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Abstract
In this paper, we consider a class of Cohen-Grossberg neural networks with mixed
delays. Different from the previous literature, we study the existence and exponential
stability of pseudo almost automorphic solutions for the suggested system. Our
method is mainly based on the Banach fixed point theorem and the Lyapunov
functional method. Moreover, a numerical example is given to show the effectiveness
of the main results.
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1 Introduction
The concept of pseudo almost automorphy was first introduced by Xiao et al. [], which
is a natural generalization of almost periodicity and almost automorphy. Meanwhile, the
pseudo almost automorphic functions are more general and complicated than pseudo al-
most periodic functions and almost automorphic functions. The existence and stability
of almost automorphic and pseudo almost automorphic solutions are the most attractive
topics in qualitative theory of differential equations due to their significance and applica-
tions in physics, mechanics and mathematical biology. In recent years, the existence and
stability of almost automorphic and pseudo almost automorphic solutions on different
kinds of differential equations have been widely studied; for instance, see [–] and the
references therein.

On the other hand, there have been extensive results on the problem of the existence and
uniqueness of solutions or their dynamic analysis for Cohen-Grossberg type neural net-
works; see [–] among others. However, there have been few results for pseudo almost
automorphic functions since they are more general and complicated than both pseudo
almost periodic functions and almost automorphic functions. To the best of our knowl-
edge, the existence of pseudo almost automorphic solution to Cohen-Grossberg neural
networks (CGNNs) with variable coefficients and mixed delays has not been studied.
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Motivated by the above discussion, in this paper we study the existence, uniqueness, and
exponential stability of pseudo almost automorphic solutions for the following CGNNs:

⎧
⎪⎪⎨

⎪⎪⎩

x′
i(t) = –ai(xi(t))[bi(xi(t)) –

∑m
j= cij(t)fj(xj(t)) –

∑m
j= dij(t)gj(xj(t – τij(t)))

–
∑m

j= pij(t)
∫ t

–∞ Gij(t – s)hj(xj(s)) ds – Ii(t)], t ≥ ,

xi(t) = �i(t), t < .

()

By using the Banach fixed point theorem and the Lyapunov functional method, we prove
the existence, uniqueness, and exponential stability of pseudo almost automorphic solu-
tions to system ().

The organization of this paper is as follows. In Section , we introduce some basic defi-
nitions, assumptions and preliminary lemmas. In Section , we establish the existence and
uniqueness of pseudo almost automorphic solution of system () by applying the Banach
fixed point theorem. In Section , the exponential stability result is shown. In Section ,
an example is provided to demonstrate the effectiveness of the main results. In Section ,
we conclude the paper with some general remarks.

2 Preliminaries
In this section, we introduce some basic definitions, assumptions and preliminary lem-
mas. Throughout this paper, unless otherwise specified, R denotes the set of real num-
bers,R+ denotes the set of non-negative real numbers, Rm denotes the real m-dimensional
space.

Definition . [] A continuous function f : R →R
m is said to be almost automorphic if

for every sequence of (s′
n)n∈N , there exists a subsequence (sn)n∈N ⊂ (s′

n)n∈N such that

g(t) = lim
n→∞ f (t + sn)

is well defined for each t ∈R, and

lim
n→∞ g(t – sn) = f (t)

for each t ∈ R. The collection of all almost automorphic functions is denoted by
AA(R,Rm). It is well known that the set AA(R,Rm) is a Banach space with supremum
norm.

Remark . The function g in Definition . is measurable but not necessarily continu-
ous. Moreover, if g is continuous, then f is uniformly continuous. Besides, if the conver-
gence in Definition . is uniform in t ∈R, then f is almost periodic. For example, Bocher
[] gave an almost automorphic but not almost periodic function defined in the integer
set

ϕ(n) = signum(cos πnθ ), –∞ < n < ∞,

where θ is a non-rational number.
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Definition . [] A continuous function f : R×R
m →R

m is said to be almost automor-
phic if for every sequence of (s′

n)n∈N , there exists a subsequence (sn)n∈N ⊂ (s′
n)n∈N such

that

g(t, x) = lim
n→∞ f (t + sn, x)

is well defined for each t ∈R, x ∈R
m, and

lim
n→∞ g(t – sn, x) = f (t, x)

for each t ∈ R, x ∈ R
m. The collection of all almost automorphic functions is denoted by

AA(R×R
m,Rm).

Define the class of functions PAA(R,Rm) and PAA(R×R
m,Rm) as follows:

PAA
(
R,Rm) =

{

f ∈ BC
(
R,Rm)

∣
∣
∣ lim

T→+∞


T

∫ T

–T

∥
∥f (t)

∥
∥dt = 

}

,

PAA
(
R×R

m,Rm)

=
{

f ∈ BC
(
R×R

m,Rm)
∣
∣
∣ lim

T→+∞


T

∫ T

–T

∥
∥f (t, x)

∥
∥dt = ,∀x ∈R

m
}

,

where BC(R,Rm) (or BC(R×R
m,Rm)) is the collection of the set of bounded continuous

functions from R (or R×R
m) to R

m.

Definition . [, ] A function f ∈ BC(R,Rm) (or BC(R × R
m,Rm)) is called pseudo

almost automorphic if it can be expressed as

f = f + f,

where f ∈ AA(R,Rm) (or AA(R×R
m,Rm)) and f ∈ PAA(R,Rm) (or PAA(R×R

m,Rm)).
The collection of such functions will be denoted by PAA(R,Rm) or PAA(R×R

m,Rm)).

Remark . Obviously, we have

AP
(
R,Rm)⊂ AA

(
R,Rm)⊂ PAA

(
R,Rm)⊂ BC

(
R,Rm),

where AP(R,Rm) is the collection of all almost periodic functions from R to R
m.

Lemma . [, ] Suppose f , g ∈ PAA(R,Rm) and for all τ ∈ R, then the following holds
true:

() f + g, τ f , fτ (t, x) := f (t + τ , x) and f (–t, x) ∈ PAA(R,Rm).
() f is bounded for each x ∈R

m.

Lemma . [, ] Let f = f + f ∈ PAA(R × R
m,Rm), where f(t,ϕ) ∈ AA(R × R

m,Rm),
f(t,ϕ) ∈ PAA(R×R

m,Rm). Moreover, assume that the following conditions are satisfied:
(a) f(t,ϕ) is uniformly continuous for any bounded subset K ⊂R

m and t ∈R.
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(b) f (t,ϕ) is uniformly continuous (or satisfies the Lipschitz condition) for every bounded
subset K ⊂ R

m and t ∈ R.
Then the function ζ : t → ζ (t) = f (t,ϕ(t)) is pseudo almost automorphic for all ϕ ∈

PAA(R,Rm).

Lemma . [, ] Assume that f ∈ AA(R,Rm) and φ ∈ C(Rm,Rn), then φ(f (t)) ∈
AA(R,Rn).

Lemma . (Lebesgue’s dominated convergence theorem) Let {fn} be a sequence of real-
valued measurable functions on a measurable set E. Suppose that the sequence converges
pointwise to a function f and is dominated by some integrable function F in the sense that
|fn(x)| ≤ F(x) for all numbers n in the index set of the sequence and all points x ∈ E. Then f
is integrable and limn→∞

∫

E fn(x) dx =
∫

E f (x) dx.

Throughout this paper, we make the following assumptions.

(H): ai(u) are uniformly continuous functions and there are positive constants a+
i , a–

i such
that

 < a–
i ≤ ai(u) ≤ a+

i , ∀u ∈R, i = , , . . . , m.

(H): bi(u), i = , , . . . , m, are uniformly continuous functions and there exist positive con-
stants b–

i , b+
i such that

b–
i ≤ bi(u) – bi(v)

u – v
≤ b+

i , ∀u, v ∈R, u 
= v, bi() = .

(H): cij(t), dij(t), pij(t), Ii(t) ∈ C(R,R), τij(t) ∈ C(R,R+) are pseudo almost automorphic
functions, where i, j = , , . . . , m.

(H): The delay kernel function Gij : [, +∞) → [, +∞) is piecewise continuous and inte-
grable, and there exists a real number ε such that

∫ +∞


Gij(u) du = ,

∫ ∞


eεuGij(u) du < +∞, i, j = , , . . . , m.

(H): The functions fj(u), gj(u), hj(u) ∈ C(R,R) satisfy the Lipschitz condition, i.e., there are
nonnegative constants Lf

j , Lg
j , and Lh

j such that

∣
∣fj(u) – fj(v)

∣
∣≤ Lf

j |u – v|, ∀u, v ∈R, j = , , . . . , m,
∣
∣gj(u) – gj(v)

∣
∣≤ Lg

j |u – v|, ∀u, v ∈ R, j = , , . . . , m,
∣
∣hj(u) – hj(v)

∣
∣≤ Lh

j |u – v|, ∀u, v ∈R, j = , , . . . , m.

Constants c+
ij , d+

ij , p+
ij , I+

i (i = , , . . . , m) are denoted as follows:

sup
t∈R

cij(t) = c+
ij > , sup

t∈R
dij(t) = d+

ij > ,

sup
t∈R

pij(t) = p+
ij > , sup

t∈R
Ii(t) = I+

i > .
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3 The existence and uniqueness of pseudo almost automorphic solutions
In this section, we study the existence and uniqueness of pseudo almost automorphic so-
lutions of system ().

By the assumption (H), we know that the antiderivative of 
ai(xi(t)) exists. Then we

choose an antiderivative Fi(xi) of 
ai(xi(t)) with Fi() = . It is clear that F ′

i (xi) = 
ai(xi(t)) . Since

ai(xi(t)) > , we see that Fi(xi) is increasing on xi and there exists an inverse function F–
i (xi)

of Fi(xi), which is continuous and differential. Moreover, we have (F–
i (xi))′ = ai(xi(t)). De-

noting F ′
i (xi)x′

i(t) = x′
i(t)

ai(xi(t)) := u′
i(t), we get xi(t) = F–

i (ui(t)). Then it follows from () that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′
i(t) = –bi(F–

i (ui(t))) +
∑m

j= cij(t)fj(F–
j (uj(t)))

+
∑m

j= dij(t)gj(F–
j (uj(t – τij(t))))

+
∑m

j= pij(t)
∫ t

–∞ Gij(t – s)hj(F–
j (uj(s))) ds + Ii(t), t ≥ ,

ui(t) = Fi(�i(t)), t < .

()

By the assumption (H) and the mean value theorem, we obtain

bi
(
F–

i
(
ui(t)

))
=
[
bi
(
F–

i
(
θiui(t)

))]′ui(t) := b∼
i
(
ui(t)

)
ui(t),

where θi is a constant such that  ≤ θi ≤ . Substituting this into () yields,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′
i(t) = –b∼

i (ui(t))ui(t) +
∑m

j= cij(t)fj(F–
j (uj(t)))

+
∑m

j= dij(t)gj(F–
j (uj(t – τij(t))))

+
∑m

j= pij(t)
∫ t

–∞ Gij(t – s)hj(F–
j (uj(s))) ds + Ii(t), t ≥ ,

ui(t) = Fi(�i(t)), t < .

()

Obviously, system () has a unique pseudo almost automorphic solution, if and only if sys-
tem () has a unique pseudo almost automorphic solution. So we only need to consider the
pseudo almost automorphic solution of system (). It follows from the Lagrange theorem
that

∣
∣F–

i (u) – F–
i (v)

∣
∣ =
∣
∣
[
F–

i
(
v + θi(u – v)

)]′(u – v)
∣
∣ =
∣
∣ai
(
v + θi(u – v)

)∣
∣|u – v|.

By (H) again, we get

a–
i |u – v| ≤ ∣∣F–

i (u) – F–
i (v)

∣
∣≤ a+

i |u – v|.

Combined with (H), we have

b–
i a–

i ≤ [bi
(
F–

i (·))]′ ≤ b+
i a+

i .

In order to prove our main result, we present the following lemma.

Lemma . Assume that the assumption (H) holds and ϕj(·) ∈ PAA(R,R). Then


ij : t →
∫ t

–∞
Gij(t – s)ϕj(s) ds

belongs to PAA(R,R).
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Proof Noting that ϕj(·) ∈ PAA(R,R), then it follows from Definition . that

ϕj = ϕj + ϕj,

and so


ij =
∫ t

–∞
Gij(t – s)ϕj(s) ds +

∫ t

–∞
Gij(t – s)ϕj(s) ds

= 
ij + 
ij.

The rest of the proof is divided into two steps.
Step : We first prove 
ij ∈ AA(R,R).
Let (s′

n) be a sequence of real numbers. By Definition ., there exists a subsequence (sn)
of (s′

n) such that for all t, s ∈R,

lim
n→∞ϕj(t + sn) = ϕj(t), lim

n→∞ϕj(t – sn) = ϕj(t).

Define


 ij : t →
∫ t

–∞
Gij(t – s)ϕj(s) ds.

Then we have

∣
∣
ij(t + sn) – 
 ij(t)

∣
∣

=
∣
∣
∣
∣

∫ t+sn

–∞
Gij(t + sn – s)ϕj(s) ds –

∫ t

–∞
Gij(t – s)ϕj(s) ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t

–∞
Gij(t – v)ϕj(v + sn) dv –

∫ t

–∞
Gij(t – s)ϕj(s) ds

∣
∣
∣
∣

≤
∫ t

–∞
Gij(t – s)

∣
∣ϕj(s + sn) – ϕj(s)

∣
∣ds.

By the Lebesgue dominated convergence theorem and (H), we obtain

lim
n→∞
ij(t + sn) = 
 ij(t).

Similarly, we have

lim
n→∞
 ij(t – sn) = 
ij(t),

which implies that 
ij : t → ∫ t
–∞ Gij(t – s)ϕj(s) ds belongs to AA(R,R).

Step : Next, we prove that 
ij ∈ PAA(R,R). In fact,

lim
T→+∞


T

∫ T

–T
|
ij|dt = sup

t∈R
lim

T→+∞


T

∫ T

–T

∣
∣
∣
∣

∫ t

–∞
Gij(t – s)ϕj(s) ds

∣
∣
∣
∣dt

≤ sup
t∈R

lim
T→+∞


T

∫ +∞



∣
∣Gij(u)

∣
∣
∫ T+u

–T+u

∣
∣ϕj(v)

∣
∣dv du = ,

which implies that 
ij ∈ PAA(R,R).
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Therefore, we see that 
ij : t → ∫ t
–∞ Gij(t – s)ϕj(s) ds belongs to PAA(R,R). �

Theorem . Suppose that assumptions (H)-(H) hold, and fj, gj, hj are as in Lemma ..
Then system () has a unique pseudo almost automorphic solution in the region ‖z – z‖ ≤
δI

–δ
, if δ < , where

δ = max
≤i≤m

{


b–
i a–

i

m∑

j=

(
Lf

j c+
ij + Lg

j d+
ij + Lh

j p+
ij
)
a+

j

}

< ,

I = max
≤i≤m

{
I+

i
b–

i a–
i

}

,

z =
(∫ t

–∞
I(s)e–

∫ t
s b∼

 (φ(τ )) dτ ds, . . . ,
∫ t

–∞
Im(s)e–

∫ t
s b∼

m(φm(τ )) dτ ds
)

.

Proof For all z(t) = φ(t)T = (φ(t), . . . ,φm(t))T ∈ PAA(R,Rm), and for any given function
ui(t) ∈ PAA(R,Rm), we define the nonlinear operator

T : z(t) → T(z)(t) =
(
xφ(t)

)T , ()

where

xφi (t) =
∫ t

–∞
e–
∫ t

s b∼
i (ui(τ )) dτ

[ m∑

j=

cij(s)fj
(
F–

j
(
φj(s)

))

+
m∑

j=

dij(s)gj
(
F–

j
(
φj
(
s – τij(s)

)))

+
m∑

j=

pij(s)
∫ s

–∞
Gij(s – v)hj

(
F–

j
(
φj(v)

))
dv + Ii(s)

]

ds.

Now, we prove that

T : PAA
(
R,Rm)→ PAA

(
R,Rm).

For z(t) ∈ PAA(R,Rm), it follows from Lemmas ., ., . that the function

Eij : s →
m∑

j=

cij(s)fj
(
F–

j
(
φj(s)

))
+

m∑

j=

dij(s)gj
(
F–

j
(
φj
(
s – τij(s)

)))

+
m∑

j=

pij(s)
∫ s

–∞
Gij(s – v)hj

(
F–

j
(
φj(v)

))
dv + Ii(s)

belongs to PAA(R,R). Therefore, we can write

xφi (t) =
∫ t

–∞
e–
∫ t

s b∼
i (ui(τ )) dτ Eij(s) ds.
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From Definition ., we have Eij = Eij + Eij, where Eij ∈ AA(R,R), Eij ∈ PAA(R,R).
Then

xφi (t) =
∫ t

–∞
e–
∫ t

s b∼
i (ui(τ )) dτ Eij(s) ds +

∫ t

–∞
e–
∫ t

s b∼
i (ui(τ )) dτ Eij(s) ds

= Tij + Tij,

where Tij =
∫ t

–∞ e–
∫ t

s b∼
i (ui(τ )) dτ Eij(s) ds, Tij =

∫ t
–∞ e–

∫ t
s b∼

i (ui(τ )) dτ Eij(s) ds.
From the assumptions (H) and (H) and Lemma ., the function ρi : τ → b∼

i (ui(τ ))
belongs to AA(R,R).

Let (s′
n) be a sequence of real numbers. Then it follows from Definition . that there

exists a subsequence (sn) of (s′
n) such that for all t, s ∈R

lim
n→∞ρi(t + sn) = ρi(t), lim

n→∞ρi(t – sn) = ρi(t),

and

lim
n→∞ Eij(t + sn) = Eij(t), lim

n→∞ Eij(t – sn) = Eij(t).

Taking

Tij(t) =
∫ t

–∞
e–
∫ t

s ρi(τ ) dτ Eij(s) ds,

then we have

Tij(t) – Tij(t) =
∫ t+sn

–∞
e–
∫ t+sn

s ρi(τ ) dτ Eij(s) ds –
∫ t

–∞
e–
∫ t

s ρi(τ ) dτ Eij(s) ds

=
∫ t+sn

–∞
e–
∫ t

s–sn ρi(σ+sn) dσ Eij(s) ds –
∫ t

–∞
e–
∫ t

s ρi(τ ) dτ Eij(s) ds

=
∫ t

–∞
e–
∫ t

u ρi(σ+sn) dσ Eij(u + sn) du –
∫ t

–∞
e–
∫ t

s ρi(τ ) dτ Eij(s) ds

=
∫ t

–∞
e–
∫ t

u ρi(σ+sn) dσ Eij(u + sn) du –
∫ t

–∞
e–
∫ t

u ρi(σ+sn) dσ Eij(u) du

+
∫ t

–∞
e–
∫ t

u ρi(σ+sn) dσ Eij(u) du –
∫ t

–∞
e–
∫ t

s ρi(σ ) dσ Eij(u) du

=
∫ t

–∞
e–
∫ t

u ρi(σ+sn) dσ
[
Eij(u + sn) – Eij(u)

]
du

+
∫ t

–∞

[
e–
∫ t

u ρi(σ+sn) dσ – e–
∫ t

s ρi(σ ) dσ
]
Eij(u) du.

By the Lebesgue dominated convergence theorem, we get

lim
n→∞ Tij(t + sn) = Tij(t).

Similarly, we can prove that

lim
n→∞ Tij(t – sn) = Tij(t),

which implies that the function Tij(t) belongs to AA(R,R).
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On the other hand, we have

lim
T→+∞


T

∫ T

–T

∣
∣
∣
∣

∫ t

–∞
e–
∫ t

s b∼
i (ui(τ )) dτ Eij(s) ds

∣
∣
∣
∣dt

≤ lim
T→+∞


T

∫ T

–T

∣
∣
∣
∣

∫ t

–T
e–
∫ t

s b∼
i (ui(τ )) dτ Eij(s) ds

∣
∣
∣
∣dt

+ lim
T→+∞


T

∫ T

–T

∣
∣
∣
∣

∫ –T

–∞
e–
∫ t

s b∼
i (ui(τ )) dτ Eij(s) ds

∣
∣
∣
∣dt

≤ lim
T→+∞


T

∫ T

–T

∥
∥Eij(t)

∥
∥dt

∫ t

–T
e–b–

i a–
i (t–s) ds

+ lim
T→+∞

supt∈R |Eij(t)|
T

∫ T

–T
dt
(∫ –T

–∞

∣
∣e–b–

i a–
i (t–s)∣∣ds

)

≤ lim
T→+∞


Tb–

i a–
i

∫ T

–T

∥
∥Eij(t)

∥
∥dt + lim

T→+∞
supt∈R |Eij(t)|

T(b–
i a–

i )

(
 – e–b–

i a–
i (T))

=  + lim
T→+∞

supt∈R |Eij(t)|
T(b–

i a–
i )

(
 – e–b–

i a–
i (T))

= .

Thus, Tij ∈ PAA(R,R). Then xφi (t) ∈ PAA(R,R). Therefore z(φ)T (t) ∈ PAA(R,Rm).
Setting B∗ = {z | z ∈ PAA(R,Rm),‖z – z‖ ≤ δI

–δ
}, then we obtain

‖z‖ = sup
t∈R

max
≤i≤m

∣
∣
∣
∣

∫ t

–∞
Ii(s)e–

∫ t
s b∼

i (ui(τ )) dτ ds
∣
∣
∣
∣

≤ sup
t∈R

max
≤i≤m

∣
∣
∣
∣

∫ t

–∞
Ii(s)e–b–

i a–
i (t–s) ds

∣
∣
∣
∣

≤ max
≤i≤m

(
I+

i
b–

i a–
i

)

= I.

For every z ∈ B∗, we get

‖z‖ ≤ ‖z – z‖ + ‖z‖ ≤ δI
 – δ

+ I =
I

 – δ
.

Second, we will prove that the mapping T is a self-mapping from B∗ to B∗. Actually, for
every z ∈ B∗, noting that F–

j () =  and |F–
j (u) – F–

j (v)| ≤ a+
j |u – v|, we have

∥
∥T(z) – z

∥
∥ = sup

t∈R
max

≤i≤m

∣
∣
∣
∣
∣

∫ t

–∞
e–
∫ t

s b∼
i (ui(τ )) dτ

[ m∑

j=

cij(s)fj
(
F–

j
(
φj(s)

))

+
m∑

j=

dij(s)gj
(
F–

j
(
φj
(
s – τij(s)

)))

+
m∑

j=

pij(s)
∫ s

–∞
Gij(s – v)hj

(
F–

j
(
φj(v)

))
dv

]

ds

∣
∣
∣
∣
∣
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≤ max
≤i≤m

{


b–
i a–

i

m∑

j=

(
Lf

j c+
ij + Lg

j d+
ij + Lh

j p+
ij
)
a+

j

}

‖z‖

= δ‖z‖
≤ δI

 – δ
,

which implies that T(z)(t) ∈ B∗, and therefore T is a self-mapping from B∗ to B∗.
Finally, we will prove that the mapping T is a contraction mapping.
In view of (H)-(H), we have, for any z, z∗ ∈ B∗, where z = (φ, . . . ,φm)T , z∗ = (φ∗

 ,
. . . ,φ∗

m)T ,

∥
∥T(z) – T

(
z∗)∥∥

= sup
t∈R

max
≤i≤m

∣
∣
∣
∣
∣

∫ t

–∞
e–
∫ t

s b∼
i (ui(τ )) dτ

{ n∑

j=

cij(s)
[
fj
(
F–

j
(
φj(s)

))
– fj
(
F–

j
(
φ∗

j (s)
))]

+
n∑

j=

dij(s)
[
gj(F–

j
(
φj
(
s – τij(s)

))
– gj
(
F–

j
(
φ∗

j
(
s – τij(s)

)))]

+
n∑

j=

pij(s)
∫ s

–∞
Gij(s – v)

[
hj
(
F–

j
(
φj(v)

))
– hj
(
F–

j
(
φ∗

j (v)
))]

dv

}

ds

∣
∣
∣
∣
∣

≤ max
≤i≤m

{


b–
i a–

i

m∑

j=

(
Lf

j c+
ij + Lg

j d+
ij + Lh

j p+
ij
)
a+

j

}
∥
∥z – z∗∥∥

= δ
∥
∥z – z∗∥∥.

Noting that δ < , we see that the mapping T is a contraction mapping. Hence, there exists
a unique fixed point ϕ∗ ∈ B∗ such that Tϕ∗ = ϕ∗. Take ui(t) = ϕi(t) in (). Thus (ϕ∗)T is a
pseudo almost automorphic solution of system () in B∗. This completes the proof. �

Corollary . In (), assume that cij(t), dij(t), pij(t), Ii(t) ∈ C(R,R), τij(t) ∈ C(R,R+) are all
almost automorphic functions. ai(u) ∈ C(R,R), bi(u) ∈ BC(R,R) and there are positive con-
stants a+

i , a–
i , b–

i , b+
i such that

 < a–
i ≤ ai(u) ≤ a+

i , ∀u ∈R,

b–
i ≤ bi(u) – bi(v)

u – v
≤ b+

i , u 
= v,∀u, v ∈R, bi() = .

where i, j = , , . . . , m. If the conditions (H)-(H) hold, and then system () has a unique
almost automorphic solution.

Remark . Recently, there have been some results on the existence and uniqueness of
almost automorphic solutions to cellular neural networks; for instance see [] and [].
However, to the best of our knowledge, there is not any paper to consider the existence
and uniqueness of pseudo almost automorphic solution to Cohen-Grossberg type neu-
ral networks (). Actually in CGNNs (), taking ai(u) ≡ , bi(xi(t)) = di(t)xi(t), aij(t) =
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cij(t), dij(t) = bij(t), pij(t) = cij(t), we can get the corresponding recurrent neural networks
of []:

⎧
⎪⎪⎨

⎪⎪⎩

x′
i(t) = –di(t)xi(t) +

∑m
j= aij(t)fj(xj(t)) +

∑m
j= bij(t)gj(xj(t – τij(t)))

+
∑m

j= cij(t)
∫ t

–∞ Gij(t – s)hj(xj(s)) ds + Ji(t), t ≥ ,

xi(t) = x̂i(t), t < .

()

It should be mentioned that only the almost automorphic solution was studied in [],
and pseudo almost automorphic solution was not discussed in []. So, our result can be
regarded as a generalization and improvement of that obtained in [].

Remark . In [], the authors studied the existence of k-almost automorphic sequence
solution to the discrete analog of the cellular neural networks,

⎧
⎨

⎩

x′
i(t) = –ai(t)xi(t) +

∑m
j= bij(t)fj(xj([ t

k ]k – [ αij
k ]k)) + Ii(t),

xi(t) = φi(t), t ∈ [–αij, ].

It should be mentioned that the activity function fj in [] was required to be global Lip-
schitz continuous and boundedness. However, in this paper we remove the condition of
boundedness imposed on the activity functions fj, gj, hj of ().

4 The exponential stability of pseudo almost automorphic solution
In this section, we study the exponential stability of the unique pseudo almost automor-
phic solution of the system ().

Theorem . Suppose that assumptions (H)-(H) hold. Let z∗(t) = (x∗
 (t), . . . , x∗

m(t)) be a
unique pseudo almost automorphic solution to system () in B∗. If τ̇ij(t) ≤ τ ∗ < , τij(t) ≤ τ ,
and

(H) : –bi +
m∑

j=

c+
jiL

f
i +

m∑

j=

d+
ji L

g
i

 – τ ∗ +
m∑

j=

p+
jiL

h
i < ,

then there exist constants ε >  and k >  such that for any solution x(t) of system (), we
have

∑m
i= |xi(t) – x∗

i (t)| ≤ ke–εt , t > .

Proof Let z∗(t) = (x∗
 (t), . . . , x∗

m(t)) be a unique pseudo almost automorphic solution to sys-
tem () in B∗. z(t) = (x(t), . . . , xm(t)) is any solution of system (). Consider the Lyapunov
functional V (t) = V(t) + V(t), where

V(t) = eεt
m∑

i=

∣
∣
∣
∣

∫ xi(t)

xi(t)


ai(s)

ds
∣
∣
∣
∣,

V(t) =
m∑

i=

m∑

j=

{ d+
ij L

g
j

 – τ ∗

∫ t

t–τij(t)

∣
∣xj(s) – x∗

j (s)
∣
∣eε(s+τ ) ds

+ p+
ijL

h
j

∫ ∞


Gij(u)

∫ t

t–u

∣
∣xj(s) – x∗

j (s)
∣
∣eε(s+u) ds du

}

.
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Calculating the Dini derivative D+Vi(t), i = , , we have

D+V(t)

≤ εeεt
m∑

i=

∣
∣
∣
∣

∫ xi(t)

x∗
i (t)


ai(s)

ds
∣
∣
∣
∣ + eεt

m∑

i=

Sgn
(
xi(t) – x∗

i (t)
)
[

ẋi(t)
ai(xi(t))

–
ẋ∗

i (t)
ai(x∗

i (t))

]

≤ εeεt
m∑

i=


ai

∣
∣xi(t) – x∗

i (t)
∣
∣ + eεt

m∑

i=

Sgn
(
xi(t) – x∗

i (t)
)

×
{

–
[
bi
(
xi(t)

)
– bi
(
x∗

i (t)
)]

+
m∑

j=

cij(t)
[
fj
(
xj(t)

)
– fj
(
x∗

j (t)
)]

+
m∑

j=

dij(t)
[
gj
(
xj
(
t – τij(t)

))
– gj
(
x∗

j
(
t – τij(t)

))]

+
m∑

j=

pij(t)
∫ t

–∞
Gij(t – s)

[
hj
(
xj(s)

)
– hj
(
x∗

j (s)
)]

ds

}

= εeεt
m∑

i=


ai

∣
∣xi(t) – x∗

i (t)
∣
∣ + eεt

m∑

i=

Sgn
(
xi(t) – x∗

i (t)
)

×
{

–
[bi(xi(t)) – bi(x∗

i (t))]
xi(t) – x∗

i (t)
· (xi(t) – x∗

i (t)
)

+
m∑

j=

cij(t)
[
fj
(
xj(t)

)
– fj
(
x∗

j (t)
)]

+
m∑

j=

dij(t)
[
gj
(
xj
(
t – τij(t)

))
– gj
(
x∗

j
(
t – τij(t)

))]

+
m∑

j=

pij(t)
∫ ∞


Gij(u)

[
hj
(
xj(t – u)

)
– hj
(
x∗

j (t – u)
)]

du

}

≤ eεt
m∑

i=

(
ε

ai
– bi

)
∣
∣xi(t) – x∗

i (t)
∣
∣ + eεt

m∑

i=

m∑

j=

c+
ijL

f
j
∣
∣xj(t) – x∗

j (t)
∣
∣

+ eεt
m∑

i=

m∑

j=

d+
ij L

g
j
∣
∣xj
(
t – τij(t)

)
– x∗

j
(
t – τij(t)

)∣
∣

+ eεt
m∑

i=

m∑

j=

p+
ijL

h
j

∫ ∞


Gij(u)

∣
∣xj(t – u) – x∗

j (t – u)
∣
∣du

= eεt
m∑

i=

(
ε

ai
– bi +

m∑

j=

c+
jiL

f
i

)
∣
∣xi(t) – x∗

i (t)
∣
∣

+ eεt
m∑

i=

m∑

j=

d+
ij L

g
j
∣
∣xj
(
t – τij(t)

)
– x∗

j
(
t – τij(t)

)∣
∣

+ eεt
m∑

i=

m∑

j=

p+
ijL

h
j

∫ ∞


Gij(u)

∣
∣xj(t – u) – x∗

j (t – u)
∣
∣du.



Zhu et al. Advances in Difference Equations  (2016) 2016:120 Page 13 of 17

Noting that –τ̇ij(t)
–τ∗ >  and eτ–τij(t) > , we have

D+V(t) =
m∑

i=

m∑

j=

d+
ij L

g
j

 – τ ∗
∣
∣xj(t) – x∗

j (t)
∣
∣eε(t+τ )

–
m∑

i=

m∑

j=

d+
ij L

g
j

 – τ ∗
∣
∣xj
(
t – τij(t)

)
– x∗

j
(
t – τij(t)

)∣
∣eε(t–τij(t)+τ )( – τ̇ij(t)

)

+
m∑

i=

m∑

j=

p+
ijL

h
j

∫ ∞


Gij(u)

∣
∣xj(t) – x∗

j (t)
∣
∣eε(t+u) du

–
m∑

i=

m∑

j=

p+
ijL

h
j

∫ ∞


Gij(u)

∣
∣xj(t – u) – x∗

j (t – u)
∣
∣eεt du

≤ eεt
m∑

i=

m∑

j=

d+
ij L

g
j

 – τ ∗ eετ
∣
∣xj(t) – x∗

j (t)
∣
∣

– eεt
m∑

i=

m∑

j=

d+
ij L

g
j
∣
∣xj
(
t – τij(t)

)
– x∗

j
(
t – τij(t)

)∣
∣

+ eεt
m∑

i=

m∑

j=

p+
ijL

h
j

∫ ∞


Gij(u)eεu du

∣
∣xj(t) – x∗

j (t)
∣
∣

– eεt
m∑

i=

m∑

j=

p+
ijL

h
j

∫ ∞


Gij(u)

∣
∣xj(t – u) – x∗

j (t – u)
∣
∣du.

So it follows that

D+(V(t) + V(t)
) ≤ eεt

m∑

i=

(
ε

ai
– bi +

m∑

j=

c+
jiL

f
i

)
∣
∣xi(t) – x∗

i (t)
∣
∣

+ eεt
m∑

i=

m∑

j=

d+
ij L

g
j

 – τ ∗ eετ
∣
∣xj(t) – x∗

j (t)
∣
∣

+ eεt
m∑

i=

m∑

j=

p+
ijL

h
j

∫ ∞


Gij(u)eεu du

∣
∣xj(t) – x∗

j (t)
∣
∣

= eεt
m∑

i=

(
ε

ai
– bi +

m∑

j=

c+
jiL

f
i

)
∣
∣xi(t) – x∗

i (t)
∣
∣

+ eεt
m∑

i=

m∑

j=

d+
ji L

g
i

 – τ ∗ eετ
∣
∣xi(t) – x∗

i (t)
∣
∣

+ eεt
m∑

i=

m∑

j=

p+
jiL

h
i

∫ ∞


Gji(u)eεu du

∣
∣xi(t) – x∗

i (t)
∣
∣.

Namely,

D+V (t) ≤ eεt
m∑

i=

[
ε

ai
– bi +

m∑

j=

c+
jiL

f
i +

m∑

j=

d+
jiL

g
i

 – τ ∗ eετ +
m∑

j=

p+
jiL

h
i

∫ ∞


Gji(u)eεu du

]

× ∣∣xi(t) – x∗
i (t)
∣
∣.
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Define the function

H(ε) :=
ε

ai
– bi +

m∑

j=

c+
jiL

f
i +

m∑

j=

d+
ji L

g
i

 – τ ∗ eετ +
m∑

j=

p+
jiL

h
i

∫ ∞


Gji(u)eεu du, ε ∈ [, +∞].

By (H), we have

H() = –bi +
m∑

j=

c+
jiL

f
i +

m∑

j=

d+
ji L

g
i

 – τ ∗ +
m∑

j=

p+
jiL

h
i < .

Utilizing the continuity of the function H(·), there exists a real number ε such that

H(ε) =
ε

ai
– bi +

m∑

j=

c+
jiL

f
i +

m∑

j=

d+
ji L

g
i

 – τ ∗ eετ +
m∑

j=

p+
jiL

h
i

∫ ∞


Gji(u)eεu du < .

It means that D+V (t) < . Hence V (t) < V (), t > . On the other hand,

V (t) ≥ eεt
m∑

i=

∣
∣
∣
∣

∫ xi(t)

xi(t)


ai(s)

ds
∣
∣
∣
∣≥ eεt min

≤i≤m

{


a+
i

} m∑

i=

∣
∣xi(t) – x∗

i (t)
∣
∣.

So

m∑

i=

∣
∣xi(t) – x∗

i (t)
∣
∣≤ V ()

min≤i≤m{a+
i

–}e–εt , t > .

It follows from the definition of V (t) that

V () =
m∑

i=

∣
∣
∣
∣

∫ xi()

x∗
i ()


ai(s)

ds
∣
∣
∣
∣ +

m∑

i=

m∑

j=

{ d+
ji L

g
j

 – τ ∗

∫ 

–τij()

∣
∣xj(s) – x∗

j (s)
∣
∣eε(s+τ ) ds

+ p+
ijL

h
j

∫ ∞


Gij(u)

∫ 

–u

∣
∣x∗

j (s) – x∗
j (s)
∣
∣eε(s+u) ds du

}

≤
m∑

i=

|xi() – x∗
i ()|

ai
+

m∑

i=

m∑

j=

{ d+
ij L

g
j

 – τ ∗

∫ 

–τ

eε(s+τ ) ds sup
(–∞,]

{∣
∣xj(s) – x∗

j (s)
∣
∣
}

+ p+
ijL

h
j

∫ ∞


Gij(u)

∫ 

–u
eε(s+u) ds du sup

(–∞,]

{∣
∣xj(s) – x∗

j (s)
∣
∣
}
}

≤
m∑

i=

[

ai

+
m∑

j=

d+
ji L

g
i (eετ – )

ε( – τ ∗)
+ p+

jiL
h
i

∫ ∞


eεuGji(u) du –

pjiLh
i

ε

]

× max
≤i≤m

sup
(–∞,]

{∣
∣xi(s) – x∗

i (s)
∣
∣
}

:= α.

So,

m∑

i=

∣
∣xi(t) – x∗

i (t)
∣
∣≤ α

min≤i≤m{a+
i

–}e–εt := ke–εt , t > .

This completes the proof. �
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Remark . In [], sufficient conditions were obtained to ensure the existence and sta-
bility of an almost automorphic solution to recurrent neural networks () by using the
Lebesgue dominated convergence theorem and Banach fixed theorem. It is worth point-
ing out that the authors in [] assumed that the kernel Kij(·) is almost automorphic and
there exist M >  and w >  such that Kij(t) ≤ Me–tω . However, in this paper we only as-
sume that the kernel functions Gij(·) are piecewise continuous, integrable, and satisfying
∫ +∞

 Gij(u) du = ,
∫∞

 eεuGij(u) du < +∞, i, j = , , . . . , m. Therefore, our result has some
significance in theories as well as in applications of pseudo almost automorphic solutions.

5 An example
In this section, an example is given to illustrate the feasibility of our result.

Let us consider the following simple neural network:

x′
i(t) = –ai

(
xi(t)

)
[

bi
(
xi(t)

)
–

∑

j=

cij(t)fj
(
xj(t)

)

–
∑

j=

dij(t)gj
(
xj
(
t – τij(t)

))

–
∑

j=

pij(t)
∫ t

–∞
Gij(t – s)hj

(
xj(s)

)
ds – Ii(t)

]

, i = , , ()

where the initial functions

�(t) = sin


 + cos t + cos(π t)
+ e–tcost , t < ,

�(t) = cos


 + sin t + sin(
√

t)
+ e–tsint , t < ,

and τij(t) = , i = , , j = , ,

ai
(
xi(t)

)
=  + sin


 + cos xi(t) + cos(πxi(t))

– e–|xi(t)|,

bi
(
xi(t)

)
=  + cos


 + sin xi(t) + sin(

√
xi(t))

– e–|xi(t)|, i = , .

Let

(
c(t) c(t)
c(t) c(t)

)

=




⎛

⎝
sin 

+cos t+cos(π t) + e–tcost sin 
+sin t+sin(

√
t) + e–tsint

cos 
+sin t+sin(

√
t) + e–tsint sin 

+sin t+sin(
√

t)
+ e–tcost

⎞

⎠ ,

(
d(t) d(t)
d(t) d(t)

)

=




⎛

⎝
sin 

+sin t+sin(
√

t) + e–tcost cos 
+sin t+sin(π t) + e–tsint

sin 
+sin t+sin(

√
t)

+ e–tcost cos 
+cos t+cos(

√
t)

+ e–tcost

⎞

⎠ ,

(
p(t) p(t)
p(t) p(t)

)

=




⎛

⎝
sin 

+sin t+sin(
√

t) + 
+t cos 

+cos t+cos(
√

t)
+ 

+t

sin 
+cos t+cos(

√
t) + 

+t sin 
+sin t+sin(

√
t) + 

+t

⎞

⎠ ,

I(t) = I(t) = sin


 + cos t + cos(
√

t)
+


 + t ,
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Figure 1 Simulation result of the solution.

fj(xj) = gj(xj) = hj(xj) =
|x + | – |x – |


, Gij(u) = e–u.

Then we have a+
i = , a–

i = , b–
i = , c+

ij = d+
ij = p+

ij = 
 , Lf

j = Lg
j = Lh

j = , where i, j = , .
Moreover,

δ = max
≤i≤

{


b–
i a–

i

∑

j=

Lf
j
(
c+

ij + d+
ij + p+

ij
)
a+

j

}

=



< .

Therefore, by Theorem ., we see that system () has a unique pseudo almost automor-
phic solution. The corresponding simulation result of the solution is seen in Figure .
Moreover, we verify the condition of Theorem .:

(H) : –bi +
∑

j=

c+
jiL

f
i +

∑

j=

d+
ji L

g
i

 – τ ∗ +
m∑

j=

p+
jiL

h
i = –




< , i = , .

Therefore, the pseudo almost automorphic solutions of system () is exponential stable.

6 Conclusions
In this paper, we have studied the existence, uniqueness, and exponential stability of
pseudo almost automorphic solutions of system (). By applying the Banach fixed point
theorem and the Lyapunov functional method, some novel sufficient conditions are ob-
tained to ensure the existence, uniqueness, and exponential stability of pseudo almost au-
tomorphic solutions of system (). The results have an important role in the design and
applications of CGNNs. Moreover, an example is given to demonstrate the effectiveness of
the obtained results. In the future, we will study the other dynamic behaviors of system ().
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