

i=–h+

y(i)p(i)

]

+
∑

i=–h+

z(i)T Rz(i). ()

Let x(i) = z(i) – p(i)∑
i=–h+ p(i)

∑
i=–h+ z(i)p(i). Similarly, we have

∑

i=–h+

z(i)T Rz(i)

=


∑
i=–h+ p(i)

[ ∑

i=–h+

z(i)p(i)

]T

R

[ ∑

i=–h+

z(i)p(i)

]
+

∑

i=–h+

x(i)T Rx(i). ()

So

∑

i=–h+

y(i)T Ry(i)

=

h
�T

 R� +


∑
i=–h+ p(i)

[ ∑

i=–h+

y(i)p(i)

]T

R

[ ∑

i=–h+

y(i)p(i)

]

+


∑
i=–h+ p(i)

[ ∑

i=–h+

z(i)p(i)

]T

R

[ ∑

i=–h+

z(i)p(i)

]

+
∑

i=–h+

x(i)T Rx(i)

≥ 
h
�T

 R� +


∑
i=–h+ p(i)

[ ∑

i=–h+

y(i)p(i)

]T

R

[ ∑

i=–h+

y(i)p(i)

]

+


∑
i=–h+ p(i)

[ ∑

i=–h+

z(i)p(i)

]T

R

[ ∑

i=–h+

z(i)p(i)

]
. ()

Since
∑

k=–h+ pi(k) =  (i = , ) and
∑

k=–h+ p(k)p(k) = , we obtain

∑

i=–h+

z(i)p(i)

=
∑

i=–h+

[
y(i) –


h
� –

p(i)
∑

j=–h+ p(j)

∑

j=–h+

y(j)p(j)

]
p(i)
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=
∑

i=–h+

y(i)p(i) –
�

h

∑

i=–h+

p(i) –
∑

i=–h+ p(i)p(i)
∑

i=–h+ p(i)

∑

i=–h+

y(i)p(i)

=
∑

i=–h+

y(i)p(i). ()

This completes the proof of Theorem . �

Noting that
∑

i=–h+ pm(i) =  (m = , ) and
∑

i=–h+ p(i)p(i) = , combining Theorem 
with Corollary  and Theorem  gives the following result.

Corollary  For a positive definite matrix R >  and any sequence of discrete-time vari-
ables y : [–h, ] ∩ Z → Rn, the following inequality holds:

∑

i=–h+

y(i)T Ry(i)

≥ 
h
�T

 R� +

h

h + 
h – 

�∗


T R�∗
 +

(h + )(h + )
(h – )(h – )h

�T
 R�, ()

where � =
∑

k=–h+ y(k), �∗
 =

∑
s=–h+ y(s) – 

h+
∑

k=–h+
∑

s=k y(s), � =
∑

i=–h+ y(i) –


h+
∑

i=–h+
∑

k=i y(k) + 
(h+)(h+)

∑
i=–h+

∑
k=i

∑
m=k y(m).

Corollary  For a positive definite matrix R >  and any sequence of discrete-time vari-
ables y : [–h, ] ∩ Z → Rn, the following inequality holds:

∑

i=–h+

�x(i)T R�x(i)

≥ 
h
�T

 R� +

h

h + 
h – 

�
T R� +

(h + )(h + )
(h – )(h – )h

�T
 R�, ()

where � = x() – x(–h), � = x() + x(–h) – 
h+

∑
k=–h x(k), � = x() – x(–h) + h

(h+)(h+) ×
∑

i=–h x(i) – 
(h+)(h+)

∑
i=–h+

∑
k=i x(k).

Proof Let y(i) = �x(i) = x(i) – x(i – ), � = –�∗
 in Corollary . Then � =

∑
k=–h+ y(k) =

x() – x(–h). Simple computation leads to

� =
∑

s=–h+

y(s) –


h + 

∑

k=–h+

k∑

s=–h+

y(s)

= x() – x(–h) –


h + 

∑

k=–h+

[
x(k) – x(–h)

]

= x() + x(–h) –


h + 

∑

k=–h+

x(k) –


h + 
x(–h)

= x() + x(–h) –


h + 

∑

k=–h

x(k) ()
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and

� =
∑

i=–h+

y(i) –


h + 

∑

i=–h+

∑

k=i

y(k) +


(h + )(h + )

∑

i=–h+

∑

k=i

∑

m=k

y(m)

=
∑

i=–h+

[
x(i) – x(i – )

]
–


h + 

∑

i=–h+

∑

k=i

[
x(k) – x(k – )

]

+


(h + )(h + )

∑

i=–h+

∑

k=i

∑

m=k

[
x(m) – x(m – )

]

= x() – x(–h) –


h + 

∑

i=–h+

[
x() – x(i – )

]

+


(h + )(h + )

∑

i=–h+

∑

k=i

[
x() – x(k – )

]

= x() – x(–h) +


h + 

∑

i=–h+

x(i – ) –
h

h + 
x()

+


(h + )(h + )
x()

∑

i=–h+

(–i + ) –


(h + )(h + )

∑

i=–h+

∑

k=i

x(k – )

= x() – x(–h) +


h + 

∑

i=–h+

x(i – )

–
h

(h + )(h + )
x() –


(h + )(h + )

∑

i=–h+

∑

k=i

x(k – ). ()

An identical transformation leads to

� = x() – x(–h) +


h + 

∑

i=–h

x(i) –


h + 
x()

–
h

(h + )(h + )
x() –


(h + )(h + )

∑

i=–h+

∑

k=i

x(k – )

= x() – x(–h) +


h + 

∑

i=–h

x(i)

–


(h + )(h + )

[
(h + )x() +

∑

i=–h+

∑

k=i

x(k – )

]

= x() – x(–h) +
h

(h + )(h + )

∑

i=–h

x(i) –


(h + )(h + )

∑

i=–h+

∑

k=i

x(k). ()

This completes the proof of Corollary . �

Remark  The right-hand side of summation inequality in Corollary  (or Corollary )
contains a term (h+)(h+)

(h–)(h–)h�T
 R�. However, the summation inequality in Theorem A or
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Theorem B neglects this term. If h >  and � �= , then (h+)(h+)
(h–)(h–)h�T

 R� > . Since a pos-
itive quantity is added in the right-hand side of the inequality, the summation inequality
in Corollary  (or Corollary ) can provide a sharper bound for

∑
i=–h+ yT (i)Ry(i) than the

summation inequalities in [, ].

As we have mentioned before, Jensen’s inequality has mostly been used as a powerful
mathematical tool in dealing with the difference of Lyapunov-Krasovskii functionals, sin-
gle or double. In the case of a double, just like

∑
i=–h+

∑
k=i y(k)T Ry(k), Jensen’s inequality

may neglect some terms, which unavoidably introduces conservatism. Then we will give
some improved double summation inequalities.

Theorem  For a positive definite matrix R > , any sequence of discrete-time variables
y : [–h, ]∩Z → Rn, and any nonzero sequence of discrete-time variables p : [–h, ]∩Z → R
satisfying

∑
i=–h+

∑
k=i p(k) = , the following inequality holds:

∑

i=–h+

∑

k=i

y(k)T Ry(k) ≥ 
h(h + )

ET
 RE +


∑

i=–h+
∑

k=i p(k)
ET

 RE, ()

where E =
∑

i=–h+
∑

k=i y(k), E =
∑

i=–h+
∑

k=i y(k)p(k).

Proof Define the energy function as J(v) =
∑

i=–h+
∑

k=i z(k)T Rz(k) and z(i) = y(i) –


h(h+) E – p(i)v. Similar to the proof of Theorem , we are now proceeding to find a vector
v̂ to minimize the energy function J(v).

If
∑

i=–h+
∑

k=i p(k) >  and
∑

i=–h+
∑

k=i p(k) = , then

J ′(v) = –
∑

i=–h+

∑

k=i

[
y(k)p(k) –


h(h + )

Ep(k) – p(k)v
]T

R

=

[
–

∑

i=–h+

∑

k=i

y(k)p(k) + v
∑

i=–h+

∑

k=i

p(k)

]T

R + 


h(h + )
ET



∑

i=–h+

∑

k=i

p(k)R

=

[
–

∑

i=–h+

∑

k=i

y(k)p(k) + v
∑

i=–h+

∑

k=i

p(k)

]T

R. ()

The solution v̂ of J ′(v) =  can be found as

v̂ =

[ ∑

i=–h+

∑

k=i

p(k)

]– ∑

i=–h+

∑

k=i

y(k)p(k). ()

In this case, we have

J(v̂) =
∑

i=–h+

∑

k=i

[
y(k) –


h(h + )

E – p(k)v̂
]T

R
[

y(k) –


h(h + )
E – p(k)v̂

]

=
∑

i=–h+

∑

k=i

[
y(k) –


h(h + )

E

]T

R
[

y(k) –


h(h + )
E

]
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– 
∑

i=–h+

∑

k=i

[
y(k) –


h(h + )

E

]T

Rp(k)v̂ +
∑

i=–h+

∑

k=i

p(k)v̂T Rv̂

=
∑

i=–h+

∑

k=i

[
y(k) –


h(h + )

E

]T

R
[

y(k) –


h(h + )
E

]

+
∑

i=–h+

∑

k=i

p(k)v̂T Rv̂ – 
∑

i=–h+

∑

k=i

y(k)Rp(k)v̂

+ 
∑

i=–h+

∑

k=i


h(h + )

ET
 Rp(k)v̂

=
∑

i=–h+

∑

k=i

[
y(k) –


h(h + )

E

]T

R
[

y(k) –


h(h + )
E

]

– 
∑

i=–h+

∑

k=i

p(k)v̂T Rv̂ +
∑

i=–h+

∑

k=i

p(k)v̂T Rv̂

=
∑

i=–h+

∑

k=i

[
y(k) –


h(h + )

E

]T

R
[

y(k) –


h(h + )
E

]

–
∑

i=–h+

∑

k=i

p(k)v̂T Rv̂

=
∑

i=–h+

∑

k=i

y(k)T Ry(k) – 
∑

i=–h+

∑

k=i

y(k)T R


h(h + )
E

+


h(h + )

∑

i=–h+

∑

k=i

ET
 RE –

∑

i=–h+

∑

k=i

p(k)v̂T Rv̂

=
∑

i=–h+

∑

k=i

y(k)T Ry(k) – ET
 R


h(h + )

E

+


h(h + )
h(h + )


ET

 RE –
∑

i=–h+

∑

k=i

p(k)v̂T Rv̂

≥ . ()

This completes the proof of Theorem . �

Specially, the choice of p(k) in Theorem  as p(k) = k + h –  satisfying

∑

i=–h+

∑

k=i

p(k) = 

yields

∑

i=–h+

∑

k=i

p(k) =
(h – )h(h + )(h + )


()
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and
∑

i=–h+

∑

k=i

p(k)y(k) = –(h + )
∑

i=–h+

∑

k=i

y(k) + 
∑

i=–h+

∑

k=i

∑

m=k

y(m). ()

Let � =
∑

i=–h+
∑

k=i y(k) – 
h+

∑
i=–h+

∑
k=i

∑
m=k y(m). Then the following inequality

based on Theorem  holds:
∑

i=–h+

∑

k=i

y(k)T Ry(k)

≥ 
h(h + )

( ∑

i=–h+

∑

k=i

y(k)

)T

R
∑

i=–h+

∑

k=i

y(k)

+


∑
i=–h+

∑
k=i p(k)

[ ∑

i=–h+

∑

k=i

y(k)p(k)

]T

R

[ ∑

i=–h+

∑

k=i

y(k)p(k)

]

=


h(h + )

( ∑

i=–h+

∑

k=i

y(k)

)T

R
∑

i=–h+

∑

k=i

y(k)

+


(h – )h(h + )(h + )

[ ∑

i=–h+

∑

k=i

y(k)p(k)

]T

R

[ ∑

i=–h+

∑

k=i

y(k)p(k)

]

=


h(h + )

( ∑

i=–h+

∑

k=i

y(k)

)T

R
∑

i=–h+

∑

k=i

y(k) +
(h + )

(h – )h(h + )
�T

 R�. ()

Furthermore, we have the following corollary.

Corollary  For a positive definite matrix R >  and any sequence of discrete-time vari-
ables y : [–h, ] ∩ Z → Rn, the following inequality holds:

∑

i=–h+

∑

k=i

y(k)T Ry(k)

≥ 
h(h + )

( ∑

i=–h+

∑

k=i

y(k)

)T

R
∑

i=–h+

∑

k=i

y(k) +
(h + )

(h – )h(h + )
�T

 R�, ()

where � =
∑

i=–h+
∑

k=i y(k) – 
h+

∑
i=–h+

∑
k=i

∑
m=k y(m).

Corollary  For a positive definite matrix R >  and any sequence of discrete-time vari-
ables y : [–h, ] ∩ Z → Rn, the following inequality holds:

∑

i=–h+

∑

k=i

�x(k)T R�x(k)

≥ (h + )
h

[
x() –


(h + )

∑

i=–h

x(i)

]T

R

[
x() –


(h + )

∑

i=–h

x(i)

]

+
(h + )(h + )

h(h – )
�T

 R�, ()

where � = [x() + 
(h+)

∑
i=–h x(i) – 

(h+)(h+)
∑

i=–h
∑

k=i x(k)].
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Proof Let y(i) = �x(i) = x(i) – x(i – ) in Corollary , we have


h(h + )

( ∑

i=–h+

∑

k=i

y(k)

)T

R
∑

i=–h+

∑

k=i

y(k)

=


h(h + )

( ∑

i=–h+

[
x() – x(i – )

]
)T

R
∑

i=–h+

[
x() – x(i – )

]

=


h(h + )

[
hx() –

∑

i=–h+

x(i – )

]T

R

[
hx() –

∑

i=–h+

x(i – )

]

=


h(h + )

[
(h + )x() –

∑

i=–h

x(i)

]T

R

[
(h + )x() –

∑

i=–h

x(i)

]

=
(h + )

h

[
x() –


(h + )

∑

i=–h

x(i)

]T

R

[
x() –


(h + )

∑

i=–h

x(i)

]
()

and

� =
∑

i=–h+

∑

k=i

y(k) –


h + 

∑

i=–h+

∑

k=i

∑

m=k

y(m)

= (h + )x() –
∑

i=–h

x(i) –


h + 

∑

i=–h+

∑

k=i

∑

m=k

[
x(m) – x(m – )

]

= (h + )x() –
∑

i=–h

x(i) –


h + 

∑

i=–h+

∑

k=i

[
x() – x(k – )

]

= (h + )x() –
∑

i=–h

x(i) –


h + 

∑

i=–h+

[
(–i + )x() –

∑

k=i

x(k – )

]

= (h + )x() –
∑

i=–h

x(i) –


h + 
h(h + )


x() +


h + 

∑

i=–h+

–∑

k=i–

x(k)

= (h + )x() –
∑

i=–h

x(i) –


h + 
h(h + )


x()

+


h + 

∑

i=–h+

[
–x() + x(i – ) +

∑

k=i

x(k)

]

= (h + )x() –
∑

i=–h

x(i) –
h(h + )
(h + )

x()

–
h

h + 
x() +


h + 

∑

i=–h+

x(i – ) +


h + 

∑

i=–h+

∑

k=i

x(k)

= (h + )x() –
∑

i=–h

x(i) –
h(h + )
(h + )

x()

–
h

h + 
x() –


h + 

x() +


h + 

∑

i=–h

∑

k=i

x(k). ()
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So

� = (h + )x() –
∑

i=–h

x(i) –
h(h + )
(h + )

x()

–
(h + )

h + 
x() +


h + 

∑

i=–h

∑

k=i

x(k)

= –
(h + )


x() –

∑

i=–h

x(i) +


h + 

∑

i=–h

∑

k=i

x(k)

= –
(h + )



[
x() +


(h + )

∑

i=–h

x(i) –


(h + )(h + )

∑

i=–h

∑

k=i

x(k)

]
. ()

Replacing y(i) by �x(i) in Corollary  leads to

∑

i=–h+

∑

k=i

�x(k)T R�x(k)

≥ 
h(h + )

( ∑

i=–h+

∑

k=i

�x(k)

)T

R
∑

i=–h+

∑

k=i

�x(k)

+
(h + )

h(h + )(h – )
�T

 R�

=
(h + )

h

[
x() –


(h + )

∑

i=–h

x(i)

]T

R

[
x() –


(h + )

∑

i=–h

x(i)

]

+
(h + )(h + )

h(h – )

[
x() +


(h + )

∑

i=–h

x(i) –


(h + )(h + )

∑

i=–h

∑

k=i

x(k)

]T

R

×
[

x() +


(h + )

∑

i=–h

x(i) –


(h + )(h + )

∑

i=–h

∑

k=i

x(k)

]

=
(h + )

h

[
x() –


(h + )

∑

i=–h

x(i)

]T

R

[
x() –


(h + )

∑

i=–h

x(i)

]

+
(h + )(h + )

h(h – )
�T

 R�, ()

where � = [x() + 
(h+)

∑
i=–h x(i) – 

(h+)(h+)
∑

i=–h
∑

k=i x(k)].
This completes the proof of Corollary . �

Remark  The double Jensen inequality is often used to estimate a upper bound of
–

∑
i=–h+

∑
k=i y(k)T Ry(k) in the difference of Lyapunov-Krasovskii functionals. In this pa-

per, we have extended the double Jensen inequality. Some improved double summation
inequalities are presented in Corollary  (or Corollary ). Since these improved double
summation inequalities contain (h+)

(h–)h(h+)�
T
 R�, they can provide a tighter bound for∑

i=–h+
∑

k=i y(k)T Ry(k). Therefore, these improved double summation inequalities can
be used to establish less conservative stability conditions for the discrete-time systems
with variable delays.
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3 Application in stability analysis
In this section, we will consider the following linear discrete system with time-varying
delay:

{
x(k + ) = Ax(k) + Bx(k – h(k)), k ≥ ,
x(k) = ϕ(k), k ∈ [–h, ],

()

where x(k) ∈ Rn is the state vector, ϕ is the initial value, A and B are n×n constant matrices.
The delay h(k) is assumed to be a positive integer-valued function, for some integers h ≥
h > , h(k) ∈ [h, h], ∀k ≥ .

Based on the above summation inequalities, we will establish a new criterion on asymp-
totical stability for system ().

First, the following notations are needed:

h = h – h,

ei =
[
, , . . . ,

i︷︸︸︷
I , . . . , ︸ ︷︷ ︸



]T
n×n, i = , , . . . , ,

y(k) = x(k) – x(k – ),

ξ (k) =

[
xT (k), xT (k – h), xT(

k – h(k)
)
, xT (k – h),


h + 

k∑

i=k–h

xT (i),


h(k) – h + 

k–h∑

i=k–h(k)

xT (i),


h – h(k) + 

k–h(k)∑

i=k–h

xT (i),
∑

i=–h+

k∑

j=k+i

xT (j)

]T

,

α(k) =

[
xT (k),

k–∑

i=k–h

xT (i),
k–h–∑

i=k–h

xT (i),
∑

i=–h+

k∑

j=k+i

xT (j)

]T

,

Z = diag

{
Z,

(h + )
h – 

Z,
(h + )(h + )
(h – )(h – )

Z

}
,

Z∗
 =

(
Z 
 Z

)
, Z =

(
Z∗

 X
∗ Z∗



)
,

� = [A, , B, , , , , ]T ,

� =
[
�, (h + )e – e,

(
h(k) – h + 

)
e +

(
h – h(k) + 

)
e – e – e,

e + h� – (h + )e + e
]
, ()

� =
[
e, (h + )e – e,

(
h(k) – h + 

)
e +

(
h – h(k) + 

)
e – e – e, e

]
,

� = [A – I, , B, , , , , ]T ,

� =
[

e – e, e + e – e, e – e +
h

h + 
e –


(h + )(h + )

e

]
,

� = [e – e, e + e – e, e – e, e + e – e],
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� = e – e,

� = e +
(

 –


(h + )

)
e –


(h + )(h + )

e,

� = �P�T
 – �P�T

 ,

� = eQeT
 – eQeT

 + eQeT
 – eQeT

 ,

� = �
(
h

 Z + h
Z

)
�T

 – �Z�
T
 – �Z�

T
 ,

� =
h(h + )


�Z�

T
 –

(h + )
h

�Z�
T
 –

(h
 – )

h(h + )
�Z�

T
 ,

� =
∑

i=

�i.

Theorem  For given integers h, h satisfying  < h ≤ h, system () is asymptotically
stable for h ≤ h(k) ≤ h, if there are positive define matrices P ∈ Rn×n, Z ∈ Rn×n, Z ∈
Rn×n, Z ∈ Rn×n, Q ∈ Rn×n, Q ∈ Rn×n, and any matrix X ∈ Rn×n such that the following
LMIs are satisfied:

� < , Z ≥ . ()

Proof Choose a Lyapunov functional candidate as follows:

V (k) =
∑

j=

Vj(k), ()

where

V(k) = αT (k)Pα(k),

V(k) =
k–∑

i=k–h

xT (i)Qx(i) +
k–h–∑

i=k–h

xT (i)Qx(i),

V(k) = h

∑

i=–h+

k∑

j=k+i

yT (j)Zy(j) + h

–h∑

i=–h+

k∑

j=k+i

yT (j)Zy(j),

V(k) =
∑

i=–h+

∑

j=i

k∑

u=k+j

yT (u)Zy(u).

()

Next, we calculate the difference of V (k). For V(k) and V(k), we have

�V(k) = ξT (k)�ξ (k) ()

and

�V(k) = ξT (k)�ξ (k). ()
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Calculating �V(k) gives

�V(k) = h
 yT

k+Zyk+ + h
yT

k+Zyk+

– h

k∑

i=k–h+

yT (i)Zy(i) – h

k–h∑

i=k–h+

yT (i)Zy(i). ()

By Corollary , we get

–h

k∑

i=k–h+

yT (i)Zy(i) ≤ –ξT (k)�Z�
T
 ξ (k). ()

Under the condition of Z > , by Corollary  and the lower bounded lemma, we get

–h

k–h∑

i=k–h+

yT (i)Zy(i) ≤ –ξT (k)�Z�
T
 ξ (k). ()

Then we have

�V(k) ≤ ξT (k)�ξ (k). ()

Calculating �V(k) gives

�V(k) =
h(h + )


yT

k+Zyk+ –
∑

i=–h+

k∑

j=k+i

yT (j)Zy(j). ()

By Corollary , we have

–
∑

i=–h+

k∑

j=k+i

yT (j)Zy(j)

≤ ξT (k)
(

–
(h + )

h
�Z�

T
 –

(h + )(h + )
h(h – )

�Z�
T


)
ξ (k). ()

Then we have

�V(k) ≤ ξT (k)�ξ (k). ()

Hence

�V (k) ≤ ξT (k)
∑

i=

�iξ (k) = ξT (k)�ξ (k). ()

If � < , then �V (k) < .
This completes the proof of Theorem . �
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Table 1 Maximum bound h2 with different h1 (Example 1)

Method 3 5 7 11 13

[18] 10 11 12 13 13
[19] 13 14 15 17 19
[20] 17 17 18 20 22
[21] 17 18 18 20 23
[22] 18 19 21 25 25
[23] 22 22 22 23 24
[25] 21 21 22 23 24
Theorem 5 21 21 22 23 24

Remark  Theorem  gives a sufficient condition for asymptotical stability criterion for
discrete-time system () with variable delay. The free-weighting matrix method was de-
veloped and was applied to the stability analysis of systems with time-varying delays [].
However, the computational burden will increase because of the introduction of free-
weighting matrices. Different from the free-weighting matrix method, some new sharper
summation inequalities are developed via auxiliary functions. By employing these im-
proved inequalities and the reciprocally convex combination inequality method, a less
conservative result is derived. The conditions in Theorem  are described in terms of two
matrix inequalities, which can be realized by using the linear matrix inequality algorithm
proposed in [].

4 Numerical example
In this section, to demonstrate the effectiveness of our proposed method, we consider
the following example, which is widely used in the delay-dependent stability analysis of
discrete-time systems with time delay.

Example  Consider the discrete-time system

x(k + ) =

(
. 

. .

)
x(k) +

(
–. 
–. –.

)
x
(
k – h(k)

)
.

Since the system addressed in [] is a discrete-time system with constant delay, the sta-
bility criterion obtained cannot be applied to this system. For different h, the maximum
allowable upper bounds of h(k) guaranteeing this system to be asymptotically stable are
given in Table  [–, ]. From Table , Theorem  in our paper can provide larger fea-
sible region than those of [–]. For the same h, the maximum allowable upper bound
of h(k) obtained in this paper is the same as that in []. Although more decision vari-
ables are needed in our stability criterion, the new summation inequality in Corollary  is
sharper than that in [].

5 Conclusions
In this paper, by the construction of an appropriate auxiliary function, some new summa-
tion inequalities are established. As an application of the summation inequality, an asymp-
totic stability analysis of discrete linear systems with time delay is carried out. Finally,
a numerical example is provided to illustrate the usefulness of the theoretical results.
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