
Yang and Nie Advances in Difference Equations  (2016) 2016:134 
DOI 10.1186/s13662-016-0835-1

R E S E A R C H Open Access

Modelling the use of impulsive
vaccination to control Rift Valley Fever
virus transmission
Chen-Xia Yang and Lin-Fei Nie*

*Correspondence: lfnie@163.com
College of Mathematics and System
Sciences, Xinjiang University,
Urumqi, 830046, P.R. China

Abstract
In this paper, we propose a vector-bone dynamical model to against the transmission
of Rift Valley Fever (RVF) between ruminants and mosquitoes, where impulsive
vaccination for susceptible ruminants is introduced. By using the comparison
principle, integral and differential inequalities, and some of analytical skills, the
threshold values for the stability of the disease-free periodic solution and uniform
persistence of disease are obtained. These values characterize the evolution and
extinction of the disease. Numerical simulations are carried out to illustrate the main
theoretical results and the feasibility of the impulsive vaccination control strategy.

MSC: 34A37; 34D23; 92D30

Keywords: Rift Valley Fever; impulsive vaccination; extinction; asymptotical stability;
uniform persistence

1 Introduction
Infectious diseases have great impact on human and animals life, which are always aroused
by viruses, parasites, bacteria, fungi, and some microorganisms with pathogen. These dis-
eases spread to human (or animals) with directly or indirectly ways. There are signifi-
cant data showing that many infectious diseases spread with mediums, such as Measles,
Dengue fever, Plague, Hydrophobia, and so on. Rift Valley Fever virus (RVFV) is an im-
portant mosquito-borne viral zoonsis in North Africa and Kenya, which is a member of
the Phlebovirus genus in the Bunyaviridae family. RVFV was first discovered in Kenya in
the early s []. RVFV is spread by either touching infected animal blood, breathing
in the air around an infected animal being butchered, drinking raw milk from an infected
animal, or the bite of infected mosquitoes. Animals such as cows, sheep, goats, and camels
may be affected [, ].

Using mathematical models to investigate the transmission rules of RVFV disease is
beneficial to control diseases in medical science, so the dynamic behaviors of the diseases
are investigated in many literatures. We refer to some of them, [–] and the references
therein. Particularly, Gaff et al. [] investigated an epidemiological model for RVFV and
found the stability of the disease-free equilibrium. Saul et al. [] investigated the dynam-
ical behavior of RVFV with human host and computed the disease threshold R for ana-
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lyzing the local stability of equilibria. Xue et al. [] presented a new compartmentalized
model for RVFV and used ordinary differential equations to assess disease spread in both
time and space. With the latter driven as a function of contact networks, Gao et al. [] in-
vestigated the spatial spread of RVFV and proposed a three-patch model, introduced the
basic reproduction number for each patch, and then established the threshold dynamics
of the model. Of course, mathematical models also used to discuss the transmission rules
of other vector-borne disease [–] and the references therein.

Recently, vaccines are generally used to protect animals from Rift Valley Fever in en-
demic regions. Right now, two types of vaccines are available for susceptible animals to
reduce amplification of the virus: inactivated whole-virus and live-attenuated Smithburn
vaccines []. Inactivated vaccines can be applied to ruminants of all ages without caus-
ing abortions, but they are expensive, and repeated doses are required. In comparison,
live-attenuated vaccines are cheap and effective since they confer a lifelong immunity
with a single dose. But the undesirable side effects are obvious: they may lead to fetal
abnormalities and abortions in pregnant ruminants, and there is the safety concern of re-
version to virulence []. Based on this, Farida et al. [] used the mathematical model
to investigate RVFV among ruminants and considered continuous vaccination for ani-
mals and found that vaccination was efficient to reduce the loss of animals. We know,
however, that the continuous vaccination is not practical in the reality living, and the
control measures are only employed in the particular moment. So for this reason, infec-
tious models with impulsive vaccination are concerned by more and more scholars. For
example, Sabin [] controlled successfully measles and poliomyelitis throughout Cen-
tral and South America, and another example of successful application of this strategy is
the U.K. vaccination action against measles in []. Using a SIR epidemic model, Shulgin
et al. [] showed that under a planned pulse vaccination region, the sate of model con-
verges to a stable sate with which the size of infectious population is zero. This result
shows that the pulse vaccination may lead to the eradication of infectious disease, pro-
vided that the magnitude of vaccination keeps a rational proportion and the period of
pulses is sustained. d’Onofrio [] proposed a SEIR epidemic model based pulse vacci-
nation strategy by which the local and global asymptotic stabilities of the periodic eradi-
cation solution are analyzed. More related research works on the dynamical behaviors of
epidemic models with pulse vaccination also can be found in [–] and the references
therein.

Looking at the results of existing researches on epidemic dynamical models with im-
pulsive vaccination and using mathematical model to investigate vector-borne epidemic
model, the dynamic behavior with impulsive vaccination strategy is not investigated.
Therefore, we propose a novel dynamical model to control the transmission of RVFV,
where impulsive vaccinate for susceptible ruminant at regular interval is proposed. The
main purpose is to investigate the impulsive vaccination control strategy that governs
whether the disease dies out or not, and further to examine how the control strategy affects
the prevention and control of RVFV disease. The organization of this paper is as follows.
We present preliminaries and formulate the control model of RVF with impulsive vacci-
nation in the next section. In Section , we consider the global stability of the free-disease
periodic solution and give a threshold value for the disease-eliminating. In Section , we
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discuss the uniform persistence of the disease. Numerical simulation and discussion are
carried in Section .

2 Model formulation and preliminaries
The traditional RVFV model is to divide ruminant population into three classes, the sus-
ceptible S, infectious I , and recovered R, and female mosquitoes are divided into two
classes, uninfected U and infectious V . In order to formulate the control model, we have
the following assumptions.

(A) The ruminant population is recruited with rate �, μ is the natural death rate (includ-
ing slaughter) of ruminant, with RVFV owing to infection with RVFV also causing
mortality in ruminants. We assume that ruminants die due to RVFV infection at rate
d (including slaughter) and do not consider infection with RVFV causing abortion in
ruminant.

(A) An infectious mosquito bites ruminant, and ruminant is infected by infectious
mosquito successfully by rate pr ; in turn, an infectious mosquito bites infectious rumi-
nant and is infected by infectious ruminant successfully with rate pm, and we assume
that each female mosquito bites at a constant rate a.

(A) Assume that ξ is the growth rate of mosquitoes and M is the capacity for mosquitoes.
Infection with RVFV induces life-long immunity in ruminants at a rate of γ , and we
also assume that η is the natural birth/death rate of mosquitoes. Moreover, in this
paper, we do not take into account vertical transmission of RVFV in mosquitoes since
vertical transmission is rare.

(A) With the consideration of mechanism of prevention and control for the spread of
RVFV, we consider impulsive vaccination, and only susceptible ruminants are vacci-
nated at rate φ. Assuming that after successful vaccination, ruminants are completely
immune to the virus and move to the recovery compartment with immunity.

Under aforementioned assumptions, we come to the control model that is governed by
the following ordinary differential equation with impulsive vaccination:

• t �= nT , n = , , . . .
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = � – aprS(t)V (t) – μS(t),

dI(t)
dt = aprS(t)V (t) – (μ + d + γ )I(t),

dR(t)
dt = γ I(t) – μR(t),

dU(t)
dt = ξ (U(t) + V (t)) – ξ–η

M
(U(t) + V (t)) – apmU(t)I(t) – ηU(t),

dV (t)
dt = apmU(t)I(t) – ηV (t).

()

• t = nT , n = , , . . .
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t+) = ( – φ)S(t),

I(t+) = I(t),

R(t+) = R(t) + φS(t),

U(t+) = U(t),

V (t+) = V (t).

()
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The initial condition of models () and () is given as (S, I, R, U, V) ∈ R

+ = {(x, x, x,

x, x) : xi ≥ , i = , , , , }.
The total number of mosquitoes at time t is denoted by M(t), where M(t) = U(t) + V (t).

From the equations of mosquitoes of models () and () we have

dM(t)
dt

= (ξ – η)M(t) –
ξ – η

M

(
M(t)

).

Obviously, by the preceding, we have that M(t) converges to M as t → ∞ for any pos-
itive initial value. Therefore, we can consider the following limit system of models ()
and ():

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = � – aprS(t)V (t) – μS(t),

dI(t)
dt = aprS(t)V (t) – (μ + d + γ )I(t),

dR(t)
dt = γ I(t) – μR(t),

dU(t)
dt = ηM – apmU(t)I(t) – ηU(t),

dV (t)
dt = apmU(t)I(t) – ηV (t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nT ,

S(t+) = ( – φ)S(t),

I(t+) = I(t),

R(t+) = R(t) + φS(t),

U(t+) = U(t),

V (t+) = V (t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t = nT , n = , , . . . .

()

From biological considerations, we analyze the dynamical behaviors of model () in the
closed set

� =
{

(S, I, R, U , V ) ∈R

+ :  ≤ S(t) + I(t) + R(t) ≤ �

μ
,  ≤ U(t) + V (t) ≤ M

}

.

On the nonnegative of solutions for model () we have the following lemma.

Lemma  Each component of any solution of model () is nonnegative, and � is a positively
invariant.

The proof of Lemma  is obvious, and hence we omit it here.
Next, we consider the general impulsive differential equation

⎧
⎨

⎩

dz(t)
dt = a – bz(t), t �= nT ,

z(t+) = ( – p)z(t), t = nT , n = , , . . . ,
()

where a > , b > , and  < p < .
The following Lemma  is on the existent and stability of positive periodic solution for

equation (). Though its proof is straightforward, but useful.
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Lemma  Equation () has a unique positive periodic solution

zp(t) =
a
b

+
(

z∗ –
a
b

)

exp
{

–b(t – nT)
}

, nT < t ≤ (n + )T ,

where

z∗ =
a( – p)( – exp{–bT})
b[ – ( – p) exp{–bT}] ,

and zp(t) is globally asymptotically stable.

Finally, for the convenience of further statements, we introduce the definition on the
uniform persistence of disease.

Definition  The disease in model () is said to be uniform persistent if there exists a
positive constant m∗ such that lim inft→∞ I(t) ≥ m∗ and lim inft→∞ V (t) ≥ m∗.

3 The existence and stability of the disease-free periodic solution
In this section, we discuss the existence and stability of the disease-free periodic solution
of model (). Supposing that the infectious individuals are completely absent, that is, I(t) =
V (t) = , model () becomes of the following style:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = � – μS(t),

dR(t)
dt = –μR(t),

dU(t)
dt = ηM – ηU(t),

⎫
⎪⎪⎬

⎪⎪⎭

t �= nT ,

S(t+) = ( – φ)S(t),

R(t+) = R(t) + φS(t),

U(t+) = U(t)

⎫
⎪⎪⎬

⎪⎪⎭

t = nT , n = , , . . . .

()

From the first and fourth equations of model () we have

⎧
⎨

⎩

dS(t)
dt = � – μS(t), t �= nT ,

S(t+) = ( – φ)S(t), t = nT , n = , , . . . .
()

In view of Lemma , it follows that model () has a unique positive periodic solution

Sp(t) =
�

μ
+

(

S∗ –
�

μ

)

exp
{

–μ(t – nT)
}

, nT < t ≤ (n + )T , ()

where

S∗ =
�( – φ)( – exp{–μT})
μ[ – ( – φ) exp{–μT}] , ()

which is globally asymptotically stable. Let N(t) = S(t) + R(t). From model () we have
dN(t)/dt = � – μN(t) and limt→∞ N(t) = �/μ. Hence, limt→∞ R(t) = �/μ – limt→∞ S(t),
and we denote Rp(t) = �/μ – Sp(t).
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Further, from the third and sixth equations of model () we easily get that

lim
t→∞ U(t) = M := Up(t). ()

Moreover, from the above discussion we have that model () has a globally asymptotically
stable periodic solution (Sp(t), Rp(t), Up(t)).

Let

R =


θ∗T

∫ T



[
aprSp(t) + apmUp(t)

]
dt, ()

where θ∗ = min{μ + d + γ ,η}. On the global asymptotic stability of a disease-free periodic
solution of model () we have the following theorem.

Theorem  If R < , then model () has a unique disease-free periodic solution (Sp(t), ,
Rp(t), Up(t), ), which is globally asymptotically stable.

Proof Because R < , we can chose ε >  small enough such that

∫ T



[
aprSp(t) + apmUp(t) + (apr + apm)ε – θ∗]dt < . ()

From the first equation of model () it follows that

⎧
⎨

⎩

dS(t)
dt = � – aprS(t)V (t) – μS(t) ≤ � – μS(t), t �= nT ,

S(t+) = ( – φ)S(t), t = nT , n = , , . . . .
()

Now, we consider the following comparison impulsive differential equation:

⎧
⎨

⎩

d̂S(t)
dt = � – μ̂S(t), t �= nT ,

Ŝ(t+) = ( – φ )̂S(t), t = nT , n = , , . . . .
()

By Lemma , model () has a unique positive periodic solution given by () and (). Let
(S(t), I(t), R(t), U(t), V (t)) be a solution of model () with S(+) = S > , and Ŝ(t) be a solu-
tion of model () with Ŝ(+) = S(+). Therefore, by the comparison theorem of impulsive
differential equation (for more details, see [, ]) and Lemma  there is an integer n > 
such that, for all n ≥ n,

S(t) ≤ Ŝ(t) < Sp(t) + ε, t ∈ (
nT , (n + )T

]
. ()

Further, from the fourth and ninth equations of model () we have

dU(t)
dt

≤ ηM – ηU(t).

This, together with the comparison theorem of ordinary differential equation, shows that
there exists an integer n ≥ n such that

U(t) ≤ Up(t) + ε, t ∈ (
nT , (n + )T

]
, n ≥ n. ()
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Then, from inequalities () and () and from the second and fifth equations of model ()
we get

d(I(t) + V (t))
dt

= aprS(t)V (t) – (μ + d + γ )I(t) + apmU(t)I(t) – ηV (t)

≤ aprS(t)
(
I(t) + V (t)

)
+ apmU(t)

(
I(t) + V (t)

)
– θ

(
I(t) + V (t)

)

≤ [
aprSp(t) + apmUp(t) + (apr + apm)ε – θ∗](I(t) + V (t)

)

for all t ≥ nT and n ≥ n. By () we can get limt→∞(I(t) + V (t)) = , that is,

lim
t→∞ I(t) = lim

t→∞ V (t) =  ()

since I(t) ≥  and V (t) ≥ . Therefore, there is an integer n ≥ n such that

 < I(t), V (t) < ε := min

{
ε


,
ε



(
apr�

μ
+

apr�( – φ)( – e–μT )
μ[ – ( – φ)e–μT ]

–
apr�

μ
e–μT

)–}

for all t ≥ nT . From the above and the first equation of model () we have

dS(t)
dt

= � – aprS(t)V (t) – μS(t) ≥ � – apr
�

μ
ε – μS(t) for all t ≥ nT . ()

Consider the following comparison impulsive differential equation:

⎧
⎨

⎩

dx(t)
dt = � – apr

�
μ
ε – μx(t), t �= nT ,

x(t+) = ( – φ)x(t), t = nT , n = , , . . . .
()

By Lemma , model () has a unique positive periodic solution xp(t), which is globally
asymptotically stable,

xp(t) =
� – apr�ε

μ

μ
+

(

x∗ –
� – apr�ε

μ

μ

)

exp
{

–μ(t – nT)
}

, nT < t ≤ (n + )T

with

x∗ =
(� – apr�ε

μ
)( – φ)( – exp{–μT})

μ[ – ( – φ) exp{–μT}] .

Hence, by () and the comparison theorem of impulsive differential equation, there exists
an integer n ≥ n such that

S(t) > xp(t) –
ε


, nT < t ≤ (n + )T . ()

Using the comparison theorem and the expressions of ε and Sp, we obtain that there is
an integer n ≥ n such that, for n ≥ n,

xp(t) ≥ Sp(t) –
ε


, nT < t ≤ (n + )T . ()
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On the other hand, from the fourth and ninth equations of model () we get

dU(t)
dt

= ηM – apmU(t)I(t) – ηU(t) ≥ ηM – apmMε – ηU(t).

Similarly to the above discussion, there exists an integer n ≥ n such that, for t ≥ nT ,

U(t) ≥ M –
apmM

η
ε – ε.

Since ε is small enough, it follows that

lim
t→∞ U(t) = Up(t), ()

where we also used the fact (). Further, by (), (), and () we have

lim
t→∞ S(t) = Sp(t). ()

Thus,

lim
t→∞ R(t) = lim

t→∞
(
N(t) – S(t) – I(t)

)
=

�

μ
– Sp(t) = Rp(t). ()

By () and ()-() we know the disease-free periodic solution (Sp(t), , Rp(t), Up(t), ) of
model () is globally asymptotically stable if R < . This completes the proof. �

Next, we consider the critical vaccination proportion, that is, the value φ = φ∗ such that
R(φ∗) = , where R(φ∗) is the value for R in which φ is replaced by φ∗. We easily
calculate that

φ∗ =
Tμ( apmM

θ∗ + apr�
μθ∗ – )

apr�
μθ∗ –

Tμ( apmM
θ∗ + apr�

μθ∗ –)
–exp{–μT} exp{–μT}

. ()

Further, from () we have

dR

dφ
=

–apr�( – exp{–μT})

μθ∗T[ – ( – φ) exp{–μT}] < .

Therefore, R <  only when φ > φ∗. We have the following theorem, which is a direct
consequence of Theorem .

Theorem  The disease-free periodic solution (Sp(t), , Rp(t), Up(t), ) of model () is glob-
ally asymptotically stable when φ > φ∗, where φ∗ is given by ().

4 The uniform persistence of RVFV
In this section, we discuss the uniform persistence of RVFV for model (). For any p̃ > 
and t > , we define

H(p̃, t) = aprp̃Sp(t) + η –

p̃

apmUp(t) – (μ + d + γ )
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and

F(p̃, t) = p̃I(t) – V (t),

where Sp(t) and Up(t) are given by () and (), respectively, and I(t) and V (t) are elements
of solutions of model ().

The following theorem is on the uniform persistence of disease.

Theorem  If there exists positive constants p̃ and α such that

R =
∫ T



[
aprp̃Sp(τ ) – (μ + d + γ )

]
dτ > , ()

R =
∫ T



[
apm

p̃
Up(τ ) – η

]

dτ > , ()

and H(p̃, t) <  for all t ≥ , then the Rift Valley Fever disease in model () is uniformly
persistent.

Proof Since H(p̃, t) < , we can chose a positive constant α such that H(p̃, t) < –α, and by
() and () we can choose small enough positive constants ε, ε, η, η, and η such that

∫ T



[
apm

p̃
(
Up(τ ) – ε

)
– η

]

dτ > η, ()

∫ T



[
aprp̃

(
Sp(τ ) – ε

)
– (μ + d + γ )

]
dτ > η, ()

∫ T



[
apm

(
Up(τ ) + ε

)
ε – ηε

]
dτ < –η, ()

and

aprp̃
(
Sp(t) + ε

)
+ η – (μ + d + γ ) –

apm

p̃
(
Up(t) – ε

)
< . ()

First, we prove that

lim sup
t→∞

I(t) ≥ ε. ()

If () were not true, then there would exist a positive integer n such that  < I(t) < ε for
all t ≥ nT .

If V (t) ≥ ε for all t ≥ nT , then from the fifth equation of model () and the fact  <
I(t) < ε we have

V (t) = V (nT) +
∫ t

nT

[
apmU(s)I(s) – ηV (s)

]
ds

≤ V (nT) +
∫ t

nT

[
apm

(
Up(s) + ε

)
ε – ηε

]
ds
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for all t ≥ nT . Thus, from () it follows that limt→∞ V (t) = –∞. This is in contradiction
with V (t) > . Therefore, there exists t ≥ nT such that V (t) < ε. Now, we claim that

V (t) < ε + apm(M + ε)εT ()

for all t ≥ t. Otherwise, there is t > t such that V (t) > ε + apm(M + ε)εT . Then there
must exist t ∈ (t, t) such that V (t) = ε and V (t) > ε for t ∈ (t, t). We can chose a
positive integer m such that t ∈ (t + mT , t + (m + )T). Integrating the fifth equation of
model () from t to t, we get

ε + apm(M + ε)εT < V (t) = V (t) +
∫ τ

t

[
apmU(s)I(s) – ηV (s)

]
ds

< ε +
(∫ t+mT

t

+
∫ t

t+mT

)
[
apm

(
Up(s) + ε

)
ε – ηε

]
ds

< ε + apm(M + ε)εT ,

where we also used (). This is a contradiction. Thus, () is valid.
From the first equation of model (),we have

dS(t)
dt

= � – aprS(t)V (t) – μS(t) ≥ � – apr
�

μ

[
ε + apm(M + ε)εT

]
– μS(t). ()

Now, we consider the following comparison impulsive differential equation:
⎧
⎨

⎩

d̃S(t)
dt = � – apr

�
μ

[ε + apm(M + ε)εT] – μ̃S(t), t �= nT ,

S̃(t+) = ( – φ )̃S(t), t = nT , n = , , . . . .
()

By Lemma , model () has a unique positive periodic solution S̃p(t), which is globally
asymptotically stable,

S̃p(t) =
�μ – apr�[ε + apm(M + ε)εT]

μ

+
(

S̃∗
p –

�μ – apr�[ε + apm(M + ε)εT]
μ

)

exp
{

–μ(t – nT)
}

for all nT < t ≤ (n + )T , n = , , . . . , where

S̃∗
p =

[�μ – apr�(ε + apm(M + ε)εT)]( – φ)( – exp{–μT})
μ[ – ( – φ) exp{–μT}] .

By () and the comparison theorem for impulsive differential equation there exists an
integer n ≥ n such that

S(t) > S̃p(t) –
ε


for all t ∈ (

nT , (n + )T
]
, n ≥ n. ()

Further, by () and the comparison theorem for impulsive differential equation there
exists an integer n ≥ n such that

S(t) < Sp(t) + ε ()
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for all t ∈ (nT , (n + )T] and n ≥ n. Since ε and ε is small enough, from () and () we
have

Sp(t) – ε < S(t) < Sp(t) + ε. ()

On the other hand, from the fourth equation of model () we have

ηM – apmMε – ηU(t) <
dU(t)

dt
= ηM – apmU(t)I(t) – ηU(t) < ηM – ηU(t)

for t ≥ nT . By the comparison theorem of ordinary differential equation,there has an
integer n ≥ n such that

M –
apmM

η
ε – ε < U(t) < M + ε ()

for all t ≥ nT .
We further prove that there exists a positive integer n ≥ n such that

F(p̃, t) ≤  for all t ≥ nT . ()

Otherwise, there exist two cases:
(i) F(p̃, t) >  for all t ≥ nT ;

(ii) F(p̃, t) oscillates about  for all large t.
If case (i) holds, from the fifth equation of model () and inequality () we have

dV (t)
dt

>
apm

p̃
U(t)V (t) – ηV (t) >

[
apm

p̃
(
Up(t) – ε

)
– η

]

V (t),

where we used the fact that F(p̃, t) > . Integrating this inequality from nT to t, we get

V (t) > V (nT) exp

{∫ t

nT

[
apm

p̃
(
Up(τ ) – ε

)
– η

]

dτ

}

.

From this and from () we get that limt→∞ V (t) = ∞. This contradicts with the bound of
V (t). So, case (i) is false.

Now, we turn to case (ii). There exist two time sequences {tm} and {sm} satisfying

nT < s < t < s < t < · · · < sm < tm < · · ·

and limm→∞ sm = ∞ such that F(p̃, sm) = , dF(p̃, sm)/dsm ≥ , F(p̃, t) >  for all t ∈
⋃∞

m=(sm, tm), and F(p̃, t) ≤  for all t /∈ ⋃∞
m=(sm, tm). Therefore, we have p̃I(sm) = V (sm)

and

dF(p̃, sm)
dsm

= p̃
dI(sm)

dsm
–

dV (sm)
dsm

= V (sm)
[

aprp̃S(sm) + η – (μ + d + γ ) –
apm

p̃
U(sm)

]

≥ .
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Obviously, this is in contraction with (). Moreover, by the above discussion () is thus
valid.

From the second equation of model () and from () and () we have

dI(t)
dt

= aprS(t)V (t) – (μ + d + γ )I(t) ≥ [
aprp̃

(
Sp(t) – ε

)
– (μ + d + γ )

]
I(t).

Integrating this inequality from nT to t, it follows that

I(t) ≥ I(nT) exp

{∫ t

nT

[
aprp̃

(
Sp(τ ) – ε

)
– (μ + d + γ )

]
dτ

}

.

It is easy to obtain that limt→∞ I(t) = ∞ from (). This is a contradiction. Hence, the
result () is true.

Finally, we will prove that

lim inf
t→∞ I(t) ≥ ε ()

for any solution (S(t), I(t), R(t), U(t), V (t)) of model () with initial value X() ∈R

+. By ()

we can chose two positive constants ω, κ such that

∫ t+ξ

t

[
aprp̃

(
Sp(τ ) – ε

)
– (μ + d + γ )

]
dτ > κ ()

for all t ≥ nT and ξ > ω. If () were not true, then there would exist a sequence of initial
values Yn = (Sn, In, Rn, Un, Vn) ∈ R


+ (n = , , . . .) such that

lim inf
t→∞ I(t, Yn) <

ε

n .

By (), for every n, there are two time sequences {t(n)
j } and {s(n)

j } satisfying

 < s(n)
 < t(n)

 < s(n)
 < t(n)

 < · · · < s(n)
j < t(n)

j < · · ·

and limj→∞ s(n)
j = ∞ such that

I
(
s(n)

j , Yn
)

=
ε

n
, I

(
t(n)
j , Yn

)
=

ε

n , ()

and

ε

n < I(t, Yn) <
ε

n
for all t ∈ (

s(n)
j , t(n)

j
)
. ()

From the second equation of model () we have

dI(t, Yn)
dt

= aprS(t)V (t) – (μ + d + γ )I(t) ≥ –(μ + d + γ )I(t, Yn).

Integrating this inequality from s(n)
j to t(n)

j , it follows that

I
(
t(n)
j , Yn

) ≥ I
(
s(n)

j , Yn
)

exp
{

–(μ + d + γ )
(
t(n)
j – s(n)

j
)}

.
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Therefore, by () we get

ε

n ≥ ε

n
exp

{
–(μ + d + γ )

(
t(n)
j – s(n)

j
)}

,

that is,

t(n)
j – s(n)

j ≥ ln n
μ + d + γ

→ ∞ as j → ∞.

For each n, from the first equation of model () we have

dS(t)
dt

≥ � – apr
�

μ

[
ε + apm(M + ε)εT

]
– μS(t) for all t ∈ [

s(n)
j , t(n)

j
]
.

Let S̄(t) be a solution of model () with initial value S̄(s(n)
j ) = S(s(n)

j , Yn). By the compar-
ison theorem of impulsive differential equation we get S(t, Yn) ≥ S̄(t). By () and ()
there is a constant T̃ > , independent of n and j, and there exists a positive constant T∗,
independent of any n and j, such that t(n)

j – s(n)
j > T∗. We chose n large enough to make

t(n)
j – s(n)

j > T∗ + ω. By () there exists T ≥ nT such that F(p̃, t) = p̃I(t) – V (t) ≤  for
t ≥ T.

Finally, from the second equation of model () and from () and () we have

dI(t)
dt

= aprS(t)V (t) – (μ + d + γ )I(t) ≥ [
aprp̃S(t) – (μ + d + γ )

]
I(t).

Integrating this inequality, from s(n)
j + T∗ to t(n)

j follows that

ε

n = I
(
t(n)
j , Yn

) ≥ I
(
s(n)

j + T∗, Yn
)

≥ ε

n exp

{∫ t(n)
j

s(n)
j +T∗

[
aprp̃

(
Sp(τ ) – ε

)
– (μ + d + γ )

]
dτ

}

>
ε

n ,

where we uses (). This leads to a contradiction, and so we finally proved that the () is
true. From F(p̃, t) = p̃I(t) – V (t) ≤  for t ≥ T we have

lim inf
t→∞ V (t) ≥ lim inf

t→∞ p̃I(t) ≥ p̃ε.

From this and from () we know that the RVFV disease in model () is uniformly persis-
tent. This completes the proof of Theorem . �

Using Corollary  given by Teng et al. in [] on the existence of positive periodic solu-
tions for the general impulsive ordinary differential equation, we have the following theo-
rem on the existence of positive periodic solutions for periodic impulsive model ().

Theorem  Suppose that the conditions of Theorem  hold. Then model () has at least
one positive T-periodic solution.
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Table 1 Lists of parameters for Rift Valley Fever virus transmission

Symbol Description Range Source

� Recruitment rate of ruminant 25,000-46,000 Estimate
M0 Capacity for mosquitoes – Estimate
a Female mosquito bites rate (year–1) 156-256 Farida [18]
pm Probability of successful infection in mosquitoes (0.0021, 0.2762) Saul [10]
pr Probability of successful infection in ruminants (0.0021, 0.2429) Saul [10]
d Death rate of ruminant due to RVFV (year–1) 9.125-36.5 Saul [10]
μ Natural death rate of ruminant (year–1) 0.1014-1.0139 Saul [10]
γ Rate of recovery in ruminant (year–1) 73-365 Saul [10]
η Death rate of mosquitoes (year–1) 6.08-121.6 Saul [10]
ξ Development time of mosquitoes (year–1) 24.3-73 Saul [10]
φ Vaccinated rate for susceptible ruminant (year–1) 0-1 Estimate

5 Numerical simulation and discussion
In this paper, we consider an epidemic model of RVFV with impulsive vaccination strat-
egy. The main purpose is to investigate the impulsive vaccination thats governs whether
the RVFV disease dies out or not and further to examine how the impulsive vaccination
control strategy affects the prevention and control of RVFV disease. By using the com-
parison principle, integral and differential inequalities, and analytical methods, some suf-
ficient conditions for the existence and stability of disease-free periodic solution and for
uniform persistence of disease are obtained. Theoretical results show that RVFV disease
can be controlled through changing the control parameters of model based on these con-
ditions.

In this section, we perform some numerical simulations to illustrate the main theoreti-
cal results and the feasibility of impulsive vaccination control strategy for different control
parameters using the Runge-Kutta method in the software MATLAB. The values of pa-
rameters for model () are listed in Table ; we fixed the values of model parameters as
follows: � = ,, a = , pr = . × –, pm = . × –, μ = ., d = .,
γ = ., and η = ..

We first choose the following control parameters: vaccination cycle T = . (year) and
immune strength φ = .. It is easy to calculate that

R =


 × .
×

[
 × . × – × ,

.
× .

+  × . × – × , × .
]

+


 × .
×

{
 × . × –

.

×
[

, × ( – .)( – e–.×.)
. × ( – ( – .)e–.×.)

–
,

.

]

× (
 – e–.×.)

}

≈ . < 

by condition (). Therefore, from Theorem  we know that model () has a disease-free
periodic solution, which is globally asymptotically stable. The quantities of susceptible
ruminants, infectious ruminants, and infectious mosquitoes of model () with impulsive
vaccination or not are plotted against time in Figure (a)-(c) with blue lines and red lines,
respectively. Further, the plot in Figure (d) shows the image of φ – T with R = , which
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Figure 1 The stability of disease-free periodic solution of model (3) with μ = 0.12, γ = 83, d = 12,
pr = 0.00664e–3, pm = 0.00787e–3, η = 95, � = 32,000, and control parameters T = 0.25, φ = 0.5: (a)
susceptible ruminants S(t); (b) infectious ruminants I(t); (c) infectious mosquitoes V(t); (d) the image of φ – T
withR0 = 1.

indicates that model () has a disease-free periodic solution that is globally asymptot-
ically stable in the region � for R < . This means that a short period of pulsing or
a large pulse vaccination rate is a sufficient condition for the eradication of the RVFV.
However, in the region � for R > , the dynamical behaviors of model () is complex,
RVFV may or may not be extinct. These details are discussed in the next numerical sim-
ulations.

Next, we choose the control parameters φ = . and T = . (year); the condition pa-
rameter p̃ of Theorem  is p̃ = ., and others parameters are fixed as before. We compute
that

R =
[

 × . × – × . × ,
.

– (. +  + )
]

× .

+
 × . × – × .

.

×
[

, × ( – .) × ( – e–.×.)
. × ( – ( – .) × e–.×.)

–
,

.

]

× (
 – e–.×.)

≈. > ,

R =
(


.

×  × ,  × – × . × , – 
)

× .

≈.,
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Figure 2 The uniform persistence of model (3) with μ = 0.12, γ = 83, d = 12, pr = 0.00664e–3,
pm = 0.00787e–3, η = 95, � = 32,000, T = 0.2, and φ = 0.8, where R = 1.8475 > 0, R∗ = 14.6667 > 0,
and H(p̃, t) < 0: (a) susceptible ruminants S(t); (b) infectious ruminants I(t); (c) infectious mosquitoes V(t); (d)
the image of susceptible ruminants S(t), infectious ruminants I(t) and infectious mosquitoes V(t).

and

H(p̃, t) = × . × – × .
{

,
.

+
[

, × ( – .) × ( – e–.×.)
. × ( – ( – .) × e–.×.)

–
,

.

]

× e–.×(t–.)
}

+  –


.
×  × , × – × . × , – (. +  + )

≈ – . < .

Obviously, RVFV is uniformly persistent, and model () has a positive periodic solution by
Theorems  and . Figure (a)-(c) show that the numerical solutions of susceptible rumi-
nants, infectious ruminants, and infectious mosquitoes with different initial values. Fig-
ure (d) shows the uniform persistence of infectious ruminants and infected mosquitoes.
These simulations match the theoretical results very well. Theoretical results and numer-
ical simulations show that RVFV is uniformly persistent if the immune strength φ is low
and vaccination cycle T is too long.

Finally, we consider the complex dynamical behaviors of model () when the condi-
tion in Theorem  hold and the conditions of Theorem  are invalid. Choosing the con-
trol parameters φ = ., T = ., and p̃ = , we can calculate that R ≈ . > ,
R ≈ . > , R ≈ . > , but H(p̃, t) ≈ . > . The quantities of in-
fectious ruminants and infected mosquitoes are plotted in Figure (a) and (c); numerical
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Figure 3 The complex dynamical behaviour of model (3) with μ = 0.12, γ = 83, d = 12,
pr = 0.00664e–3, pm = 0.00787e–3, η = 95, � = 32,000, T = 0.8, φ = 0.2, p̃ = 2, where the conditions of
Theorem 3 are invalid: (a), (c) the uniform persistence of RVFV forR1 > 0,R2 > 0, and H(p̃, t) > 0 (φ = 0.2,
T = 0.8); (b), (d) the extinction of RVFV forR1 < 0,R2 > 0, and H(p̃, t) < 0 (φ = 0.8, T = 0.5).

simulations show that RVFV is uniformly persistent. We choose, however, the control pa-
rameters φ = ., T = ., and p̃ = , obtaining that R ≈ . > , R ≈ –. < ,
R ≈ . > , and H(p̃, t) ≈ –. < . The plots in Figure (b) and (d) show that
RVFV is died out. These show that the dynamical behaviors of model () are complex
since the effects of impulsive vaccination strategy. These issues would be left as our future
consideration.
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