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Abstract
In this paper, the authors develop a direct method used to solve the initial value
problems of a linear non-homogeneous time-invariant difference equation. In this
method, the obtained general term of the solution sequence has an explicit formula,
which includes coefficients, initial values, and right-side terms of the solved equation
only. Furthermore, the authors find that when the solution sequence has a nonzero
first term, it satisfies two adjoint linear recursive equations; this usually shows several
new features of the solution sequence.
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1 Introduction: backward-shifting matrices of sequences
Let a = {a(k)}∞k= = (a(), a(), a(), . . . , a(k), . . .) be an infinite sequence. We also regard
the sequence as a ( × ∞) row vector. Two special sequences are the unit sequence
e = {e(k)}∞k= = {δk,}∞k= (δk, is the Kronecker delta) and the null sequence o = {}∞k=.

For any sequence a, we always assume a(k) =  if k < . Thus, we may express all of
the backward-shifting (namely right-shifting) sequences of a as a(–) = {a(k – )}∞k= =
(, a(), a(), a(), . . .), a(–) = {a(k – )}∞k= = (, , a(), a(), a(), . . .), a(–) = {a(k – )}∞k= =
(, , , a(), a(), a(), . . .), and so on.

In this section, we give mainly attention to the convolution (Cauchy multiplication) of
two sequences. As we know, if the sequence c is a convolution of two sequences a and b,
expressed as a ∗ b = b ∗ a = c, then the general term c(k) of the sequence c is []

c(k) =
k∑

i=

a(i)b(k – i) =
k∑

i=

a(k – i)b(i), k ∈N. ()

For any sequence a, we have a ∗ e = e ∗ a = a, and a ∗ o = o ∗ a = o.
We may construct (define) a matrix A associated with any sequence a, each row vector

of which is corresponding backward-shifting sequence of a, as
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A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a
a(–)

a(–)

a(–)
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a() a() a() a() · · ·
a() a() a() · · ·

a() a() · · ·
a() · · ·

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, ()

and call the infinite dimensional, upper triangular Toeplitz matrix the backward-shifting
matrix of the sequence a, or simply, the BS-matrix of a []. Obviously, for a given sequence,
there exists one and only one BS-matrix corresponding to the sequence.

We may see from () and () that, if a ∗ b = b ∗ a = c, then AB = BA = C, where A, B, and
C are the corresponding BS-matrices; and vice versa.

In the case that the first term a() of the sequence a is not zero, then the corresponding
BS-matrix A is reversible, that is, there exists an inverse matrix A– of A making AA– =
A–A = E, where E is the ∞ × ∞ unit matrix. Of course, E also is the BS-matrix of the
unit sequence e. Furthermore, we may see that AkA–

k = A–
k Ak = Ek , where Ak and A–

k
(k ∈ N) both are the (k + ) × (k + ) upper-left sub-matrices of the matrices A and A–,
respectively, and Ek (k ∈ N) is the (k + ) × (k + ) unit matrix. The matrices Ak , A–

k
(k ∈N) are all upper triangular Toeplitz matrices.

We denote the sequence, the BS-matrix of which is A–, ã, and we call ã the convolution
inverse of a. The general term ã(k) of the sequence ã (e.g., see []) is the (, k)th entry of the
matrix A– or A–

k . Hence, from the matrix theory we know that ã(k) is the (, k)th entry of
the adjoint matrix of Ak , which is the algebraic cofactor of the (k, )th entry of Ak , divided
by the determinant of Ak . Thus, ã() = /a(), and for k > ,

ã(k) = (–)k(a()
)–(k+)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a() a() · · · a(k – ) a(k)

a() a()
. . . a(k – ) a(k – )

. . . . . . . . .
...

. . . a() a()
a() a()

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. ()

If the three BS-matrices A, B, and C satisfy AB = BA = C and A is reversible (a() �= ),
then B = A–C = CA–, at the same time we have b = ã ∗ c = c ∗ ã.

In the second section of this paper, based on these relationships between sequences
and their BS-matrices as mentioned above, we develop a direct method used to solve the
initial value problem of a linear, time-invariant, non-homogeneous difference equation. In
this method, the general term of solution sequence has an explicit formula, which includes
coefficients and initial values of the solved equation only. In the third section of this paper,
the authors point out that the solution sequence of the initial value problem surely satisfies
two adjoint linear recursive equations, which may give the solution sequence several new
features.

2 Direct solutions of linear non-homogeneous difference equations
Linear difference equations are ubiquitous in many engineering theories and mathemati-
cal branches. For example, they appear in the theory of discrete systems and control the-
ory of discrete systems as basic models of the discrete systems [–], and discrete-time
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signal processing as basic recurrence relations of sampled signals []. In algebraic combi-
natorics, they are also one of main study topics, tying different special sequences in with
their generating functions [, ]. For more details, the reader may refer to [].

In this section, by means of the BS-matrices of sequences we give a direct computa-
tional method used to solve the initial value problem of a linear, time-invariant, non-
homogeneous difference equation.

Let a = {a(k)}∞k= be the solution sequence of a non-homogeneous linear difference equa-
tion of order p (p ∈N),

a(k) + ba(k – ) + ba(k – ) + · · · + bpa(k – p) = dk , k ≥ p, ()

which has p given initial values:

a() = a, a() = a, a() = a, . . . , a(p – ) = ap–, ()

where b (= ) and bk (p ≥ k ≥ ) are time-invariant coefficients of the equation; dk (k ≥ p)
are infinite given (known) numbers.

Theorem . Let a = {a(k)}∞k= be a solution sequence of the linear difference equation ()
with p initial values a(k) = ak (p > k ≥ ). Let b = {b(k)}∞k= be a coefficient sequence of the
equation, where

b(k) =

⎧
⎪⎨

⎪⎩

, k = ;
bk , p ≥ k > ;
, k > p.

()

Let c = {c(k)}∞k= be the right-side term sequence of the equation, where

c(k) =

{∑k
i= aibk–i, p > k ≥ ;

dk , k ≥ p.
()

Then the general term a(k) of a is

a(k) =

{
ak , p > k ≥ ;∑k

i= b̃(i)c(k – i) =
∑k

i= b̃(k – i)c(i), k ≥ p,
()

where b̃() = , and for k ≥ 

b̃(k) = (–)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b() b() · · · b(k – ) b(k)

 b()
. . . b(k – ) b(k – )

. . . . . . . . .
...

. . . b() b()
 b()

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. ()

Proof We can rewrite equation () as a form of sequence convolution: a ∗ b = c, where the
general terms of the sequences b and c are shown in () and (). Therefore, denoting the
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BS-matrices of a, b, and c by A, B and C, respectively, we have AB = C. For b() = , B is
reversible and thus A = CB–. Hence, a = c ∗ b̃, that is, equation () holds. �

Next, let us see several simple but enlightening examples, in which p is  or  only.

Example . The Fibonacci sequence f (OEIS A) [] is the solution sequence of a
linear difference equation of order two: f (k) – f (k – ) – f (k – ) =  (k ≥ ) with two initial
values f () =  and f () = . We may rewrite it as b ∗ f = c, where b = (, –, –, , , . . .)
and c = (, , , , , . . .). Thus, according to equation (), we have f (k) =

∑
i+j=k b̃(i)c(j) =

b̃(k – )c() = b̃(k – ). Hence the general term f (k) of the Fibonacci sequence when k ≥ 
has a determinant form:

f (k) = (–)k–

∣∣∣∣∣∣∣∣∣∣∣∣∣

– –
 – –

 – –
. . . . . .

 –

∣∣∣∣∣∣∣∣∣∣∣∣∣
(k–)×(k–)

. ()

For example, the sixth term and seventh term of the Fibonacci sequence are, respectively,

f () =

∣∣∣∣∣∣∣∣∣

– –  
 – – 
  – –
   –

∣∣∣∣∣∣∣∣∣

= , f () = –

∣∣∣∣∣∣∣∣∣∣∣∣

– –   
 – –  
  – – 
   – –
    –

∣∣∣∣∣∣∣∣∣∣∣∣

= .

Example . The sequences of Chebyshev polynomials, t(x) = {Tk(x)}∞k= and u(x) =
{Uk(x)}∞k=, are solution sequences of two identical linear time-invariant difference equa-
tions of order : Tk(x) – xTk–(x) + Tk–(x) =  and Uk(x) – xUk–(x) + Uk–(x) =  (k ≥ )
with different initial values T(x) = , T(x) = x, and U(x) = , U(x) = x, respectively (see
[]). Thus, we may rewrite them as t ∗ b = ct and u ∗ b = cu, where b = (, –x, , , , . . .),
ct = (, –x, , , . . .), and cu = (, , , , . . .) = e. According to (), we obtain U(x) = ,
U(x) = x, and for k ≥ ,

Uk(x) = (–)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

–x  · · ·  

 –x
. . .  

. . . . . . . . .
...

 –x 
 –x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

, ()
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and T(x) = , T(x) = x, and for k ≥ ,

Tk(x) = (–)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

–x  · · ·  

 –x
. . .  

. . . . . . . . .
...

 –x 
 –x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

+ x(–)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

–x  · · ·  

 –x
. . .  

. . . . . . . . .
...

 –x 
 –x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(k–)×(k–)

. ()

Example . The tower of Hanoi puzzle (see []) is an initial value problem of a linear
non-homogeneous difference equation of order : a(k)–a(k –) =  for k ≥  and a() = .
The corresponding sequences b = (, –, , , . . .) and c = (, , , , . . .). By using ()-(), we
obtain a() =  and for k ≥ ,

a(k) =
k∑

i=

b̃(k – i)c(i) =
k∑

i=

(–)k–i

∣∣∣∣∣∣∣∣∣∣∣∣∣

–
 –

 –
. . . . . .

 –

∣∣∣∣∣∣∣∣∣∣∣∣∣
(k–i)×(k–i)

=
k∑

i=

k–i = k – .

Example . Let us solve the non-homogeneous Fibonacci-type linear difference equa-
tion r(k) – r(k – ) – r(k – ) = dk (k ≥ ) with two initial values r() =  and r() = , where
dk (k ≥ ) are infinite given numbers. We may express this equation as a convolution form:
b ∗ r = c, where b = (, –, –, , , , . . .) and c = (, , d, d, d, d, . . .). Hence, according to
() we have r = c ∗ b̃. We see from Example . that b̃(k) = f (k + ), the (k + )th Fibonacci
number. Thus, the general term of the solution sequence r is that r() = , r() = , and for
k ≥ ,

r(k) =
k∑

i=

c(i)b̃(k – i) =
k∑

i=

c(i)f (k +  – i) = f (k) + df (k – ) + · · · + dkf ().

Remark  As we know, traditional methods used for solving linear non-homogeneous
difference equations face several difficulties in practical applications. Here, the traditional
methods include the classical method (the discrete analogue of the technique of solving
linear differential equations, namely the solution of a non-homogeneous equation is the
sum of the general solution of corresponding homogeneous equation and a particular so-
lution of the non-homogeneous equation) [], and the generating function method []
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or similar Z-transform method [, ] (usually, the former is used in mathematics, and
the latter in engineering theories). Summarily, these methods are all unable to give ex-
plicit expressions of the general term of solution sequences by using coefficients and the
non-homogeneous right-side terms. This is because they always need to find all com-
plex roots of a polynomial (the characteristic polynomial of the equation). In general and
higher order cases, that is very difficult. Besides, finding particular solutions of the non-
homogeneous equations as in the classical method, or expanding rational fraction func-
tions as a sum of simple fractions, or finding power series expansions or finding inverse
Z-transforms as in the generating function method and Z-transform method, are also very
difficult in general cases.

However, by using the direct method developed in this paper, we can directly solve the
initial value problems of linear non-homogeneous difference equations (recursive rela-
tion). We can explicitly express the general term of the solution sequence by using the
coefficients, initial values, and non-homogeneous right-side terms of the solved equation
only. This is a distinct difference of the direct method.

Remark  Recently, Birmajer et al. gave another direct expression of the solution se-
quence for the homogeneous case [], as for k ≥ p,

a(k) =
p–∑

i=

c(i)
k–i∑

j=

j!
(k – i)!

Bk–i,j(!b, !b, . . . ),

where c(k) =
∑k

i= aibk–i for p > k ≥ , and Bn,k(x, x, . . . ) is the (n, k)th partial Bell polyno-
mial in the variables x, x, . . . , xn–k+ (see () of []). Readers may compare it with equation
() in the homogeneous case (dk =  when k ≥ p).

3 Adjoint linear recursive equations
Let a be the solution sequence of the initial value problem of linear non-homogeneous dif-
ference equation (). We may find that the sequence a satisfies an adjoint linear recursive
relation, as shown in the following theorem.

Theorem . Let a be the solution sequence of linear non-homogeneous difference equa-
tion () with initial values shown in (), in which a �= . Then the sequence a satisfies the
following so-called adjoint linear recursive equation of the first kind:

c̃ ∗ a = b̃, ()

that is,

c̃()a(k) + c̃()a(k – ) + c̃()a(k – ) + · · · + c̃(k)a() = b̃(k), k ∈N, ()

where the sequences b and c are shown in () and (), respectively; b̃ and c̃ are the first row
vectors of the BS-matrices B– and C–, respectively, that is, b̃() = , c̃() = 

c() = 
a

, and
for k ≥ ,
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b̃(k) = (–)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b() b() · · · b(k – ) b(k)

 b()
. . . b(k – ) b(k – )

. . . . . . . . .
...

. . . b() b()
 b()

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

()

and

c̃(k) =
(–)k

ak+


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c() c() · · · c(k – ) c(k)

a c()
. . . c(k – ) c(k – )

. . . . . . . . .
...

. . . c() c()
a c()

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. ()

Proof For the initial value problem () and (), we have AB = C, where A, B, and C are
BS-matrices of three sequences a, b, and c. The general terms of sequences b and c are
shown in () and (). Because b() =  and c() = a �= , the matrices B and C both are
reversible. Hence, we have C–A = B–, that is, c̃ ∗ a = b̃. �

Example . The Lucas sequence l (OEIS A) [] is the solution sequence of a
Fibonacci-type linear difference equation: l(k) – l(k – ) – l(k – ) =  (k ≥ ), with l() = 
and l() = . In this case, b = (, –, –, , , , . . .) and c = (, –, , , , , . . .). Thus, b̃() = 
and c̃() = 

 , and for k ≥ ,

b̃(k) = (–)k

∣∣∣∣∣∣∣∣∣∣∣∣∣

– –
 – –

 – –
. . . . . .

 –

∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

and

c̃(k) =
(–)k

k+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

–  · · ·  

 –
. . .  

. . . . . . . . .
...

 – 
 –

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

=


k+ .

We see from Example . that b̃(k) = f (k + ), the (k + )th Fibonacci number. Hence, the
Lucas sequence satisfies the following linear recursive relation:

l() + l() + l() + · · · + k–l(k – ) + kl(k) = k+f (k + ), k ∈N.

This is a well-known identity for the Lucas numbers.
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Example . The sequence t(x) of the Chebyshev polynomials Tk(x) (k ∈ N) of the
first kind is the solution of linear homogeneous difference equation of order two: Tk(x) –
xTk–(x) + Tk–(x) =  (k ≥ ) with T(x) =  and T(x) = x. Hence b = (, –x, , , , , . . .)
and c = (, –x, , , , , . . .). We see from Example . that b̃(k) = Uk(x), the kth Chebyshev
polynomial of the second kind. c̃() = , and for k ≥ ,

c̃(k) = (–)k

∣∣∣∣∣∣∣∣∣∣∣∣∣

–x  · · ·  
 –x  · · · 

. . . . . . . . .
...

 –x 
 –x

∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

= xk .

Hence, the adjoint linear recursive relation of the Chebyshev polynomials Tk(x) of the first
kind is

Tk(x) + xTk–(x) + xTk–(x) + · · · + xk–T(x) + xkT(x) = Uk(x), k ∈N.

Thus, we get a new identity for the Chebyshev polynomials of the first kind.

We may give another adjoint linear recursive equation in a similar way, as follows.

Theorem . Let a be the solution sequence of the non-homogeneous linear difference
equation () with initial values shown in (), in which a �= . Then the sequence a satisfies
the following so-called adjoint linear recursive equation of the second kind:

c̃ ∗ b ∗ a = e, ()

that is,

k∑

i=

i∑

j=

c̃(j)b(i – j)a(k – i) = , k > , ()

where the sequences b and c are shown in () and (), respectively; and c̃ is shown in ().

Proof For the initial value problem () and (), we have AB = BA = C, where A, B and C
are the BS-matrices of the three sequences a, b, and c. The general terms of sequences b
and c are shown in () and (). Because c() = a �= , the matrix C is reversible. Hence,
we have C–BA = E, that is, c̃ ∗ b ∗ a = e. �

Example . For the Lucas sequence l shown in Example ., l() =  and l() = . We
have the coefficient sequences b = (, –, –, , , , . . .) and c = (, –, , , , , . . .). Hence,
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c̃() = 
 , and for k ≥ ,

c̃(k) =
(–)k

k+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

–  · · ·  

 –
. . .  

. . . . . . . . .
...

 – 
 –

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

=


k+ .

Thus, according to equation () the Lucas sequence satisfies the following linear recursive
relation: for k > ,


[
l() + l() + l() + · · · + k–l(k – )

]
+ k–l(k – ) – kl(k) = .

This is a new identity for the Lucas numbers.

Example . For the sequence t(x) of the Chebyshev polynomials of the first kind
shown in Example ., T(x) = , T(x) = x, and we have the coefficient sequences b =
(, –x, , , , , . . .) and c = (, –x, , , , , . . .). We also see from Example . that c̃() = ,
and for k ≥ , c̃(k) = xk . Hence, denoting by t̃(x) = c̃ ∗ b, we have t̃(x) = , t̃(x) = –x, and
for k > , t̃k(x) =

∑k
i= b(i)c̃(k – i) = xk–( – x). Thus, the adjoint linear recursive equation

of the second kind of the Chebyshev polynomials Tk(x) of the first kind is that for k > 

Tk(x) – xTk–(x) +
(
 – x)Tk–(x) + · · · + xk–( – x)T(x) + xk–( – x)T(x) = .

Here, we get another new identity for the Chebyshev polynomials Tk(x) of the first kind.

4 Conclusions
In this paper, the authors develop a direct method used to solve the initial value problems
of a linear non-homogeneous time-invariant difference equation. In this method, the ob-
tained general term of the solution sequence has an explicit formula, which includes co-
efficients, initial values, and right-side terms of the solved equation only. Furthermore,
when the solution sequence has a nonzero first term, it satisfies two adjoint linear recur-
sive equations; this usually shows several new features of the solution sequence.
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