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Abstract
In this paper, we establish a predator-prey model with impulsive diffusion and
releasing on predator population. This predator-prey model for two regions, which
are connected by diffusion of predator population, portrays the evolvement of
population. We prove that all solutions of the investigated system are uniformly
ultimately bounded. We also prove that there exists globally asymptotically stable
prey-extinction boundary periodic solution. The condition for permanence is
obtained. Simulations are also employed to verify our results. It is discovered that the
increasing diffusive rate of predator population will count against the pest
management. We conclude that the impulsive diffusion and releasing predator
provide reliable tactic basis for pest management.

Keywords: predator-prey model; impulsive diffusion; impulsive releasing; extinction;
permanence

1 Introduction
The warfare between human and pests has sustained for thousands of years. In the past few
decades, man have adopted some advanced and modern weapons for instance chemical
pesticides, biological pesticides, remote sensing and measure, computers, atomic energy,
et cetera. Some brilliant achievements have been obtained. However, the warfare will never
be over. Although a great number of pesticides were used to control pests, the insect pests
impairing crops are increasing for the resistance to pesticides. With pesticides employed,
the residual pests breed a large number of pests with resistance to pesticides. So the pes-
ticide is invalid in some sense. Moreover, insect pests will continue. On the other hand,
the chemical pesticides kill not only pests but also their natural enemies. Therefore, insect
pests are rampant again. Then the effect of chemical control was challenged. Furthermore,
the practice proves that long-term adopting chemical control may give rise to disastrous
results, for example, environmental contamination and toxicosis of the man and animals
and so on.

The use of natural enemy to suppress pests is one of the most important approaches
in pest control. Biological control [–] is one of the reduction in pest populations from
the actions of other living organisms, often called natural enemies or beneficial species.
It is the purposeful introduction and establishment of one or more natural enemies from
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region of origin of an exotic pest, specifically for the purpose of suppressing the abundance
of the pest in a new target region to a level at which it no longer causes economic damage.
Jiao et al. [] analyzed the dynamics of a stage-structured Holling mass defence predator-
prey model with impulsive perturbations on predators

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
(t) = rx(t) – re–wτ x(t – τ) – wx(t),

x′
(t) = re–wτ x(t – τ) – βx(t)

+ax+bx


x(t) – dx(t) – dx
(t),

x′
(t) = kβx(t)

+ax+bx


x(t) – dx(t),

⎫
⎪⎪⎬

⎪⎪⎭

t �= nτ ,

�x(t) = ,
�x(t) = ,
�x(t) = μ,

⎫
⎪⎬

⎪⎭
t = nτ , n = , , . . . ,

(
ϕ(ζ ),ϕ(ζ ),ϕ(ζ )

) ∈ C+ = C
(
[–τ, ], R

+
)
, ϕi() > , i = , , ,

()

where x(t) and x(t) represent the immature and mature pest densities, respectively, and
x(t) denotes the density of nature enemy. The biological meanings of parameters can be
seen in reference [].

The dispersal is a ubiquitous phenomenon in the natural world. It is important for us
to understand the ecological and evolutionary dynamics of populations mirrored by the
large number of mathematical models devoted to it in the scientific literature [–].
In recent years, the analysis of these models focus on the coexistence of population and
local (or global) stability of equilibria [–]. Spatial factors play a fundamental role in
the persistence and stability of the population, although the complete results have not yet
been obtained even in the simplest one-species case. Whereas the population dynamics
with the effects of spatial heterogeneity is modeled by a diffusion process, most previous
papers focused on the population dynamical system modeled by the ordinary differential
equations. But in practice, it is often the case that diffusion occurs in regular pulse. For
example, when winter comes, birds migrate between patches in search for a better envi-
ronment,whereas they do not diffuse in other seasons, and the excursion of foliage seeds
occurs at fixed period of time every year. Thus, impulsive diffusion provides a more natural
description. Lately theories of impulsive differential equations [] have been introduced
into population dynamics. Jiao et al. [] propose to investigate the dynamical behaviors
of a stage-structured predator-prey model with prey impulsively diffusing between two
patches

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)(a – bx(t)),

dx(t)
dt = x(t)(a – bx(t)) – αx(t)y(t),

dy(t)
dt = kαx(t)y(t) – kαe–wτ x(t – τ)y(t – τ) – wy(t),

dy(t)
dt = kαe–wτ x(t – τ)y(t – τ) – dy(t),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

t �= nτ ,

�x(t) = d(x(t) – x(t)),
�x(t) = d(x(t) – x(t)),
�y(t) = ,
�y(t) = ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = nτ , n = , , . . . ,

()

where we suppose that the system is composed of two patches connected by diffusion
and occupied by a single species xi (i = , ) is the density of species in the ith patch, and
y(t) and y(t) represent the densities of the immature individual predator and mature
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individual predator at time t in the second patch. The biological meanings of parameters
can be seen in reference [].

Theories of impulsive differential equations have been introduced into population dy-
namics lately [–]. Impulsive equations are found in almost every domain of applied
science and have been studied in many investigations [–]; they generally describe
phenomena that are subject to steep or instantaneous changes. The theories of population
dynamical systems and their applications have achieved many good results. In this paper,
we investigate a predator-prey model with impulsive diffusion and releasing on predator
population. We expect to obtain some dynamical properties of the investigated system.
We also expect that the impulsive diffusion and releasing predator will provide reliable
tactic basis for pest management.

The organization of this paper is as follows. In the next section, we introduce the model
and background concepts. In Section , some important lemmas are presented. We give
the globally asymptotically stable conditions of the prey-extinction boundary periodic so-
lution of system () and the permanent condition of system () in Section . Simulation
analysis and brief discussion are given in the last section to conclude this work.

2 The model
In this paper, we establish a predator-prey model with impulsive diffusion and releasing
on predator population:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)(a – bx(t)) – βx(t)y(t)

σ+x(t) ,
dy(t)

dt = kβx(t)y(t)
σ+x(t) – dy(t),

dx(t)
dt = x(t)(a – bx(t)) – βx(t)y(t)

σ+x(t) ,
dy(t)

dt = kβx(t)y(t)
σ+x(t) – dy(t),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

t �= (n + l)τ , t �= (n + )τ ,

�x(t) = ,
�y(t) = D(y(t) – y(t)),
�x(t) = ,
�y(t) = D(y(t) – y(t)),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = (n + l)τ , n ∈ Z+,

�x(t) = ,
�y(t) = μ,
�x(t) = ,
�y(t) = μ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = (n + )τ , n ∈ Z+,

()

where we suppose that the system is composed of two patches connected by diffusion.
These two patches are separated by rivers or highways or railways. The predator popu-
lation can traverse the rivers or highways or railways, whereas the prey population not.
In this system, xi(t) and yi(t) represent the numbers of prey and predator populations in
patch i (i = , ) at time t, ai >  represents the intrinsic growth rate of the prey population
in patch i (i = , ), and bi >  represents the coefficient of the intraspecific competition
of the prey population in patch i (i = , ). The predator consumes the prey according to
Holling type-II functional response

βixi(t)
σi + xi(t)

(i = , )
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with the half-saturation constant σi in patch i (i = , ) at time t. ki (i = , ) is the rate of
conversion of nutrients into the reproduction of the predator in patch i (i = , ), di (i = , )
represents the death in patch i (i = , ). The pulse diffusion occurs every τ period (τ is a
positive constant), the system evolves from its initial state without being further affected
by diffusion until the next pulse appears; �yi((n + l)τ ) = yi((n + l)τ+) – yi((n + l)τ ), where
yi((n + l)τ+) represents the density of population in the ith patch immediately after the nth
diffusion pulse at time t = (n + l)τ , whereas yi((n + l)τ ) represents the density of population
in the ith patch before the nth diffusion pulse at time t = (n + l)τ ,  < l < , n ∈ Z+,  < D < 
represents the diffusive rate between the patches, �yi((n + )τ ) = yi((n + )τ+) – yi((n + )τ ),
and μi (i = , ) represents the releasing amount of predator population at t = (n + )τ ,
n ∈ Z+ in patch i (i = , ).

3 The lemmas
The solution of (), denoted by X(t) = (x(t), y(t), x(t), y(t))T , is a piecewise continuous
function X : R+ → R

+, X(t) is continuous on (nτ , (n + l)τ ] and ((n + l)τ , (n + )τ ], n ∈ Z+,
and X(nτ+) = limt→nτ+ X(t), X((n + l)τ+) = limt→(n+l)τ+ X(t) exist. Obviously, the global ex-
istence and uniqueness of solutions of () is guaranteed by the smoothness properties of
f , the mapping defined by the right side of system () [].

Let V : R+ × R
+ → R+. Then V is said to belong to class V if

(i) V is continuous in (nτ , (n + l)τ ] × R
+ and ((n + l)τ , (n + )τ ] × R

+ for all z ∈ R
+,

n ∈ Z+, and V (nτ+, z) = lim(t,y)→(nτ+,z) V (t, y) and
V ((n + l)τ+, z) = lim(t,y)→((n+l)τ+,y) V (t, y) exist;

(ii) V is locally Lipschitzian in z.

Definition . If V ∈ V, then, for (t, z) ∈ (nτ , (n + l)τ ] × R
+ and ((n + l)τ , (n + )τ ] × R

+,
the upper right derivative of V (t, z) with respect to the impulsive differential system () is
defined as

D+V (t, z) = lim sup
h→


h
[
V
(
t + h, z + hf (t, z)

)
– V (t, z)

]
.

Since dxi(t)
dt =  when xi(t) = , dyi(t)

dt =  when yi(t) = , and �yi(t) = μi >  when t =
(n + )τ , we easily obtain the following lemma.

Lemma . Suppose that X(t) is a solution of () with X(+) ≥ . Then X(t) ≥  for t ≥ ,
and further X(t) >  (t ≥ ) for X(+) > .

Lemma . [] Let the function m ∈ PC′[R+, R] satisfy the inequalities

{
m′(t) ≤ p(t)m(t) + q(t), t ≥ t, t �= tk , k = , , . . . ,
m(t+

k ) ≤ dkm(tk) + bk , t = tk ,
()

where p, q ∈ C[R+, R], and dk ≥  and bk are constants. Then

m(t) ≤ m(t)
∏

t<tk <t
dk exp

(∫ t

t

p(s) ds
)

+
∑

t<tk <t

( ∏

tk <tj<t
dj exp

(∫ t

tk

p(s) ds
))

bk

+
∫ t

t

∏

s<tk<t
dk exp

(∫ t

s
p(σ ) dσ

)

q(s) ds, t ≥ t.
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Now, we show that all solutions of () are uniformly ultimately bounded.

Lemma . There exists a constant M >  such that xi(t) ≤ M, yi(t) ≤ M (i = , ) for each
solution (x(t), y(t), x(t), y(t)) of () with all t large enough.

Proof Define

V (t) = kx(t) + y(t) + kx(t) + y(t),

and λ = mini=,{di}. When t �= nτ , t �= (n + l)τ , we have

D+V (t) + λV (t)

= kx(t)
[
(a + λ) – bx(t)

]
– (d – λ)y(t)

+ kx(t)
[
(a + λ) – bx(t)

]
– (d – λ)y(t)

≤ kx(t)
[
(a + λ) – bx(t)

]
+ kx(t)

[
(a + λ) – bx(t)

]

= –kb

(

x(t) –
a + λ

b

)

+
k(a + λ)

b

– kb

(

x(t) –
a + λ

b

)

+
k(a + λ)

b

≤ k(a + λ)

b
+

k(a + λ)

b
� ζ .

When t = nτ , we have

V
(
nτ+) = kx

(
nτ+) + y

(
nτ+) + kx

(
nτ+) + y

(
nτ+)

= kx(nτ ) + y(nτ ) + μ + kx(nτ ) + y(nτ ) + μ

= kx(nτ ) + y(nτ ) + kx(nτ ) + y(nτ ) + μ + μ

= V (nτ ) + (μ + μ).

When t = (n + l)τ , we have

V
(
(n + l)τ+) = kx

(
(n + l)τ+) + y

(
(n + l)τ+) + kx

(
(n + l)τ+) + y

(
(n + l)τ+)

= kx
(
(n + l)τ

)
+ ( – D)y

(
(n + l)τ

)
+ Dy

(
(n + l)τ

)
+ kx

(
(n + l)τ

)

+ Dy
(
(n + l)τ

)
+ ( – D)y

(
(n + l)τ

)

= kx
(
(n + l)τ

)
+ y

(
(n + l)τ

)
+ kx

(
(n + l)τ

)
+ y

(
(n + l)τ

)

= V
(
(n + l)τ

)
.

By Lemma ., for t ∈ (nτ , (n + )τ ], we have

V (t) ≤ V
(
+)e–λt +

ζ

λ

(
 – e–λt) + (μ + μ)

e–λ(t–τ )

 – eλτ
+ (μ + μ)

eλτ

eλτ – 

→ ζ

λ
+ (μ + μ)

eλτ

eλτ – 
as t → ∞.
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So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t) we have that
there exists a constant M >  such that xi(t) ≤ M, yi(t) ≤ M (i = , ) for t large enough.
The proof is complete. �

If xi(t) =  (i = , ), then we have the subsystem of ()

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = –dy(t),

dy(t)
dt = –dy(t),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = D(y(t) – y(t)),
�y(t) = D(y(t) – y(t)),

}

t = (n + l)τ ,

�y(t) = –μ,
�y(t) = –μ,

}

t = (n + )τ , n = , , . . . .

()

We easily obtain the analytic solution of () between pulses as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y(t) =

{
y(nτ+)e–d(t–nτ ), t ∈ (nτ , (n + l)τ ],
y((n + l)τ+)e–d(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

y(t) =

{
y(nτ+)e–d(t–nτ ), t ∈ (nτ , (n + l)τ ],
y((n + l)τ+)e–d(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ].

()

Considering the third and fourth equations of (), we have

{
y((n + l)τ+) = ( – D)e–dlτ y(nτ+) + De–dlτ y(nτ+),
y((n + l)τ+) = De–dlτ y(nτ+) + ( – D)e–dlτ y(nτ+).

()

Considering the fifth and sixth equations of (), we also have

{
y((n + )τ+) = y((n + l)τ+)e–d(–l)τ + μ,
y((n + )τ+) = y((n + l)τ+)e–d(–l)τ + μ.

()

Substituting () into (), we have the stroboscopic map of ()

{
y((n + )τ+) = ( – D)e–dτ y(nτ+) + De–[d(–l)+dl]τ y(nτ+) + μ,
y((n + )τ+) = De–[dl+d(–l)]τ y(nτ+) + ( – D)e–dτ y(nτ+) + μ.

()

System () has one fixed point

{
y∗

 = μB+μ(–B)
(–A)(–B)–AB

> ,
y∗

 = μA+μ(–A)
(–A)(–B)–AB

> ,
()

where

A = ( – D)e–dτ < ,

B = De–[d(–l)+dl]τ < ,

A = De–[dl+d(–l)]τ < ,

B = ( – D)e–dτ < .
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Lemma . The fixed point (y∗
 , y∗

) of () is globally asymptotically stable.

Proof For convenience, we denote (yn
 , yn

) = (y(nτ+), y(nτ+)). The linear form of () can
be written as

(
yn+



yn+


)

= M

(
yn



yn


)

. ()

Obviously, the near dynamics of (y∗
 , y∗

) is determined by linear system (). The stability
of (y∗

 , y∗
) is determined by the eigenvalue of M less than . If M satisfies the Jury criteria

[], then we know that the eigenvalue of M is less than ,

 – tr M + det M > . ()

We easily see that (y∗
 , y∗

) is a unique fixed point of () and

M =

(
A B

A B

)

. ()

Since

 – tr M + det M

=  – (A + B) + (AB – AB)

= ( – A)( – B) – AB

=
[
 – ( – D)e–dτ

]× [
 – ( – D)e–dτ

]
– De–(d+d)τ

=
[(

 – e–dτ
)

+ De–dτ
][(

 – e–dτ
)

+ De–dτ
]

– De–(d+d)τ

=
(
 – e–dτ

)× (
 – e–dτ

)
+ De–dτ

(
 – e–dτ

)
+ De–dτ

(
 – e–dτ

)

> ,

by the Jury criteria, (y∗
 , y∗

) is locally stable, and then, it is globally asymptotically stable.
This completes the proof. �

Lemma . The periodic solution (ỹ(t), ỹ(t)) of system () is globally asymptotically sta-
ble, where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ỹ(t) =

{
y∗

 e–d(t–nτ ), t ∈ (nτ , (n + l)τ ],
y∗∗

 e–d(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

ỹ(t) =

{
y∗

e–d(t–nτ ), t ∈ (nτ , (n + l)τ ],
y∗∗

 e–d(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

()

where y∗
 and y∗

 are determined as in (), and y∗∗
 and y∗∗

 are defined as

{
y∗∗

 = ( – D)e–dlτ y∗
 + De–dlτ y∗

,
y∗∗

 = De–dlτ y∗
 + ( – D)e–dlτ y∗

.
()
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4 The dynamics
Theorem . If

D <



()

and

max
i=,

{

aiτ –
βi[y∗

i ( – e–dilτ ) + y∗∗
i ( – e–di(–l)τ )]

σidi

}

<  (i = , ), ()

then the prey-extinction boundary periodic solution (, ỹ(t), , ỹ(t)) of () is globally
asymptotically stable, where y∗

i (i = , ) and y∗∗
i (i = , ) are defined by () and ().

Proof First, we prove the local stability of the prey-extinction boundary periodic solu-
tion (, ỹ(t), , ỹ(t)) of (). Defining x(t) = x(t), y(t) = y(t) – ỹ(t), x(t) = x(t), y(t) =
y(t) – ỹ(t), we have the following linearly similar system for (), which has one periodic
solution (, ỹ(t), , ỹ(t)):

⎛

⎜
⎜
⎜
⎜
⎝

dx(t)
dt

dy(t)
dt

dx(t)
dt

dy(t)
dt

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a – β ỹ(t)
σ

  
kβ ỹ(t)

σ
–d  

  a – β ỹ(t)
σ



  kβ ỹ(t)
σ

–d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x(t)
y(t)
x(t)
y(t)

⎞

⎟
⎟
⎟
⎠

.

It is easy to obtain the fundamental matrix


(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

exp [
∫ t

 (a – β ỹ(s)
σ

) ds]   

exp [
∫ t


kβ ỹ(s)

σ
ds] exp(–dt)  

  exp [
∫ t

 (a – β ỹ(s)
σ

) ds] 

  exp [
∫ t


kβ ỹ(s)

σ
ds] exp(–dt)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The linearization of the fifth, sixth, seventh, and eighth equations of () is

⎛

⎜
⎜
⎜
⎝

x((n + l)τ+)
y((n + l)τ+)
x((n + l)τ+)
y((n + l)τ+)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

   
  – D  D
   
 D   – D

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x((n + l)τ )
y((n + l)τ )
x((n + l)τ )
y((n + l)τ )

⎞

⎟
⎟
⎟
⎠

.

The linearization of the ninth, tenth, eleventh, and twelfth equations of () is

⎛

⎜
⎜
⎜
⎝

x((n + )τ+)
y((n + )τ+)
x((n + )τ+)
y((n + )τ+)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

   
   
   
   

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x((n + )τ )
y((n + )τ )
x((n + )τ )
y((n + )τ )

⎞

⎟
⎟
⎟
⎠

.
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The stability of the periodic solution (, ỹ(t), , ỹ(t)) is determined by the eigenvalues of

M =

⎛

⎜
⎜
⎜
⎝

   
  – D  D
D   
 D   – D

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

   
   
   
   

⎞

⎟
⎟
⎟
⎠


(τ ),

which are

λ = exp

[∫ τ



(

a –
βỹ(s)

σ

)

ds
]

,

λ =
∣
∣
∣
∣
( – D)(K + K) +

√
( – D)(K + K) – ( – D)KK



∣
∣
∣
∣

≤
∣
∣
∣
∣
( – D)(K + K) +

√
( + D)(K + K)



∣
∣
∣
∣

≤
∣
∣
∣
∣
(K + K)



∣
∣
∣
∣ < ,

λ = exp

[∫ τ



(

a –
βỹ(s)

σ

)

ds
]

,

and

λ =
∣
∣
∣
∣
( – D)(K + K) –

√
( – D)(K + K) – ( – D)KK



∣
∣
∣
∣

≤
∣
∣
∣
∣
( – D)(K + K) –

√
( – D)(K – K)



∣
∣
∣
∣

=
∣
∣
∣
∣
( – D)(K + K) – ( – D)|K – K|



∣
∣
∣
∣

≤ ( – D) max{K, K} < ,

where K = e–dτ < , K = e–dτ < , and condition () holds. According to conditions (),
(), and the Floquet theory [], if

exp

[∫ τ



(

ai –
βiỹi(s)

σi

)

ds
]

<  (i = , ),

then

λ < 

and

λ < ,

and thus the prey-extinction boundary periodic solution (, ỹ(t), , ỹ(t)) of () is locally
stable.
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In the following, we will prove the global attraction. By condition () we can choose
ε >  such that

ρi = exp

[∫ τ



(

ai –
βi(ỹi(s) – ε)

σi

)

ds
]

<  (i = , ).

From the second and fourth equations of () we notice that dyi(t)
dt ≥ –diyi(t) (i = , ). Then,

we consider following impulsive comparative differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = –dy(t),

dy(t)
dt = –dy(t),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = D(y(t) – y(t)),
�y(t) = D(y(t) – y(t)),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = μ,

}

t = (n + )τ .

()

From Lemma . and the comparison theorem of impulsive equation (see Theorem ..
in []) we have y(t) ≥ y(t), y(t) ≥ y(t), and y(t) → ỹ(t), y(t) → ỹ(t) as t → ∞.
Then

{
y(t) ≥ y(t) ≥ ỹ(t) – ε,
y(t) ≥ y(t) ≥ ỹ(t) – ε

()

for t large enough. For convenience, we may assume that () holds for all t ≥ . From ()
and () we get

dxi(t)
dt

≤
[

ai –
βi(ỹi(t) – ε)

σi

]

xi(t) (i = , ). ()

So xi((n + )τ ) ≤ xi(nτ+) exp[
∫ (n+)τ

nτ
(ai – βi(ỹi(s)–ε)

σi
) ds] (i = , ). Hence, xi(nτ ) ≤ xi(+)ρn

i
(i = , ) and xi(nτ ) →  (i = , ) as n → ∞; therefore, xi(t) →  (i = , ) as t → ∞.

Next, we will prove that yi(t) → ỹi(t) (i = , ) as t → ∞. For ε > , there must exist t > 
such that  < xi(t) < ε (i = , ) for all t ≥ t. Without loss of generality, we may assume
that  < xi(t) < ε for all t ≥ . For system (), we have

–diyi(t) ≤ dyi(t)
dt

≤ –
(

di –
kiβiε

σi + ε

)

yi(t) (i = , ), ()

and then we have y(t) ≤ y(t) ≤ y(t), y(t) ≤ y(t) ≤ y(t), and y(t) → ỹ(t), y(t) →
ỹ(t), y(t) → ˜y(t), y(t) → ˜y(t) as t → ∞, where (y(t), y(t)) and (y(t), y(t)) are
the solutions of () and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = –(d – kβε

σ+ε
)y(t),

dy(t)
dt = –(d – kβε

σ+ε
)y(t),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = D(y(t) – y(t)),
�y(t) = D(y(t) – y(t)),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = μ,

}

t = (n + )τ ,

()
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respectively,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜y(t) =

⎧
⎨

⎩

y∗
e–(d– kβε

σ+ε
)(t–nτ ), t ∈ (nτ , (n + l)τ ],

y∗∗
 e–(d– kβε

σ+ε
)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

˜y(t) =

⎧
⎨

⎩

y∗
e–(d– kβε

σ+ε
)(t–nτ ), t ∈ (nτ , (n + l)τ ],

y∗∗
e–(d– kβε

σ+ε
)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

()

where y∗
 and y∗

 are determined as

{
y∗

 = μB+μ(–B)
(–A)(–B)–AB

> ,
y∗

 = μA+μ(–A)
(–A)(–B)–AB

> ,
()

and y∗∗
 and y∗∗

 are defined as

⎧
⎨

⎩

y∗∗
 = ( – D)e–(d– kβε

σ+ε
)lτ y∗

 + De–(d– kβε
σ+ε

)lτ y∗
,

y∗∗
 = De–(d– kβε

σ+ε
)lτ y∗

 + ( – D)e–(d– kβε
σ+ε

)lτ y∗
,

()

where

A = ( – D)e–(d– kβε
σ+ε

)τ < ,

B = De–[(d– kβε
σ+ε

)(–l)+(d– kβε
σ+ε

)l]τ < ,

A = De–[(d– kβε
σ+ε

)l+(d– kβε
σ+ε

)(–l)]τ < ,

B = ( – D)e–(d– kβε
σ+ε

)τ < .

For any ε > , there exists t, t > t, such that

˜y(t) – ε < y(t) < ˜y(t) + ε

and

˜y(t) – ε < y(t) < ˜y(t) + ε.

Letting ε → , we have

ỹ(t) – ε < y(t) < ỹ(t) + ε

and

ỹ(t) – ε < y(t) < ỹ(t) + ε

for t large enough, which implies y(t) → ỹ(t) and y(t) → ỹ(t) as t → ∞. This completes
the proof. �

The next work is to investigate the permanence of system ().
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Definition . System () is said to be permanent if there are constants m, M >  (inde-
pendent of initial value) and a finite time T such that for all solutions (x(t), y(t), x(t),
y(t)) with any initial values x(+) > , y(+) > , x(+) > , y(+) > , we have m ≤
x(t) ≤ M, m ≤ y(t) ≤ M, m ≤ x(t) ≤ M, m ≤ y(t) ≤ M for all t ≥ T. Here T may
depend on the initial values (x(+), y(+), x(+), y(+)).

Theorem . If

min
i=,

{

aiτ –
βi[y∗

i ( – e–dilτ ) + y∗∗
i ( – e–di(–l)τ )]

σidi

}

>  (i = , ), ()

then system () is permanent, where y∗
i (i = , ) and y∗∗

i (i = , ) are defined by () and
(), respectively.

Proof Suppose (x(t), y(t), x(t), y(t)) is a solution of () with x() > , y() > , x() > ,
y() > . By Lemma . there exists a constant M >  such that x(t) ≤ M, y(t) ≤ M,
x(t) ≤ M, y(t) ≤ M for t large enough. From () and Theorem . we have yi(t) >
ỹi(t) – ε > y∗

i e–dilτ + y∗∗
i e–di(–l)τ � mi (i = , ) for ε small enough. So we only need to

find m >  and ε such that xi(t) > m for t large enough. Otherwise, we can select m > 
small enough satisfying m < σidi

kiβi–di
(di < kiβi) and prove that xi(t) < m cannot hold for

t ≥ . Suppose the contrary. By condition (), choosing ε small enough, we can ob-
tain

δi = aiτ –
βi[y∗

i( – e–(di–
kiβim
σi+m

)lτ ) + y∗∗
i ( – e–(di–

kiβim
σi+m

)(–l)τ )]
σi(di – kiβim

σi+m
)

–
βiε

σi
τ > 

with y∗
i (i = , ) and y∗∗

i (i = , ) are defined by () and (). Then,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt < –(d – kβm

σ+m
)y(t),

dy(t)
dt < –(d – kβm

σ+m
)y(t),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = D(y(t) – y(t)),
�y(t) = D(y(t) – y(t)),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = μ,

}

t = (n + )τ .

()

By Lemma . we have y(t) ≤ y(t), y(t) ≤ y(t) and y(t) → y(t), y(t) → y(t),
t → ∞, where (y(t), y(t)) is the solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = –(d – kβm

σ+m
)y(t),

dy(t)
dt = –(d – kβm

σ+m
)y(t),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = D(y(t) – y(t)),
�y(t) = D(y(t) – y(t)),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = μ,

}

t = (n + )τ ,

()
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with
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y(t) =

⎧
⎨

⎩

y∗
e–(d– kβm

σ+m
)(t–nτ ), t ∈ (nτ , (n + l)τ ],

y∗∗
 e–(d– kβm

σ+m
)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

y(t) =

⎧
⎨

⎩

y∗
e–(d– kβm

σ+m
)(t–nτ ), t ∈ (nτ , (n + l)τ ],

y∗∗
e–(d– kβm

σ+m
)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

()

where y∗
 and y∗

 are determined as

{
y∗

 = μB+μ(–B)
(–A)(–B)–AB

> ,
y∗

 = μA+μ(–A)
(–A)(–B)–AB

> ,
()

and y∗∗
 , y∗∗

 are defined as

⎧
⎨

⎩

y∗∗
 = ( – D)e–(d– kβm

σ+m
)lτ y∗

 + De–(d– kβm
σ+m

)lτ y∗
,

y∗∗
 = De–(d– kβm

σ+m
)lτ y∗

 + ( – D)e–(d– kβm
σ+m

)lτ y∗
,

()

where

A = ( – D)e–(d– kβm
σ+m

)τ < ,

B = De–[(d– kβm
σ+m

)(–l)+(d– kβm
σ+m

)l]τ < ,

A = De–[(d– kβm
σ+m

)l+(d– kβm
σ+m

)(–l)]τ < ,

B = ( – D)e–(d– kβm
σ+m

)τ < .

Therefore, there exist T >  and ε >  such that

y(t) ≤ y(t) ≤ y(t) + ε

and

y(t) ≤ y(t) ≤ y(t) + ε.

Then,

dxi(t)
dt

≥
[

ai –
βi(yi(t) + ε)

σi

]

xi(t) (i = , ) ()

for t ≥ T. Let N ∈ N and Nτ > T. Integrating () on (nτ , (n + )τ ), n ≥ N, we
have

xi
(
(n + )τ

) ≥ xi
(
nτ+) exp

(∫ (n+)τ

nτ

[

ai –
βi(yi(t) + ε)

σi

]

dt
)

= xi(nτ )eδi (i = , ).
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Then, xi((N + k)τ ) ≥ xi(Nτ
+)ekδi → ∞ as k → ∞, which is a contradiction to the bound-

edness of xi(t) (i = , ). Hence, there exists t >  such that xi(t) ≥ m (i = , ). This com-
pletes the proof. �

5 Simulation analysis and discussion
In this paper, we establish a predator-prey model with impulsive diffusion and releasing
on predator population. This predator-prey model for two regions, which are connected
by diffusion of predator population, portrays the evolvement of population. We prove that
all solutions of the investigated system are uniformly ultimately bounded. By Theorem .,
if D < 

 and

max
i=,

{

aiτ –
βi[y∗

i ( – e–dilτ ) + y∗∗
i ( – e–di(–l)τ )]

σidi

}

<  (i = , ),

then the prey-extinction boundary periodic solution ( ˜, y(t), , ỹ(t)) of system () is glob-
ally asymptotically stable. By Theorem ., if

min
i=,

{

aiτ –
βi[y∗

i ( – e–dilτ ) + y∗∗
i ( – e–di(–l)τ )]

σidi

}

>  (i = , ),

then system () is permanent.

Figure 1 Globally asymptotically stable prey-extinction periodic solution of system (3) with
x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 = 0.1, b1 = 0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5,
k1 = 0.5, k2 = 5, μ1 = 0.5, μ2 = 0.3, d1 = 0.3, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.1.
(a) Time-series of x1(t); (b) Time-series of y1(t); (c) Time-series of x2(t); (d) Time-series of y2(t).



Zhou et al. Advances in Difference Equations  (2016) 2016:111 Page 15 of 18

Figure 2 The permanence for system (3) with x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 = 0.1,
b1 = 0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 = 0.5, k2 = 5, μ1 = 0.5, μ2 = 0.3, d1 = 0.3, d2 = 0.3,
σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.95. (a) Time-series of x1(t); (b) Time-series of y1(t); (c) Time-series of
x2(t); (d) Time-series of y2(t).

5.1 The dynamical behaviors influenced by parameter D
Let x() = ., y() = ., x() = ., y() = ., a = ., b = ., a = ., b = ., β =
., β = , k = ., k = , μ = ., μ = ., d = ., d = ., σ = ., σ = ., τ = ,
l = ., D = .. Then conditions () and () are obviously satisfied, and thus the prey-
extinction periodic solution of system () is globally asymptotically stable (see Figure ).
Also assume that x() = ., y() = ., x() = ., y() = ., a = ., b = ., a = .,
b = ., β = ., β = , k = ., k = , μ = ., μ = ., d = ., d = ., σ = .,
σ = ., τ = , l = ., D = .. Then condition () is obviously satisfied, and system
() is permanent (see Figure ). From () and () we can calculate that there exists one
threshold D∗, which satisfies

max
i=,

{

aiτ –
βi[y∗

i ( – e–dilτ ) + y∗∗
i ( – e–di(–l)τ )]

σidi

}

<  (i = , )

or

min
i=,

{

aiτ –
βi[y∗

i ( – e–dilτ ) + y∗∗
i ( – e–di(–l)τ )]

σidi

}

>  (i = , ).

If D > D∗, then the prey population will go to extinction; if D < D∗, then the population
will be permanent.
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Figure 3 Globally asymptotically stable prey-extinction periodic solution of system (3) with
x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 = 0.1, b1 = 0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5,
k1 = 0.5, k2 = 5, μ1 = 0.4, μ2 = 0.4, d1 = 0.4, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.2.
(a) Time-series of x1(t); (b) Time-series of y1(t); (c) Time-series of x2(t); (d) Time-series of y2(t).

Figure 4 The permanence for system (3) with x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 = 0.1,
b1 = 0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 = 0.5, k2 = 5, μ1 = 0.3, μ2 = 0.3, d1 = 0.3, d2 = 0.3,
σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.2. (a) Time-series of x1(t); (b) Time-series of y1(t); (c) Time-series of
x2(t); (d) Time-series of y2(t).
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5.2 The dynamical behaviors influenced by parameters μ1 and μ2

In this subsection, we always assume that μ = μ = μ. Assume that x() = ., y() = .,
x() = ., y() = ., a = ., b = ., a = ., b = ., β = ., β = , k = ., k = ,
μ = ., μ = ., d = ., d = ., σ = ., σ = ., τ = , l = ., D = .. Then
conditions () and () are obviously satisfied, and the prey-extinction periodic solution
of system () is globally asymptotically stable (see Figure ). Also, assume that x() = .,
y() = ., x() = ., y() = ., a = ., b = ., a = ., b = ., β = ., β = , k =
., k = , μ = ., μ = ., d = ., d = ., σ = ., σ = ., τ = , l = ., D = ..
Then condition () is obviously satisfied, and system () is permanent (see Figure ). We
can calculate that there exists at least one threshold μ∗ such that if μ > μ∗, then the prey
population will go to extinction, and if μ < μ∗, then the population will be permanent.

From the simulations we discover that the increasing diffusive rate of predator popu-
lation will count against the pest management. We conclude that the impulsive diffusion
and releasing predator provide reliable tactic basis for pest management.
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