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Abstract
Using the Riccati transformation technique, we present several sufficient conditions
that guarantee that all solutions to a third-order differential equation with nonpositive
neutral coefficients and distributed deviating arguments are either oscillatory or
converge to zero asymptotically. In particular, we establish Hille and Nehari type
criteria. Two examples are given to demonstrate the practicability of the main results.
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1 Introduction
Third-order differential equations have attracted noticeable interests due to their poten-
tial applications in assorted fields, including physical sciences, technology, population dy-
namics, and so on. Recently, the qualitative theory of third-order differential equations
has become an interesting topic, and there have been some results on the oscillatory and
asymptotic behavior of third-order equations; see, for example, the monographs [, ], the
papers [–], and the references therein. In particular, it is a necessary and valuable issue,
either theoretically or practically, to investigate differential equations with distributed de-
viating arguments; see the papers by Tian et al. [], Wang [], and Wang and Cai [].
On the basis of these background details, the objective of this paper is to analyze the os-
cillation and asymptotic properties of a class of third-order neutral differential equations

[
r(t)

(
z′′(t)

)α]′ +
∫ d

c
q(t, ξ )f

[
x
(
σ (t, ξ )

)]
dξ = , (.)

where t ≥ t > , z(t) := x(t) –
∫ b

a p(t,μ)x[τ (t,μ)] dμ, α >  is a quotient of odd positive
integers, r(t) ∈ C([t,∞), (,∞)),

∫ ∞
t

r–/α(t) dt = ∞, p(t,μ) ∈ C([t,∞) × [a, b],R),  ≤
∫ b

a p(t,μ) dμ ≤ p < , τ (t,μ) ∈ C([t,∞) × [a, b],R), τ (t,μ) ≤ t, lim inft→∞ τ (t,μ) = ∞
for μ ∈ [a, b], q(t, ξ ) ∈ C([t,∞) × [c, d], [,∞)), q(t, ξ ) is not identically zero for large t,
σ (t, ξ ) ∈ C([t,∞) × [c, d],R) is a nondecreasing function for ξ satisfying σ (t, ξ ) ≤ t and
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lim inft→∞ σ (t, ξ ) = ∞ for ξ ∈ [c, d], f (x) ∈ C(R,R), and there exists a positive constant k
such that f (x)/xα ≥ k for all x �= .

We assume that solutions of (.) exist for any t ∈ [t,∞). Our attention is restricted to
those solutions of (.) that are not identically zero for large t. As usual, a solution of (.)
is called oscillatory if it has arbitrarily large zeros on the interval [t,∞). Otherwise, it is
termed nonoscillatory (i.e., it is either eventually positive or eventually negative).

It is known that analysis of neutral differential equations is more difficult in comparison
with that of ordinary differential equations, although certain similarities in the behavior
of solutions of these two classes of equations are observed; see, for example, [, , , –,
, , –, –, –] and the references therein. Assuming that

r′(t) ≥  (.)

and

 ≤ –
∫ b

a
p(t,μ) dμ ≤ p < ,

asymptotic criteria for (.) have been reported in [, , ]. So far, there are few results
dealing with the asymptotic properties of third-order differential equations with nonpos-
itive coefficients; we refer the reader to [, , ]. In particular, Baculíková and Džurina
[] and Zhang et al. [] established several Hille and Nehari type (see Agarwal et al. [])
criteria for the equation

(
r(t)

[(
x(t) – p(t)x

(
τ (t)

))′′]γ )′ + q(t)xγ
(
σ (t)

)
= 

under the assumptions that  ≤ p(t) ≤ p <  and (.) holds.
It should be noted that condition (.) is a restrictive condition in the study of asymp-

totic behavior of third-order differential equations. To solve this problem without requir-
ing (.), Li et al. [] obtained some oscillation criteria for a third-order neutral delay
differential equation

(
r(t)

(
x(t) + p(t)x

(
τ (t)

))′′)′ + q(t)x
(
σ (t)

)
= 

by employing the Riccati substitution

w(t) := ρ(t)
r(t)z′′(t)

z′(t)
,

where  ≤ p(t) ≤ p < , z(t) := x(t) + p(t)x(τ (t)), and ρ(t) ∈ C([t,∞), (,∞)). A natural
question now is: is it possible to establish asymptotic tests for (.) without requiring restric-
tive condition (.)? Motivated by Baculíková and Džurina [], Li et al. [], and Zhang et
al. [], the principal goal of this paper is to give an affirmative answer to this question. In
Section , some lemmas are provided to prove the main results. In Section , some oscilla-
tion results for (.) are obtained by using the Riccati transformation technique, and these
results also can be applied to the cases where r′(t) ≤  or r′(t) is oscillatory. In Section ,
two illustrative examples are included. All functional inequalities considered in the sequel
are tacitly assumed to hold for all t large enough.
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2 Several lemmas
Lemma . Assume that x(t) is an eventually positive solution of (.). Then there exists a
t ≥ t such that, for t ≥ t, z(t) has the following four possible cases:

(i) z(t) > , z′(t) > , z′′(t) > , (r(t)(z′′(t))α)′ ≤ ;
(ii) z(t) > , z′(t) < , z′′(t) > , (r(t)(z′′(t))α)′ ≤ ;

(iii) z(t) < , z′(t) < , z′′(t) > , (r(t)(z′′(t))α)′ ≤ ;
(iv) z(t) < , z′(t) < , z′′(t) < , (r(t)(z′′(t))α)′ ≤ .

Proof Let x(t) be an eventually positive solution of (.). Then there exists a t ≥ t such
that, for t ≥ t,

x(t) > , x
[
τ (t,μ)

]
> , μ ∈ [a, b], and x

[
σ (t, ξ )

]
> , ξ ∈ [c, d].

It follows from (.) and the definition of z(t) that x(t) ≥ z(t) and

[
r(t)

(
z′′(t)

)α]′ = –
∫ d

c
q(t, ξ )f

[
x
(
σ (t, ξ )

)]
dξ ≤ .

Hence, r(t)(z′′(t))α is nonincreasing and of one sign, which implies that z′′(t) is also of one
sign. Therefore, there exists a t ≥ t such that, for t ≥ t, z′′(t) <  or z′′(t) > .

Case . The condition z′′(t) <  yields that there exists a constant M >  such that

r(t)
(
z′′(t)

)α ≤ –M < ,

that is,

z′′(t) ≤ –M/α

r/α(t)
.

Integrating this inequality from t to t, we conclude that

z′(t) ≤ z′(t) – M/α
∫ t

t

r–/α(s) ds.

Letting t → ∞, we have that z′(t) → –∞, and so z′(t) <  eventually. Note that the condi-
tions z′′(t) <  and z′(t) <  imply that z(t) < . Thus, we get case (iv).

Case . Assume that z′′(t) > . Then z′(t) is of one sign. If z′(t) > , then z(t) > . If
z′(t) < , then z(t) >  or z(t) < . Hence, we have three possible cases (i), (ii), and (iii)
when z′′(t) > . The proof is complete. �

Lemma . Assume that x(t) is an eventually positive solution of (.) and the correspond-
ing z(t) satisfies case (i) in Lemma .. Then there exist two numbers t ≥ t and t > t such
that, for t ≥ t,

z(t) ≥
∫ t

t

∫ s
t

r–/α(u) du ds
∫ t

t
r–/α(u) du

z′(t)

and z′(t)/
∫ t

t
r–/α(s) ds is nonincreasing eventually.
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Proof Let z(t) satisfy case (i) in Lemma .. Then

z′(t) = z′(t) +
∫ t

t

z′′(s) ds = z′(t) +
∫ t

t

(r(s)(z′′(s))α)/α

r/α(s)
ds

≥ z′′(t)r/α(t)
∫ t

t

r–/α(s) ds.

Hence, we deduce that

(
z′(t)

∫ t
t

r–/α(s) ds

)′
≤ ,

which implies that z′(t)/
∫ t

t
r–/α(s) ds is nonincreasing eventually, and so

z(t) = z(t) +
∫ t

t

z′(s) ds = z(t) +
∫ t

t

z′(s)
∫ s

t
r–/α(u) du

∫ s

t

r–/α(u) du ds

≥
∫ t

t

∫ s
t

r–/α(u) du ds
∫ t

t
r–/α(u) du

z′(t).

This completes the proof. �

Lemma . Let x(t) be an eventually positive solution of (.) and assume that the corre-
sponding z(t) satisfies case (ii) in Lemma .. If

∫ ∞

t

∫ ∞

v

[


r(u)

∫ ∞

u

∫ d

c
q(s, ξ ) dξ ds

]/α

du dv = ∞, (.)

then limt→∞ x(t) = .

Proof It follows from property (ii) that there exists a finite constant l ≥  such that
limt→∞ z(t) = l. We claim that l = . Otherwise, assume that l > . By the definition of
z(t), x(t) ≥ z(t) > l. An application of (.) yields

[
r(t)

(
z′′(t)

)α]′ ≤ –k
∫ d

c
q(t, ξ )xα

[
σ (t, ξ )

]
dξ ≤ –k

∫ d

c
q(t, ξ )zα

[
σ (t, ξ )

]
dξ

≤ –klα
∫ d

c
q(t, ξ ) dξ .

Integrating the latter inequality from t to ∞, we have

r(t)
(
z′′(t)

)α ≥ klα
∫ ∞

t

∫ d

c
q(s, ξ ) dξ ds,

which implies that

z′′(t) ≥ lk/α
(


r(t)

∫ ∞

t

∫ d

c
q(s, ξ ) dξ ds

)/α

.
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Integrating this inequality from t to ∞ and then integrating the resulting inequality from
t to ∞, we conclude that

z(t) ≥ lk/α
∫ ∞

t

∫ ∞

v

[


r(u)

∫ ∞

u

∫ d

c
q(s, ξ ) dξ ds

]/α

du dv,

which is a contradiction to (.). Hence, l =  and limt→∞ z(t) = .
Next, we prove that x(t) is bounded. If not, then there exists a sequence {tm} such

that limm→∞ tm = ∞ and limm→∞ x(tm) = ∞, where x(tm) := max{x(s); t ≤ s ≤ tm}. Since
lim inft→∞ τ (t,μ) = ∞, τ (tm,μ) > t for all sufficiently large m. By τ (t,μ) ≤ t, we conclude
that

x
(
τ (tm,μ)

)
= max

{
x(s); t ≤ s ≤ τ (tm,μ)

} ≤ max
{

x(s); t ≤ s ≤ tm
}

= x(tm),

and so

z(tm) = x(tm) –
∫ b

a
p(tm,μ)x

[
τ (tm,μ)

]
dμ ≥ x(tm) –

∫ b

a
p(tm,μ)x(tm) dμ

≥ ( – p)x(tm),

which yields limm→∞ z(tm) = ∞. This contradicts limt→∞ z(t) = . Therefore, x(t) is
bounded, and hence we may suppose that lim supt→∞ x(t) = a, where  ≤ a < ∞. Then,
there exists a sequence {tk} such that limk→∞ tk = ∞ and limk→∞ x(tk) = a. Assuming
now that a >  and letting ε := a( – p)/(p), we have x(τ (tk ,μ)) < a + ε eventually,
and thus

 = lim
k→∞

z(tk) ≥ lim
k→∞

(
x(tk) – p(a + ε)

)
=

a( – p)


> ,

which is a contradiction. Thus, a =  and limt→∞ x(t) = . The proof is complete. �

3 Main results
In what follows, we let

ρ ′
+(t) := max

{
,ρ ′(t)

}
, q∗(t) :=

∫ d

c
q(t, ξ ) dξ , and σ∗(t) := σ (t, c),

where the meaning of ρ(t) will be explained later.

Theorem . Assume that condition (.) is satisfied. If there exists a function ρ(t) ∈
C([t,∞), (,∞)) such that, for all sufficiently large t ≥ t and for some t > t > t,

lim sup
t→∞

∫ t

t

(
kρ(s)q∗(s)G(s) –


(α + )α+

r(s)(ρ ′
+(s))α+

ρα(s)

)
ds = ∞, (.)

where

G(t) :=
(∫ σ∗(t)

t

∫ v
t

r–/α(u) du dv
∫ t

t
r–/α(u) du

)α

, (.)

then every solution x(t) of (.) is either oscillatory or converges to zero as t → ∞.
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Proof Suppose to the contrary that (.) has a nonoscillatory solution x(t). Without loss
of generality, we may assume that x(t) is eventually positive (since the proof of the case
where x(t) is eventually negative is similar). By Lemma ., we observe that, for t ≥ t ≥ t,
z(t) satisfies four possible cases (i), (ii), (iii), or (iv) (as those of Lemma .). We consider
each of the four cases separately.

Assume first that case (i) is satisfied. For t ≥ t, define the Riccati transformation ω(t) by

ω(t) := ρ(t)
r(t)(z′′(t))α

(z′(t))α
. (.)

Then ω(t) >  for t ≥ t. Differentiation of (.) yields

ω′(t) = ρ ′(t)
r(t)(z′′(t))α

(z′(t))α
+ ρ(t)

(
r(t)(z′′(t))α

(z′(t))α

)′

=
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))α
– αρ(t)r(t)

(
z′′(t)
z′(t)

)α+

. (.)

It follows from (.) and (i) that

(
r(t)

(
z′′(t)

)α)′ ≤ –kzα
(
σ (t, c)

)∫ d

c
q(t, ξ ) dξ = –kq∗(t)zα

(
σ∗(t)

)
. (.)

Using (.) and (.) in (.), we deduce that

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) – kρ(t)q∗(t)
(

z(σ∗(t))
z′(t)

)α

– αρ(t)r(t)
(

ω(t)
r(t)ρ(t)

)+/α

=
ρ ′(t)
ρ(t)

ω(t) – kρ(t)q∗(t)
(

z(σ∗(t))
z′(t)

)α

–
αω+/α(t)

(r(t)ρ(t))/α . (.)

Since σ∗(t) ≤ t and z′(t)/
∫ t

t
r–/α(s) ds is nonincreasing (see Lemma .), we have

z′(σ∗(t))
∫ σ∗(t)

t
r–/α(s) ds

≥ z′(t)
∫ t

t
r–/α(s) ds

,

that is,

z′(σ∗(t))
z′(t)

≥
∫ σ∗(t)

t
r–/α(s) ds

∫ t
t

r–/α(s) ds
. (.)

It follows now from Lemma . and (.) that

(
z(σ∗(t))

z′(t)

)α

=
(

z(σ∗(t))
z′(σ∗(t))

z′(σ∗(t))
z′(t)

)α

≥ G(t), (.)

where G(t) is defined by (.). Substituting (.) into (.), we get

ω′(t) ≤ –kρ(t)q∗(t)G(t) +
ρ ′

+(t)
ρ(t)

ω(t) –
αω+/α(t)

(r(t)ρ(t))/α . (.)
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Set

v := ω(t), A :=
α

(r(t)ρ(t))/α , and B :=
ρ ′

+(t)
ρ(t)

.

Using the inequality (see [])

Bv – Av+/α ≤ αα

(α + )α+
Bα+

Aα
, A > , (.)

we have

ρ ′
+(t)

ρ(t)
ω(t) –

αω+/α(t)
(r(t)ρ(t))/α ≤ 

(α + )α+
r(t)(ρ ′

+(t))α+

ρα(t)
.

Substituting the latter inequality into (.), we conclude that

ω′(t) ≤ –kρ(t)q∗(t)G(t) +


(α + )α+
r(t)(ρ ′

+(t))α+

ρα(t)
.

Integrating this inequality from t (t > t) to t, we arrive at

∫ t

t

(
kρ(s)q∗(s)G(s) –


(α + )α+

r(s)(ρ ′
+(s))α+

ρα(s)

)
ds ≤ ω(t),

which contradicts (.).
Suppose that case (ii) is satisfied. By Lemma ., limt→∞ x(t) = .
If case (iii) or case (iv) holds, then limt→∞ z(t) = c <  (possibly c = –∞) or

limt→∞ z(t) = –∞, respectively. Proceeding similarly as in the proof of Lemma ., we
conclude that x(t) and z(t) are bounded. Hence, c is finite, and case (iv) does not occur.
Similar analysis to that in Lemma . leads to the conclusion that limt→∞ x(t) = . This
completes the proof. �

Letting ρ(t) = t and ρ(t) = , we can derive the following results from Theorem ..

Corollary . Let condition (.) hold. If for all sufficiently large t ≥ t and for some t >
t > t,

lim sup
t→∞

∫ t

t

(
ksq∗(s)G(s) –


(α + )α+

r(s)
sα

)
ds = ∞,

where G(t) is as in (.), then the conclusion of Theorem . remains intact.

Corollary . Let condition (.) be satisfied. If for all sufficiently large t ≥ t and for some
t > t > t,

∫ ∞

t

q∗(s)G(s) ds = ∞,

where G(t) is defined by (.), then the conclusion of Theorem . remains intact.
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In what follows, we establish Hille and Nehari type criteria for (.). To this end, we
introduce the following lemma.

Lemma . Let x(t) be an eventually positive solution of (.). Define

ω(t) :=
r(t)(z′′(t))α

(z′(t))α
, (.)

p̄ := lim inf
t→∞ k

(∫ t

t

r–/α(s) ds
)α ∫ ∞

t
q∗(s)G(s) ds,

q̄ := lim inf
t→∞

k
∫ t

t
(
∫ s

t
r–/α(u) du)α+q∗(s)G(s) ds

∫ t
t

r–/α(u) du
,

r̄ := lim inf
t→∞

(∫ t

t

r–/α(s) ds
)α

ω(t), and R̄ := lim sup
t→∞

(∫ t

t

r–/α(s) ds
)α

ω(t),

where G(t) is defined by (.), t ≥ t is sufficiently large, and t > t > t.
(I) Let p̄ < ∞, q̄ < ∞, and suppose that the corresponding z(t) satisfies case (i) in

Lemma .. Then

p̄ ≤ r̄ – r̄+/α ≤ αα

(α + )α+ and p̄ + q̄ ≤ . (.)

(II) If p̄ = ∞ or q̄ = ∞, then z(t) does not have property (i) in Lemma ..

Proof Part (I). Assume that x(t) is an eventually positive solution of (.) and the corre-
sponding z(t) satisfies (i). By (.), we have ω(t) >  and

ω′(t) =
(r(t)(z′′(t))α)′

(z′(t))α
– αr(t)

(
z′′(t)
z′(t)

)α+

.

As in the proof of Theorem ., we get (.) and (.), and so

ω′(t) ≤ –kq∗(t)
(

z(σ∗(t))
z′(t)

)α

– αr(t)
(

ω(t)
r(t)

)+/α

≤ –kq∗(t)G(t) –
αω+/α(t)

r/α(t)
. (.)

On the other hand, we conclude that

r/α(t)z′′(t)
z′(t)

≤ 
∫ t

t
r–/α(s) ds

due to the proof of Lemma .. Hence,

ω(t) ≤
(∫ t

t

r–/α(s) ds
)–α

,
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which implies that  ≤ r̄ ≤ R̄ ≤  and limt→∞ ω(t) = . Integrating (.) from t to ∞, we
obtain

ω(t) ≥
∫ ∞

t
kq∗(s)G(s) ds +

∫ ∞

t

αω+/α(s)
r/α(s)

ds. (.)

Multiplying (.) by (
∫ t

t
r–/α(s) ds)α , we deduce that

ω(t)
(∫ t

t

r–/α(s) ds
)α

≥
(∫ t

t

r–/α(s) ds
)α ∫ ∞

t
kq∗(s)G(s) ds

+
(∫ t

t

r–/α(s) ds
)α ∫ ∞

t

αω+/α(s)(
∫ s

t
r–/α(u) du)α+

r/α(s)(
∫ s

t
r–/α(u) du)α+

ds,

that is,

ω(t)
(∫ t

t

r–/α(s) ds
)α

≥
(∫ t

t

r–/α(s) ds
)α ∫ ∞

t
kq∗(s)G(s) ds

+
(∫ t

t

r–/α(s) ds
)α ∫ ∞

t

(
w(s)

(∫ s

t

r–/α(u) du
)α)+/α

h(s) ds,

where

h(t) := –
((


∫ t

t
r–/α(u) du

)α)′
.

Now, for any ε > , there exists a t > t such that, for t ≥ t,

ω(t)
(∫ t

t

r–/α(s) ds
)α

≥ r̄ – ε,

which yields

ω(t)
(∫ t

t

r–/α(s) ds
)α

≥
(∫ t

t

r–/α(s) ds
)α ∫ ∞

t
kq∗(s)G(s) ds + (r̄ – ε)+/α . (.)

Applications of (.) and the definitions of r̄ and p̄ imply that

r̄ ≥ p̄ + (r̄ – ε)+/α .

Since ε is arbitrary, we conclude that

r̄ ≥ p̄ + r̄+/α . (.)

Next, we prove that

p̄ + q̄ ≤ .
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Multiplying (.) by (
∫ t

t
r–/α(u) du)α+ and integrating the resulting inequality from t

to t, we have

∫ t

t

(∫ s

t

r–/α(u) du
)α+

ω′(s) ds ≤ –
∫ t

t

(∫ s

t

r–/α(u) du
)α+

kq∗(s)G(s) ds

–
∫ t

t

(∫ s

t

r–/α(u) du
)α+

αω+/α(s)
r/α(s)

ds.

Integrating by parts, we deduce that

(∫ t

t

r–/α(u) du
)α+

ω(t) ≤
(∫ t

t

r–/α(u) du
)α+

ω(t)

–
∫ t

t

(∫ s

t

r–/α(u) du
)α+

kq∗(s)G(s) ds +
∫ t

t

H(s) ds,

where

H(t) := (α + )r–/α(t)
(∫ t

t

r–/α(u) du
)α

ω(t) – αr–/α(t)
(∫ t

t

r–/α(u) du
)α+

ω+/α(t).

Using inequality (.) with

v := ω(t), A := αr–/α(t)
(∫ t

t

r–/α(u) du
)α+

, and

B := (α + )r–/α(t)
(∫ t

t

r–/α(u) du
)α

,

we have

H(t) ≤ r–/α(t).

Thus, we arrive at

(∫ t

t

r–/α(u) du
)α

ω(t) ≤ (
∫ t

t
r–/α(u) du)α+ω(t)
∫ t

t
r–/α(u) du

–

∫ t
t

(
∫ s

t
r–/α(u) du)α+kq∗(s)G(s) ds

∫ t
t

r–/α(u) du

+

∫ t
t

r–/α(u) du
∫ t

t
r–/α(u) du

. (.)

Taking the lim sup of both sides of the latter inequality as t → ∞, we have

R̄ ≤  – q̄. (.)

It follows from (.) and (.) that

p̄ ≤ r̄ – r̄+/α ≤ r̄ ≤ R̄ ≤  – q̄.
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Moreover, by inequality (.),

r̄ – r̄+/α ≤ αα

(α + )α+ .

Therefore, the desired inequalities in (.) hold. This completes the proof of Part (I).
Part (II). Let x(t) be an eventually positive solution of (.). We show that z(t) does not

have property (i). Assume the contrary. Suppose first that p̄ = ∞. Inequality (.) implies
that

ω(t)
(∫ t

t

r–/α(s) ds
)α

≥
(∫ t

t

r–/α(s) ds
)α ∫ ∞

t
kq∗(s)G(s) ds.

Taking the lim inf of both sides of the latter inequality as t → ∞, we arrive at

 ≥ r̄ ≥ ∞,

which is a contradiction. Assume now that q̄ = ∞. An application of inequality (.) yields

 ≤ R̄ ≤ –∞,

which is also a contradiction. The proof of Part (II) is complete. �

On the basis of Lemma ., we easily derive the following result with a proof similar to
that of Theorem ..

Theorem . Assume that condition (.) is satisfied. If for all sufficiently large t ≥ t and
for some t > t > t,

lim inf
t→∞

(∫ t

t

r–/α(s) ds
)α ∫ ∞

t
q∗(s)G(s) ds >

αα

k(α + )α+ (.)

or

p̄ + q̄ > , (.)

where G(t) is defined by (.), p̄ and q̄ are as in Lemma ., then the conclusion of Theo-
rem . remains intact.

4 Examples
The following examples illustrate applications of the main results in this paper.

Example . For t ≥ , consider the third-order differential equation

(
x(t) –




∫ π/


x(t – μ) dμ

)′′′
+




∫ –π

–π

x
(

t +
ξ



)
dξ = . (.)

Let α = , a = , b = π/, c = –π , d = –π , k = , r(t) = , p(t,μ) = /, τ (t,μ) = t – μ,
q(t, ξ ) = /, and σ (t, ξ ) = t + ξ /. Note that

∫ ∞

t

r–/α(s) ds =
∫ ∞


ds = ∞,

∫ b

a
p(t,μ) dμ =

∫ π/






dμ =
π


< ,
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σ∗(t) = σ (t, –π ) = t –
π


,

and

G(t) =

∫ t–π/
t

∫ v
t

r–/α(u) du dv
∫ t

t
r–/α(u) du

=
t/ – (π/ + t)t + β

t – t
, β =

π


–

t



+
π


t +tt.

Furthermore, q∗(t) = π/ and

∫ ∞

t

q∗(s)G(s) ds =
π



∫ ∞

t

s – (π + t)s + β

s – t
ds = ∞.

Hence, by Corollary ., every solution x(t) of (.) is either oscillatory or converges to
zero as t → ∞. As a matter of fact, x(t) = sin t is an oscillatory solution to (.).

Example . For t ≥  and q > , consider the third-order differential equation

(
x(t) –

∫ 



μ

t + 
x
(

t + μ



)
dμ

)′′′
+

∫ 



qξ

t x
(

t + ξ



)
dξ = . (.)

Let α = , a = , b = , c = , d = , k = , r(t) = , p(t,μ) = μ/(t + ), τ (t,μ) = (t + μ)/,
q(t, ξ ) = qξ /t, and σ (t, ξ ) = (t + ξ )/. Note that

∫ ∞

t

r–/α(s) ds =
∫ ∞


ds = ∞,

∫ b

a
p(t,μ) dμ =

∫ 



μ

t + 
dμ =


(t + )

≤ 


,

and

∫ ∞



∫ ∞

v

∫ ∞

u

∫ 



qξ

s dξ ds du dv = ∞, σ∗(t) = σ (t, ) =
t


.

Moreover,

G(t) =

∫ t/
t

∫ v
t

r–/α(u) du dv
∫ t

t
r–/α(u) du

=



t – tt + γ

t – t
, γ = tt – t

,

q∗(t) = qt–, and

lim inf
t→∞

(∫ t

t

r–/α(s) ds
)α ∫ ∞

t
q∗(s)G(s) ds

= lim inf
t→∞

q(t – t)


(∫ ∞

t


s(s – t)

ds – t

∫ ∞

t


s(s – t)

ds

+ γ

∫ ∞

t


s(s – t)

ds
)

=
q


.

Using Theorem ., every solution x(t) of (.) is either oscillatory or converges to zero as
t → ∞ if q > .
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Remark . Observe that Theorems . and . cannot distinguish solutions of (.) with
different behaviors. It is not easy to obtain sufficient conditions that ensure that all so-
lutions x(t) of (.) just satisfy limt→∞ x(t) =  and do not oscillate. Neither is it possible
to utilize the technique exploited in this work for proving that all solutions of (.) are
oscillatory. Therefore, two interesting problems for future research can be formulated as
follows.

(P) Suggest a different method to establish asymptotic criteria that ensure that all
solutions of (.) tend to zero asymptotically.

(P) Is it possible to establish sufficient conditions that guarantee that all solutions of
(.) are oscillatory?
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