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Abstract
In this paper, we study a nonlocal boundary value problem for a second-order Hahn
difference equation. Our problem contains two Hahn difference operators with
different numbers of q and ω. An existence and uniqueness result is proved by using
the Banach fixed point theorem, and the existence of a positive solution is established
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1 Introduction
The quantum calculus, also known as the calculus without considering limits, deals with
sets of nondifferentiable functions. There are many different types of quantum difference
operators, for example, the Jackson q-difference operator, the forward (delta) difference
operator, the backward (nabla) difference operator, and so on. These operators are found
in many applications of mathematical areas such as orthogonal polynomials, basic hy-
pergeometric functions, combinatorics, the calculus of variations, the theory of relativity,
hypergeometric series, complex analysis, particle physics, and quantum mechanics. For
some recent results and applications of the quantum calculus, see [–] and the references
therein.

In , Hahn [] introduced the Hahn difference operator Dq,ω ,

Dq,ωf (t) =
f (qt + ω) – f (t)

t(q – ) + ω
, t �= ω :=

ω

 – q
.

The Hahn difference operator is generalized to two well-known difference operators, the
forward difference operator and the Jackson q-difference operator. Notice that, under ap-
propriate conditions,

Dq,ωf (t) = �ωf (t) whenever q = , Dq,ωf (t) = Dqf (t) whenever ω = , and

Dq,ωf (t) = f ′(t) whenever q = ,ω → .
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The Hahn difference operator has been employed in many pieces of literature to construct
families of orthogonal polynomials and to investigate some approximation problems; see
[–] and the references therein.

Unfortunately, in the past, no one was interested in finding the right inverse of the Hahn
difference operator. Until in , Aldwoah [, ] (Ph.D. thesis supervised by M.H.
Annaby and A.E. Hamza) defined the right inverse of Dq,ω in terms of both the Jackson
q-integral containing the right inverse of Dq [] and Nörlund sum involving the right
inverse of �ω [].

In , Malinowska and Torres [, ] introduced the Hahn quantum variational cal-
culus. In , Malinowska and Martins [] studied the generalized transversality con-
ditions for the Hahn quantum variational calculus. In the same year, Hamza et al. [, ]
studied the theory of linear Hahn difference equations and investigated the existence and
uniqueness results for the initial value problems for Hahn difference equations by using the
method of successive approximations; moreover, they proved Gronwall’s and Bernoulli’s
inequalities with respect to the Hahn difference operator and also established mean value
theorems for this calculus.

In particular, the boundary value problem for Hahn difference equations has not been
studied. The results mentioned are the motivation for this research. In this paper, we con-
sider a nonlinear Hahn difference equation with nonlocal boundary value conditions of
the form

D
q,ωx(t) + f

(
t, x(t), Dp,θ x(pt + θ )

)
= , t ∈ [ω, T]q,ω,

x(ω) = ϕ(x),

x(T) = λx(η), η ∈ (ω, T)q,ω,

(.)

where  < q < ,  < ω < T , ω := ω
–q ,  ≤ λ < T–ω

η–ω
, p = qm, m ∈ N, θ = ω( –p

–q ), f :
[ω, T]q,ω × R × R → R is a given function, and ϕ : C([ω, T]q,ω,R) → R is a given func-
tional.

In the next section, we briefly recall some definitions and lemmas used in this research.
In Section , we prove the existence and uniqueness of a solution to problem (.) by the
Banach fixed point theorem. In Sections -, we establish some properties of the Green
function and the existence of a positive solution to problem (.) by using the Krasnoselskii
fixed point theorem. Finally, we provide an example to illustrate our results in the last
section.

The following theorem is Krasnoselskii’s fixed point theorem in a cone.

Theorem . ([]) Let E be a Banach space, and let K ⊂ E be a cone. Let �, � be open
subsets of E with  ∈ �, � ⊂ �, and let

A : K ∩ (� \ �) −→ K

be a completely continuous operator such that
(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�; or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�.
Then A has a fixed point in K ∩ (� \ �).
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2 Preliminaries
We now give the notation, definitions, and lemmas used in the main results.

Definition . ([]) For  < q < , ω > , and f defined on an interval I ⊆ R containing
ω := ω

–q , the Hahn difference of f is defined by

Dq,ωf (t) =
f (qt + ω) – f (t)

t(q – ) + ω
for t �= ω

and Dq,ωf (ω) = f ′(ω), provided that f is differentiable at ω. We call Dq,ωf the q,ω-
derivative of f and say that f is q,ω-differentiable on I .

Let a, b ∈ I ⊆ R with a < ω < b, and [k]q = –qk

–q , k ∈ N := N ∪ {}. We define the q,ω-
interval by

[a, b]q,ω :=
{

qka + ω[k]q : k ∈N
} ∪ {

qkb + ω[k]q : k ∈ N
} ∪ {ω}

= [a,ω]q,ω ∪ [ω, b]q,ω

= (a, b)q,ω ∪ {a, b} = [a, b)q,ω ∪ {b} = (a, b]q,ω ∪ {a}.

Observe that, for each s ∈ [a, b]q,ω , the sequence {qks + ω[k]q}∞k= is uniformly convergent
to ω.

If f is q,ω-differentiable n times on a q,ω-interval Iq,ω , then we define the higher-order
derivatives by

Dn
q,ωf (s) := Dq,ωDn–

q,ω f (s),

where D
q,ωf (s) := f (s), s ∈ Iq,ω ⊂R.

Next, we introduce the right inverse of the operator Dq,ω , which call the q,ω-integral
operator.

Definition . ([]) Let I be any closed interval of R containing a, b, and ω. For a func-
tion f : I → R, we define the q,ω-integral of f from a to b by

∫ b

a
f (t) dq,ωt :=

∫ b

ω

f (t) dq,ωt –
∫ a

ω

f (t) dq,ωt,

where

∫ x

ω

f (t) dq,ωt :=
[
x( – q) – ω

] ∞∑

k=

qkf
(
xqk + ω[k]q

)
, x ∈ I,

provided that the series converges at x = a and x = b; we say that f is q,ω-integrable on
[a, b], and the sum on the right-hand side of the above equation is called the Jackson-
Norlund sum.

Note that the actual domain of definition of f is [a, b]q,ω ⊂ I .
The following lemma is the fundamental theorem of Hahn calculus.
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Lemma . ([]) Let f : I →R be continuous at ω. Define

F(x) :=
∫ x

ω

f (t) dq,ωt, x ∈ I.

Then F is continuous at ω. Furthermore, Dq,ω F(x) exists for every x ∈ I , and

Dq,ωF(x) = f (x).

Conversely,

∫ b

a
Dq,ωF(t) dq,ωt = F(b) – F(a) for all a, b ∈ I.

Next, we give some auxiliary lemmas for simplifying calculations.

Lemma . Let  < q < , ω > , and f : I →R be continuous at ω. Then

∫ t

ω

∫ r

ω

x(s) dq,ωs dq,ωr =
∫ t

ω

∫ t

qs+ω

h(s) dq,ωr dq,ωs.

Proof Using the definition of the q,ω-integral, we have

∫ t

ω

∫ r

ω

x(s) dq,ωs dq,ωr

=
∫ t

ω

[
[
r( – q) – ω

] ∞∑

k=

qkx
(
rqk + ω[k]q

)
]

dq,ωr

=
∞∑

k=

qk
[∫ t

ω

[
r( – q) – ω

]
x
(
rqk + ω[k]q

)
dq,ωr

]

=
∞∑

k=

qk[t( – q) – ω
] ∞∑

h=

qh[(tqk + ω[k]q
)
( – q) – ω

]
x
((

tqk + ω[k]q
)
qh + ω[h]q

)

=
[
t( – q) – ω

] ∞∑

k=

∞∑

h=

qk+h[t( – q)qk – ωqk]x
(

tqk+h + ω

[
 – qk

 – q

]
qh + ω

[
 – qh

 – q

])

=
[
t( – q) – ω

] ∞∑

k=

∞∑

h=

qk+h[t( – q) – ω
]
x
(

tqk+h + ω

[
 – qk+h

 – q

])

=
[
t( – q) – ω

]
∞∑

k=

∞∑

h=

qk+hx
(
tqk+h + ω[k + h]q

)

=
[
t( – q) – ω

]
∞∑

h=

[
qhx

(
tqh + ω[h]q

)
+ qh+x

(
tqh+ + ω[h + ]q

)
+ · · · ]

=
[
t( – q) – ω

][x(t) + qx(tq + ω) + qx
(
tq + ω[]q

)
+ · · ·

+ qx(tq + ω) + qx
(
tq + ω[]q

)
+ qx

(
tq + ω[]q

)
+ · · ·

+ qx
(
tq + ω[]q

)
+ qx

(
tq + ω[]q

)
+ qx

(
tq + ω[]q

)
+ · · · ]
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=
[
t( – q) – ω

][x(t) + q( + q)x(tq + ω) + q( + q + q)x
(
tq + ω[]q

)
+ · · · ]

=
[
t( – q) – ω

]
∞∑

k=

qk[k + ]qx
(
tqk + ω[k]q

)

=
∫ t

ω

[
t – (qs + ω)

]
x(s) dq,ws

=
∫ t

ω

[∫ t

ω

x(s) dq,wr –
∫ qs+ω

ω

x(s) dq,wr
]

dq,ws

=
∫ t

ω

∫ t

qs+ω

x(s) dq,ωr dq,ωs. �

Lemma . Let  < q <  and ω > . Then

∫ t

ω

dq,ωs = t – ω and
∫ t

ω

[
t – (qs + ω)

]
dq,ωs =

(t – ω)

 + q
.

Proof Using the definition of the q,ω-integral, we have

∫ t

ω

dq,ωs =
[
t( – q) – ω

] ∞∑

k=

qk = ( – q)(t – ω)
∞∑

k=

qk

= ( – q)(t – ω)
[


 – q

]
= t – ω

and

∫ t

ω

[
t – (qs + ω)

]
dq,ωs =

[
t( – q) – ω

] ∞∑

k=

qk[t –
[
q
(
tqk + ω[k]q

)
+ ω

]]

= ( – q)(t – ω)
∞∑

k=

qk[t
(
 – qk+) – ω[k + ]q

]

= ( – q)(t – ω)
∞∑

k=

qk( – qk+)

= ( – q)(t – ω)
[


 – q

–
q

 – q

]
=

(t – ω)

 + q
.

The proof is complete. �

The following lemma deals with the linear version of problem (.) and gives a represen-
tation of the solution.

Lemma . Let  ≤ λ < T–ω
η–ω

, h ∈ C([ω, T]q,ω,R) be a given function, and ϕ : C([ω, T]q,ω,
R) →R be a given functional. Then the problem

D
q,ωx(t) = –h(t), t ∈ [ω, T]q,ω,

x(ω) = ϕ(x), x(T) = λx(η), η ∈ (ω, T)q,ω,
(.)
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has the unique solution

x(t) = ϕ(x) +
(t – ω)




[
(λ – )ϕ(x) – λ

∫ η

ω

[
η – (qs + ω)

]
h(s) dq,ωs

+
∫ T

ω

[
T – (qs + ω)

]
h(s) dq,ωs

]
–

∫ t

ω

[
t – (qs + ω)

]
h(s) dq,ωs, (.)

where


 = (T – ω) – λ(η – ω). (.)

Proof By Lemmas . and . a general solution for (.) can be written as

x(t) = C + C(t – ω) –
∫ t

ω

∫ r

ω

h(s) dq,ωs dq,ωr

= C + C(t – ω) –
∫ t

ω

∫ t

qs+ω

h(s) dq,ωr dq,ωs

= C + C(t – ω) –
∫ t

ω

[
t – (qs + ω)

]
h(s) dq,ωs (.)

for t ∈ [ω, T]q,ω .
From the conditions (.) we obtain

C = ϕ(x), (.)

C =
(λ – )



ϕ(x) –

λ




∫ η

ω

[
η – (qs + ω)

]
h(s) dq,ωs

+




∫ T

ω

[
T – (qs + ω)

]
h(s) dq,ωs, (.)

where 
 is defined by (.).
Substituting the constants C, C into (.), we obtain (.). �

Lemma . Problem (.) has the unique solution of the from

x(t) =
[

 +
(λ – )(t – ω)




]
ϕ(x) +

∫ T

ω

G(t, qs + ω)h(s) dq,ωs, (.)

where

G(t, qs + ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(t, qs + ω), s ∈ [ω, t]q,ω ∩ [ω,η]q,ω,

g(t, qs + ω), s ∈ [η, t]q,ω,

g(t, qs + ω), s ∈ [t,η]q,ω,

g(t, qs + ω), s ∈ [t, T]q,ω ∩ [η, T]q,ω,

(.)
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with gi(t, s),  ≤ i ≤ , defined as

g(t, qs + ω) :=
[





(t – ω)(T – λη) – t
]

+ (qs + ω)
[





(t – ω)(λ – ) + 
]

,

g(t, qs + ω) :=
[





(t – ω)T – t
]

+ (qs + ω)
[

 –
(t – ω)




]
,

g(t, qs + ω) :=




(t – ω)(T – λη) +
(qs + ω)



(t – ω)(λ – ),

g(t, qs + ω) :=




(t – ω)
[
T – (qs + ω)

]
.

(.)

Proof Suppose t > η. The unique solution of problem (.) can be written as

x(t) =
[

 +
(λ – )(t – ω)




]
ϕ(x)

+
(t – ω)




∫ η

ω

[[
T – (qs + ω)

]
– λ

[
η – (qs + ω)

]
–




t – ω

[
t – (qs + ω)

]]
h(s) dq,ωs

+
(t – ω)




∫ t

η

[
[
T – (qs + ω)

]
–




t – ω

[
t – (qs + ω)

]
]

h(s) dq,ωs

+
(t – ω)




∫ T

t

[[
T – (qs + ω)

]]
h(s) dq,ωs

=
[

 +
(λ – )(t – ω)




]
ϕ(x)

+
∫ η

ω

([




(t – ω)(T – λη) – t
]

+ (qs + ω)
[





(t – ω)(λ – ) + 
])

h(s) dq,ωs

+
∫ t

η

([




(t – ω)T – t
]

+ (qs + ω)
[

 –
(t – ω)




])
h(s) dq,ωs

+
(t – ω)




∫ T

t

[
T – (qs + ω)

]
h(s) dq,ωs

=
[

 +
(λ – )(t – ω)




]
ϕ(x) +

∫ T

ω

G(t, qs + ω)h(s) dq,ωs

and similarly for t < η. The unique solution of problem (.) can be written as

x(t) =
[

 +
(λ – )(t – ω)




]
ϕ(x)

+
∫ η

ω

([




(t – ω)(T – λη) – t
]

+ (qs + ω)
[





(t – ω)(λ – ) + 
])

h(s) dq,ωs

+
∫ t

η

(




(t – ω)(T – λη) +
(qs + ω)



(t – ω)(λ – )

)
h(s) dq,ωs

+
(t – ω)




∫ T

t

[
T – (qs + ω)

]
h(s) dq,ωs

=
[

 +
(λ – )(t – ω)




]
ϕ(x) +

∫ T

ω

G(t, qs + ω)h(s) dq,ωs.
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This completes the proof. �

3 Existence and uniqueness of a solution for problem (1.1)
In this section, we present an existence and uniqueness result for problem (.). Let C =
C([ω, T]q,ω,R) be the Banach space of all continuous functions x with the norm

‖x‖C = max
{‖x‖,‖Dp,θ x‖},

where ‖x‖ = maxt∈[ω,T]q,ω |x(t)| and ‖Dp,θ x‖ = maxt∈[ω,T]q,ω |Dp,θ x(pt +θ )|. Also, define the
operator F : C → C by

(Fx)(t) = ϕ(x) +
(t – ω)




[
(λ – )ϕ(x)

– λ

∫ η

ω

[
η – (qs + ω)

]
f
(
s, x(s), Dp,θ x(ps + θ )

)
dq,ωs

+
∫ T

ω

[
T – (qs + ω)

]
f
(
s, x(s), Dp,θx(ps + θ )

)
dq,ωs

]

–
∫ t

ω

[
t – (qs + ω)

]
f
(
s, x(s), Dp,θ x(ps + θ )

)
dq,ωs, (.)

where 
 �=  is defined by (.), p = qm, m ∈ N, and θ = ω( –p
–q ).

Obviously, problem (.) has solutions if and only if the operator F has fixed points.

Theorem . Assume that the following conditions hold:

(H) There exist constants γ,γ >  such that

∣∣f
(
t, x(t), Dp,θ x(pt + θ )

)
– f

(
t, y(t), Dp,θ y(pt + θ )

)∣∣

≤ γ
∣∣x(t) – y(t)

∣∣ + γ
∣∣Dp,θ x(pt + θ ) – Dp,θ y(pt + θ )

∣∣

for all t ∈ [ω, T]q,ω and x, y ∈ C .
(H) There exists a constant � >  such that

∣∣ϕ(x) – ϕ(y)
∣∣ ≤ �

∥∥x(t) – y(t)
∥∥
C

for each x, y ∈ C .
(H) S := γ� + � < , where

γ = max{γ,γ},

� =
(T – ω)

|
|
[

(T – ω) – λ(η – ω)

( + q)

]
+

(T – ω)

 + q
,

 =  +
(λ – )(T – ω)

|
| .

(.)

Then problem (.) has a unique solution in [ω, T]q,ω .
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Proof Denote H|x – y|(t) := |f (t, x(t), Dp,θ x(pt + θ )) – f (t, y(t), Dp,θ y(pt + θ ))|. Using
Lemma ., for all t ∈ [ω, T]q,ω and x, y ∈ C , we have

∣∣(Fx)(t) – (Fy)(t)
∣∣

≤ ∣
∣ϕ(x) – ϕ(y)

∣
∣ +

(t – ω)
|
|

∣∣
∣∣(λ – )

∣
∣ϕ(x) – ϕ(y)

∣
∣

– λ

∫ η

ω

[
η – (qs + ω)

]
H|x – y|(s) dq,ωs +

∫ T

ω

[
T – (qs + ω)

]
H|x – y|(s) dq,ωs

∣∣∣
∣

+
∫ t

ω

[
t – (qs + ω)

]
H|x – y|(s) dq,ωs

≤ �‖x – y‖C +
(T – ω)

|
|
[

(λ – )�‖x – y‖C +
(
γ

∣
∣x(t) – y(t)

∣
∣ + γ

∣
∣Dp,θ x(pt + θ )

– Dp,θ y(pt + θ )
∣∣)

∣∣∣
∣

∫ T

ω

[
T – (qs + ω)

]
dq,ωs – λ

∫ η

ω

[
η – (qs + ω)

]
dq,ωs

∣∣∣
∣

]

+
(
γ

∣
∣x(t) – y(t)

∣
∣ + γ

∣
∣Dp,θ x(pt + θ ) – Dp,θ y(pt + θ )

∣
∣)

∫ T

ω

[
T – (qs + ω)

]
dq,ωs

≤ �‖x – y‖C
{

 +
(λ – )(T – ω)

|
|
}

+ γ ‖x – y‖C
{

T – ω

|
|
[

(T – ω) – λ(η – ω)

 + q

]
+

(T – ω)

 + q

}

= �‖x – y‖C + γ ‖x – y‖C�

= S‖x – y‖C .

Taking the p, θ -derivative for (.) where p = qm, m ∈ N, and θ = ω( –p
–q ), we obtain

∣∣(Dp,θFx)(pt + θ ) – (Dp,θFy)(pt + θ )
∣∣

≤
∣∣
∣∣


[–(pt + θ )( – p) + θ ]

{
–(pt + θ )( – p) + θ




(
(λ – )

∣
∣ϕ(x) – ϕ(y)

∣
∣

– λ

∫ η

ω

[
η – (qs + ω)

]
H|x – y|(s) dq,ωs +

∫ T

ω

[
T – (qs + ω)

]
H|x – y|(s) dq,ωs

)

+
(∫ p(pt+θ )+θ

ω

[
p(pt + θ ) + θ – (qs + ω)

]
H|x – y|(s) dq,ωs

–
∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]
H|x – y|(s) dq,ωs

)}∣∣
∣∣

≤ (λ – )
|
| �‖x – y‖C +

(γ|x(t) – y(t)| + γ|Dp,θ x(pt + θ ) – Dp,θ y(pt + θ )|)



×
∣∣
∣∣

∫ T

ω

[
T – (qs + ω)

]
dq,ωs – λ

∫ η

ω

[
η – (qs + ω)

]
dq,ωs

∣∣
∣∣

+
(γ|x(t) – y(t)| + γ|Dp,θ x(pt + θ ) – Dp,θ y(pt + θ )|)

p( – p)(t – ω)

×
∣∣
∣∣

∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]
dq,ωs –

∫ pt+(p+)θ

ω

[
pt + (p + )θ – (qs + ω)

]
dq,ωs

∣∣
∣∣
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≤ �‖x – y‖C
{

λ – 
|
|

}
+ γ ‖x – y‖C

{[
(T – ω) – λ(η – ω)

( + q)|
|
]

+
p( + p)(T – ω)

 + q

}

< S‖x – y‖C .

This implies that F is a contraction. Therefore, by the Banach fixed point theorem, F has
a fixed point, which is a unique solution of problem (.) on t ∈ [ω, T]q,ω . �

4 Properties of Green’s function for problem (1.1)
We next prove that Green’s function G(t, s) in (.) satisfies a variety of properties that are
necessary for considering the existence of a positive solution to problem (.). Firstly, we
prove some necessary preliminary lemmas.

Theorem . ([], Mean Value Theorem) Let f : I → X be q,ω-differentiable on I . For
every s ∈ I ,

∥
∥f (b) – f (a)

∥
∥ ≤ sup

t∈I

∥
∥Dq,ωf (t)

∥
∥(b – a)

for all a, b ∈ {sqk + ω[k]q}∞k= and a < b.

Theorem . Let f be q,ω-differentiable on (a, b)q,ω and continuous on [a, b]q,ω . The fol-
lowing statements are true:

(i) If Dq,ωf (t) >  for all t ∈ (a, b)q,ω , then f is an increasing function on [a, b]q,ω .
(ii) If Dq,ωf (t) <  for all t ∈ (a, b)q,ω , then f is a decreasing function on [a, b]q,ω .

(iii) If Dq,ωf (t) =  for all t ∈ (a, b)q,ω , then f is a constant function on [a, b]q,ω .

Proof Let t, t ∈ [a, b]q,ω , t < t. Since f is q,ω-differentiable on (a, b)q,ω and continuous
on [a, b]q,ω , we have that f is a continuous function on (a, b)q,ω .

By Theorem . there exists t∗ ∈ (a, b)q,ω such that Dq,ωf (t∗) = ‖f (b)–f (a)‖
b–a .

(i) If Dq,ωf (t) >  for all t ∈ (a, b)q,ω , then Dq,ωf (t∗) > , which implies that

f (t) – f (t) = (t – t)Dq,ωf
(
t∗) > .

So f (t) > f (t) for all t, t, and hence f is increasing on [a, b]q,ω .
(ii) If Dq,ωf (t) <  for all t ∈ (a, b)q,ω , then Dq,ωf (t∗) < , which implies that

f (t) – f (t) = (t – t)Dq,ωf
(
t∗) < .

So f (t) < f (t) for all t, t, and hence f is decreasing on [a, b]q,ω .
(iii) If Dq,ωf (t) =  for all t ∈ (a, b)q,ω , then Dq,ωf (t∗) = , which implies that

f (t) – f (t) = (t – t)Dq,ωf
(
t∗) = .

So f (t) = f (t) for all t, t, and hence f is constant on [a, b]q,ω . �

Lemma . We have that 
 >  and  + (λ–)(t–ω)



is positive and strictly decreasing in t for
t ∈ [ω, T]q,ω . In addition,

min
t∈[η,T]q,ω

[
 +

(λ – )(t – ω)



]
=

T – η



and
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max
t∈[ω,T]q,ω

[
 +

(λ – )(t – ω)



]
=

λ(T – η)



.

Proof Considering 
 in (.) and  ≤ λ < T–ω
η–ω

, we obtain


 = (T – ω) – λ(η – ω) > (T – ω) –
(

T – ω

η – ω

)
(η – ω) = .

For the proof that  + (λ–)(t–ω)



> , t ∈ [ω, T]q,ω , it is sufficient to show that


 + (λ – )(t – ω) =
[
(T – ω) – λ(η – ω)

]
+ (λ – )(t – ω)

=
[
(T – ω) – (t – ω)

]
– λ

[
(η – ω) – (t – ω)

]

>
[
(T – ω) – (t – ω)

]
–

T – ω

η – ω

[
(η – ω) – (t – ω)

]

=
(t – ω)(T – η)

η – ω
≥ .

Next, we prove that  + (λ–)(t–ω)



is strictly decreasing in t ∈ [ω, T]q,ω . Note that the
q,ω-derivative with respect to t for  + (λ–)(t–ω)



is

tDq,ω

[
 +

(λ – )(t – ω)



]
=

λ – 
(T – ω) – λ(η – ω)

<
λ – 

(η – ω) – λ(η – ω)

= –


η – ω
< .

By Theorem . we have that  + (λ–)(t–ω)



is strictly decreasing in t ∈ [ω, T]q,ω .
Finally, observe that

min
t∈[η,T]q,ω

[
 +

(λ – )(t – ω)



]
=

[
 +

(λ – )(t – ω)



]

t=η

=
T – η



and

max
t∈[ω,T]q,ω

[
 +

(λ – )(t – ω)



]
=

[
 +

(λ – )(t – ω)



]

t=T
=

λ(T – η)



.

The proof is complete. �

Next, we show that Green’s function given in (.) is positive.

Lemma . Let G(t, s) be Green’s function given in (.). Then G(t, s) ≥  for each (t, s) ∈
[ω, T]q,ω × [ω, T]q,ω .

Proof We aim to show that gi(t, qs + ω) >  for all i,  ≤ i ≤ , and for each admissible pair
(t, s).

Firstly, we consider the function g(t, qs + ω) = 



(t – ω)[T – (qs + ω)], s ∈ [t, T]q,ω ∩
[η, T]q,ω . To guarantee that g(t, qs + ω) > , it suffices to show that

T – (qs + ω) ≥ T – (qT + ω) > (T – ω)( – q) > . (.)

Thus, we conclude that g(t, qs + ω) >  on their respective domains.
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Next, we consider the function g(t, qs + ω) for s ∈ [η, T]q,ω and t ∈ [η, T]q,ω :

g(t, qs + ω) =
(

(t – ω)T



– t
)

+ (qs + ω)
(

 –
(t – ω)




)

=
(t – ω)




[
T – (qs + ω)

]
–

[
t – (qs + ω)

]
.

To guarantee that g(t, qs + ω) > , it suffices to show that

(t – ω)[T – (qs + ω)]

[t – (qs + ω)]

>
(t – ω)[(T – ω) – q(s – ω)]
(T – ω)[(t – ω) – q(s – ω)]

=
(T – ω) – q(s – ω)

(T – ω) – ( T–ω
t–ω

)q(s – ω)
> . (.)

So, we conclude that g(t, qs + ω) >  on their respective domains.
We next consider the function g(t, qs + ω) for s ∈ [t,η]q,ω and t ∈ [ω,η]q,ω :

g(t, qs + ω) =




(t – ω)(T – λη) +
qs + ω



(t – ω)(λ – ).

To guarantee that g(t, qs + ω) > , it suffices to show that

(T – λη) + (λ – )(qs + ω)

=
[
T – (qs + ω)

]
– λ

[
η – (qs + ω)

]

>
[
T – (qs + ω)

]
–

( – q)T – ω

( – q)η – ω

[
η – (qs + ω)

]

=


( – q)η – ω

[[
T – (qs + ω)

](
( – q)η – ω

)
–

(
( – q)T – ω

)[
η – (qs + ω)

]]

=


( – q)η – ω

[
(T – η)q

[
s( – q) – ω

]]

>
(T – η)q

( – q)η – ω

[
t( – q) – ω

]

=
(T – η)q
η – ω

[t – ω] ≥ . (.)

Hence, g(t, qs + ω) > , as claimed.
Finally, we consider the function g(t, qs + ω) for s ∈ [ω, t]q,ω ∩ [ω,η]q,ω :

g(t, qs + ω) =
[





(t – ω)(T – λη) – t
]

+ (qs + ω)
[





(t – ω)(λ – ) + 
]

=
(t – ω)




[
T – (qs + ω) – λ

[
η – (qs + ω)

]]
– t + (qs + ω)

=
(t – ω)




[
(T – ω) – q(s – ω) – λ

[
(η – ω) – q(s – ω)

]]

–
[
(t – ω) – q(s – ω)

]
.
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To guarantee that g(t, qs + ω) > , it suffices to show that





[
(T – ω) – q(s – ω) – λ

[
(η – ω) – q(s – ω)

]]
>

(t – ω) – q(s – ω)
(t – ω)

. (.)

We observe that

I(λ) :=




[
(T – ω) – q(s – ω) – λ

[
(η – ω) – q(s – ω)

]]

=
[(T – ω) – q(s – ω)] – λ[(η – ω) – q(s – ω)]

(T – ω) – λ(η – ω)
(.)

is increasing in λ for  < λ < T–ω
η–ω

. Note that I(λ) is increasing for λ if and only if

(η – ω)[(T – ω) – q(s – ω)]
(T – ω)[(η – ω) – q(s – ω)]

=
(T – ω) – q(s – ω)

(T – ω) – q( T–ω
η–ω

)(s – ω)
> . (.)

Clearly, (.) implies that (.) also holds, and hence g(t, qs + ω) > .
Consequently, from this it follows that gi(t, qs + ω) >  for each i,  ≤ i ≤ . Therefore,

G(t, qs + ω) > . �

Lemma . Let G(t, s) be Green’s function given in (.). Then for given η ∈ (ω, T)q,ω and
 ≤ λ < T–ω

η–ω
, it follows that

max
(t,s)∈[ω,T]q,ω×[ω,T]q,ω

G(t, qs + ω) = G(qs + ω, qs + ω). (.)

Proof Our strategy is to consider the following two cases.
Case : t < η. We aim to show that tDq,ωg(t, s), tDq,ωg(t, s) <  and tDq,ωg(t, s) > . The-

orem . implies that g, g are decreasing and g is increasing in t, so G(t, qs + ω) ≤
G(qs + ω, qs + ω) for all (t, s) ∈ [ω, T]q,ω × [ω, T]q,ω .

Case : t > η. We aim to show that tDq,ωg(t, s) <  and tDq,ωg(t, s), tDq,ωg(t, s) > . The-
orem . implies that g is decreasing and g, g are increasing in t, so G(t, qs + ω) ≤
G(qs + ω, qs + ω) for all (t, s) ∈ [ω, T]q,ω × [ω, T]q,ω .

Firstly, for g(t, qs + ω), we have that

tDq,ωg(t, qs + ω) = tDq,ω

{




(t – ω)
[
T – (qs + ω)

]}

=
[(qt + ω) – ω] – [t – ω]

t(q – ) + ω

[
T – (qs + ω)




]

=
[

T – (qs + ω)



]
=





[
(T – ω) – q(s – ω + )

]
>  (.)

for all s ∈ [t, T]q,ω ∩ [η, T]q,ω and t ∈ (ω, T]q,ω .
Later, for g(t, qs + ω), we have that

tDq,ωg(t, qs + ω) =
[(qt + ω) – ω] – [t – ω]

t(q – ) + ω

[




(
(T – λη) – ( – λ)(qs + ω)

)]

=




[
(T – λη) – ( – λ)(qs + ω)

]
. (.)

From (.) we obtain that tDq,ωg(t, qs + ω) >  for all s ∈ [t,η]q,ω and t ∈ (ω,η]q,ω .
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Next, we consider g(t, s) and claim that tDq,ωg(t, qs + ω) <  for each admissible pair
(t, s). To this end, noting that

g(t, qs + ω) =
(t – ω)




[
T – (qs + ω)

]
–

[
(t – ω) – q(s – ω + )

]
, (.)

we obtain

tDq,ωg(t, qs + ω) =
[(qt + ω) – ω] – [t – ω]

t(q – ) + ω

[




[
T – (qs + ω)

]
– 

]

=




(
T – (qs + ω)

)
– 

=
(T – ω) – q(s – ω)
(T – ω) – λ(η – ω)

– . (.)

So, tDq,ωg(t, qs + ω) is nonpositive when

(T – ω) – q(s – ω)
(T – ω) – λ(η – ω)

< . (.)

In addition, (.) is true if and only if

λ <
q(s – ω)
η – ω

≤ q(t – ω)
η – ω

<
q(T – ω)

η – ω
<

T – ω

η – ω
. (.)

Clearly, (.) implies that (.) also holds. Hence, tDq,ωg(t, qs + ω) <  for all s ∈ [η, t]q,ω

and t ∈ (ω, T]q,ω , as desired.
Finally, to claim that tDq,ωg(t, qs + ω) <  on its domain, we have that

tDq,ωg(t, qs + ω)

= tDq,ω

{[




(t – ω)(T – λη) – t
]

+ (qs + ω)
[





(t – ω)(λ – ) + 
]}

=




[
(T – λη) + (λ – )(qs + ω)

]
– 

=
[(T – ω) – q(s – ω)] – λ[(η – ω) – q(s – ω)]

(T – ω) – λ(η – ω)
– 

=
q(s – ω)(λ – )

(T – ω) – λ(η – ω)
<

q(s – ω)(λ – )
(η – ω) – λ(η – ω)

= –
q(s – ω)
η – ω

<  (.)

for all s ∈ [ω, t]q,ω ∩ [ω,η]q,ω and t ∈ (ω, T]q,ω .
Now, note that

G(ω, qs + ω) =  = G(qs + ω, qs + ω) for all s ∈ [ω, T]q,ω.

Consequently, this implies that

max
(t,s)∈[ω,T]q,ω×[ω,T]q,ω

G(t, qs + ω) = G(qs + ω, qs + ω).

Observe that G(qs + ω, qs + ω) = g(qs + ω, qs + ω) = q(s + ω)[T – (qs + ω)].
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Thus, by the discussion in the first paragraph of this proof we deduce that (.) holds.
The proof is complete. �

Lemma . Let G(t, s) be Green’s function given in (.). Then it follows that

min
(t,s)∈[η,T]q,ω×[ω,T]q,ω

G(t, qs + ω) ≥ σ max
(t,s)∈[ω,T]q,ω×[ω,T]q,ω

G(t, qs + ω)

= σG(qs + ω, qs + ω), (.)

where σ satisfies the inequality  < σ < , and

σ := min

{
λ(η – ω)
q(T – ω)

,
T – η

(T – ω) – q(η – ω)

}
. (.)

Proof We define

g̃i(t, qs + ω) :=
gi(t, qs + ω)

gk(qs + ω, qs + ω)
,

where k =  if i = ,  and k =  if i = , .
For t < η, we find that

g̃(t, qs + ω) =
t – ω

q(η – ω)
>

η – ω

q(η – ω)
=


q

:= σ, (.)

g̃(t, qs + ω) =
t – ω

q(s – ω)
>

T – ω

q(T – ω)
=


q

:= σ. (.)

If t > η, then we consider two cases of g̃(t, qs + ω) and g̃(t, qs + ω):

g̃(t, qs + ω) =
t–ω



[T – (qs + ω)] – [t – (qs + ω)]

qs+ω–ω



[T – (qs + ω)]

=
t – ω

q(s – ω)
–


[t – (qs + ω)]
q(s – ω)[T – (qs + ω)]

=
q(s – ω)[(T – t) – λ(η – ω)] + λ(η – ω)(t – ω)

q(s – ω)[(T – ω) – q(s – ω)]

>
T – t

(T – ω) – q(η – ω)
+

λ(η – ω)
q(s – ω)

>
T – t

T – ω
+

λ(η – ω)
q(t – ω)

>
λ(η – ω)
q(T – ω)

:= σ, (.)

and

g̃(t, qs + ω) =
t–ω



[(T – λη) + (λ – )(qs + ω)] – [t – (qs + ω)]

qs+ω–ω



[(T – λη) + (λ – )(qs + ω)]

=
t – ω

q(s – ω)
–


[t – (qs + ω)]
q(s – ω)[(T – λη) + (λ – )(qs + ω)]

=
t – ω

q(s – ω)
–

[
(t – ω) – q(s – ω)

q(s – ω)

]
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×
{

(T – ω) – λ(η – ω)
[(T – ω) – q(s – ω)] – λ[(η – ω) – q(s – ω)]

}

=:
t – ω

q(s – ω)
–

[
(t – ω) – q(s – ω)

q(s – ω)

]
×J (λ). (.)

Observe that J (λ) = I–(λ), which implies that J (λ) is decreasing in λ, and we have

g̃(t, qs + ω) ≥ t – ω

q(s – ω)
–

(
(t – ω) – q(s – ω)

q(s – ω)

)[
T – ω

(T – ω) – q(s – ω)

]

=


q(s – ω)

[
(t – ω) – (T – ω)

(
(t – ω) – q(s – ω)
(T – ω) – q(s – ω)

)]

=
T – t

(T – ω) – q(s – ω)

>
T – η

(T – ω) – q(η – ω)
:= σ. (.)

Finally, note that since σ > ,  < σ < σ, and  < σ < , it follows that

σ = min{σ,σ} ≤ σ < . (.)

We can conclude that mint∈[η,T]q,ω G(t, qs + ω) ≥ σ maxt∈[ω,T]q,ω G(t, qs + ω). �

Lemma . Let ϕ be a nonnegative function. Then there exists σ ∗ ∈ (, ) such that

min
t∈[η,T]q,ω

{∫ T

ω

G(t, qs + ω)f
(
s, x(s), (Dp,θ )x(ps + θ )

)
dq,ωs

+
[

 –
( – λ)(t – ω)




]
ϕ(x)

}

≥ σ ∗ max
t∈[ω,T]q,ω

{∫ T

ω

G(t, qs + ω)f
(
s, x(s), (Dp,θ )x(ps + θ )

)
dq,ωs

+
[

 –
( – λ)(t – ω)




]
ϕ(x)

}
. (.)

Proof Observe that by Lemma . there exists a constant σ ∈ (, ) such that

min
t∈[η,T]q,ω

∫ T

ω

G(t, qs + ω)f
(
s, x(s), (Dp,θ )x(ps + θ )

)
dq,ωs

≥ σ max
t∈[ω,T]q,ω

∫ T

ω

G(t, qs + ω)f
(
s, x(s), (Dp,θ )x(ps + θ )

)
dq,ωs. (.)

Next, by Lemma . there exists a constant S >  such that

min
t∈[η,T]q,ω

[
 +

(λ – )(t – ω)



]
=

T – η



= S and (.)

max
t∈[ω,T]q,ω

[
 +

(λ – )(t – ω)



]
=

λ(T – η)



= λS . (.)
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In particular, putting (.) and (.) together implies that by taking

σ such that  <

λ

≤ σ < 

it follows that

min
t∈[η,T]q,ω

[
 +

(λ – )(t – ω)



]
ϕ(x)

= σ max
t∈[ω,T]q,ω

[
 +

(λ – )(t – ω)



]
ϕ(x). (.)

Finally, defining

σ ∗ := min{σ ,σ} ∈ (, ), (.)

we obtain (.). This completes the proof. �

Lemma . Let G be Green’s function given in (.). Then

∫ T

ω

G(qs + ω, qs + ω) dq,ωs =
q(T – ω)
( + q)


{
T

[
T + ω

(
 + q – q)]

–


 + q + q

[
T( + q) – ω

q
(
 + q)] – (T + qω)

}
.

Proof Using the definition of the q,ω-integral, for s ∈ [ω, T]q,ω , we obtain

∫ T

ω

G(qs + ω, qs + ω) dq,ωs

=




∫ T

ω

q(s + ω)
[
T – (qs + ω)

]
dq,ωs

=
qT



∫ T

ω

(s + ω) dq,ωs –
q



[∫ T

ω

s(qs + ω) dq,ωs + ω

∫ T

ω

(qs + ω) dq,ωs
]

=
qT



[
T( – q) – ω

] ∞∑

k=

qk(Tqk + ω[k]q + ω
)

–
q



[
[
T( – q) – ω

] ∞∑

k=

qk[(Tqk + ω[k]q
)((

Tqk + ω[k]q
)
q + ω

)]

+ ω
[
T( – q) – ω

] ∞∑

k=

qk[(Tqk + ω[k]q
)
q + ω

]
]

=
q(T – ω)
( + q)


×
{

T
[
T + ω

(
 + q – q)] –


 + q + q

[
T( + q) – ω

q
(
 + q)] – (T + qω)

}
.

This completes the proof. �
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5 Existence of a positive solution for problem (1.1)
In this section, we consider the existence of at least one positive solution for problem (.)
by appealing to the Krasnoselskii fixed point theorem in a cone.

Define the cone P ⊆ C by

P :=
{

x ∈ C : x(t) ≥ , min
t∈[η,T]q,ω

x(t) ≥ σ ∗∥∥x(t)
∥
∥
C and ϕ(x) ≥ 

}
. (.)

Consider nonlinear equation (.); then x solves (.) if and only if x is a fixed point of
the operator A : P →P defined by

(Ax)(t) :=
[

 +
(λ – )(t – ω)




]
ϕ(x)

+
∫ T

ω

G(t, qs + ω)f
(
s, x(s), Dp,θ x(ps + θ )

)
dq,ωs, (.)

where G is Green’s function for problem (.), and C is the Banach space defined in Sec-
tion .

Lemma . Suppose that f : [ω, T]q,ω × [,∞) × [,∞) → [,∞) and ϕ : C([ω, T]q,ω ,
[,∞)) → [,∞) are continuous. Then the operator A : P →P is completely continuous.

Proof Since G(t, qs + ω) ≥  for all (t, s) ∈ [ω, T]q,ω × [ω, T]q,ω , we have A ≥  for all
x ∈P . For a constant L > , we define

BL =
{

x ∈P : ‖x‖C < L
}

and let M = max(t,x)∈[ω,T]q,ω×BL |f (t, x(t), Dp,θ x(pt +θ ))|, N = supx∈BL |ϕ(x)|. Then, for x ∈ BL,
we obtain

∣
∣(Ax)(t)

∣
∣

=
∣∣
∣∣

[
 +

(λ – )(t – ω)



]
ϕ(x) +

∫ T

ω

G(t, qs + ω)f
(
s, x(s), Dp,θ x(ps + θ )

)
dq,ωs

∣∣
∣∣

≤ Nλ(T – η)



+ M
∫ T

ω

G(qs + ω, qs + ω) dq,ωs

=
Nλ(T – η)



+

qM(T – ω)
( + q)


×
∣∣∣
∣T

[
T + ω

(
 + q – q)] –


 + q + q

[
T( + q) – ω

q
(
 + q)] – (T + qω)

∣∣∣
∣

=: K.

Similarly to the proof above and Theorem ., we obtain

∣
∣(Dp,θAx)(pt + θ )

∣
∣

=
∣∣
∣∣


(p – )((pt + θ ) – ω)

{
(pt + θ )(p – ) + θ
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×
[

(λ – )ϕ(x) – λ

∫ η

ω

G(pt + θ , qs + ω)f
(
s, x(s), Dp,θ x(s)

)
dq,ωs

+
∫ T

ω

G(pt + θ , qs + ω)f
(
s, x(s), Dp,θ x(s)

)
dq,ωs

]

–
∫ p(pt+θ )+θ

ω

[
p(pt + θ ) + θ – (qs + ω)

]
f
(
s, x(s), Dp,θx(s)

)
dq,ωs

+
∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]
f
(
s, x(s), Dp,θ x(s)

)
dq,ωs

}∣
∣∣
∣

<
∣∣(Ax)(t)

∣∣. (.)

Therefore, ‖(Ax)(t)‖C = K, and hence A(BL) is uniformly bounded.
Next, we shall show that A(BL) is equicontinuous. For x ∈ BL and t, t ∈ [ω, T]q,ω with

t < t, there are three cases to consider.
Case : If η ≤ t < t, then by (.), letting gi(t, qs + ω) = (t–ω)



gi(t, qs + ω), we obtain

∣∣(Ax)(t) – (Ax)(t)
∣∣

≤ |t – t|(λ – )
N



+ M
∣∣
∣∣

∫ T

ω

[
G(t, qs + ω) – G(t, qs + ω)

]
dq,ωs

∣∣
∣∣

≤ |t – t|N(λ – )



+ M
∣
∣∣
∣
(t – t)




∫ η

ω

g(qs + ω, qs + ω) dq,ωs

+
[

(t – ω)



∫ t

η

g(qs + ω, qs + ω) dq,ωs –
(t – ω)




∫ t

η

g(qs + ω, qs + ω) dq,ωs
]

+
[

(t – ω)



∫ T

t

g(qs + ω, qs + ω) dq,ωs –
(t – ω)




∫ T

t

g(qs + ω, qs + ω) dq,ωs
]∣∣
∣∣

=
N(λ – )



|t – t| +

M



|t – t|

×
∣∣
∣∣
[
T –  – λ(η – )

] ∫ η

ω

dq,ωs –
∫ η

ω

[
T – (qs + ω)

]
dq,ωs

+
∫ T

ω

[
T – (qs + ω)

]
dq,ωs

∣
∣∣
∣

=
|t – t|




{
N(λ – ) + M

∣∣
∣∣
[
T –  – λ(η – )

]
(η – ω)

+
η – ω

 + q
[
(T – ω) + q(T + η)

]
+

(T – ω)

 + q

∣
∣∣∣

}

=
|t – t|



�.

Therefore, there exists a constant δ >  such that

∣∣(Ax)(t) – (Ax)(t)
∣∣ <

ε


whenever |t – t| < δ =

ε


�
. (.)
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Case : If t < t ≤ η, then by (.) we obtain

∣∣(Ax)(t) – (Ax)(t)
∣∣

≤ |t – t|(λ – )
N



+ M
∣
∣∣
∣

∫ T

ω

[
G(t, qs + ω) – G(t, qs + ω)

]
dq,ωs

∣
∣∣
∣

≤ |t – t|N(λ – )



+ M
∣
∣∣
∣

[
(t – ω)




∫ t

ω

g(qs + ω, qs + ω) dq,ωs

–
(t – ω)




∫ t

ω

g(qs + ω, qs + ω) dq,ωs
]

+
[

(t – ω)



∫ η

t

g(qs + ω, qs + ω) dq,ωs

–
(t – ω)




∫ η

t

g(qs + ω, qs + ω) dq,ωs
]∣∣
∣∣ +

(t – t)



∫ T

η

g(qs + ω, qs + ω) dq,ωs

=
N(λ – )



|t – t| +

M



|t – t|

×
∣
∣∣∣

∫ η

ω

([
T –  – λ(η – )

]
–

[
T – (qs + η)

])
dq,ωs +

∫ T

ω

[
T – (qs + ω)

]
dq,ωs

∣
∣∣∣

=
|t – t|




{
N(λ – ) + M

∣
∣∣
∣
[
T –  – λ(η – )

]
(η – ω)

+
η – ω

 + q
[
(T – ω) + q(T + η)

]
+

(T – ω)

 + q

∣∣
∣∣

}

=
|t – t|



�.

Therefore, there exists a constant δ >  such that

∣∣(Ax)(t) – (Ax)(t)
∣∣ <

ε


whenever |t – t| < δ =

ε


�
. (.)

Case : If t < η < t with |t – t| < δ = min{δ, δ}, then from (.)-(.) it follows that

∣∣(Ax)(t) – (Ax)(t)
∣∣ ≤ ∣∣(Ax)(t) – (Ax)(η)

∣∣ +
∣∣(Ax)(η) – (Ax)(t)

∣∣

<
ε


+

ε


= ε. (.)

Similarly to the proof above, by (.) we obtain

∣
∣(Dp,θAx)(pt + θ ) – (Dp,θAx)(pt + θ )

∣
∣ <

∣
∣(Ax)(t) – (Ax)(t)

∣
∣ < ε. (.)

Hence, we conclude that |(Ax)(t) – (Ax)(t)| < ε if |t – t| < δ = min{δ, δ} for t, t ∈
[ω, T]q,ω , that is, A(BL) is equicontinuous. By the Arzelà-Ascoli theorem, A : C → C is a
completely continuous operator.

Finally, we apply Lemmas .-. to obtain

(Ax)(t) ≥  for all t ∈ [ω, T]q,ω (.)
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and, for f ∈P ,

min
t∈[η,T]q,ω

(Ax)(t) ≥ min
t∈[η,T]q,ω

{[
 +

(λ – )(t – ω)



]
ϕ(x)

+
∫ T

ω

G(t, qs + ω)f
(
s, x(s), Dp,θ x(ps + θ )

)
dq,ωs

}

= σ ∗
{

max
t∈[ω,T]q,ω

[
 +

(λ – )(t – ω)



]
ϕ(x)

+
∫ T

ω

G(qs + ω, qs + ω)f
(
s, x(s), Dp,θx(ps + θ )

)
dq,ωs

}

= σ ∗(Ax)(qs + ω). (.)

Hence,

min
t∈[η,T]q,ω

(Ax)(t) ≥ σ ∗‖Ax‖C , that is,AP ⊂P .

Consequence, it follows that A : P →P is a completely continuous operator. �

The following notation is used in the sequel:

♦ :=


∫ T
ω

G(qs + ω, qs + ω) dq,ωs
,

� :=


σ ∗ ∫ T
ω

G(qs + ω, qs + ω) dq,ωs
,

ϒ :=



λ(T – η)
, and

ϒ :=



σ ∗[λ(T – η)]
.

Next, we introduce some assumptions that will be helpful in the sequel.

(A) There exists a constant r >  such that

f
(
t, x(t), Dp,θ x(pt + θ )

) ≤ 

♦r (.)

for all t ∈ [ω, T]q,ω and  ≤ x ≤ r.
(A) There exists a constant r >  with r < r such that

f
(
t, x(t), Dp,θ x(pt + θ )

) ≥ 

�r (.)

for all t ∈ [ω, T]q,ω and σ ∗r ≤ x ≤ r, where σ ∗ is defined in (.).
(A) There exists a constant r >  such that

ϕ(x) ≤ 

�r (.)

for all x ∈P and  ≤ ‖x‖C ≤ r.
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(A) There exists a constant r >  such that

ϕ(x) ≥ 

�r (.)

for all x ∈P and σ ∗r ≤ ‖x‖C ≤ r.

Now, we can prove the existence of at least one positive solution.

Theorem . Suppose that conditions (A)-(A) hold. Let f (t, x) ∈ C([η, T]q,ω × [,∞) ×
[,∞), [,∞)) and ϕ(x) : C([η, T]q,ω, [,∞)) → [,∞). Then problem (.) has at least one
positive solution, say x∗, where r ≤ ‖x∗‖C ≤ r.

Proof Set � = {x ∈ C([ω, T]q,ω) : ‖x‖C < r}. Then, for x ∈P ∩ ∂�, we have

(Ax)(t) ≤ max
t∈[ω,T]q,ω

{[
 +

(λ – )(t – ω)



]
ϕ(x)

+
∫ T

ω

G(t, qs + ω)f
(
s, x(s), Dp,θx(ps + θ )

)
dq,ωs

}

≤
(

λ(T – η)



)


ϒr +



♦r

∫ T

ω

G(qs + ω, qs + ω) dq,ωs

=
r


+

r


= r.

Since |(Dp,θAx)(t)| < |(Ax)(t)| ≤ r, we have

‖Ax‖C ≤ ‖x‖C whenever x ∈P ∩ ∂�. (.)

Further, let � = {x ∈ C([ω, T]q,ω) : ‖x‖C < r}. Then, for x ∈P ∩∂�, using Lemma .,
we find that

(Ax)(t) ≥ min
t∈[η,T]q,ω

{[
 +

(λ – )(t – ω)



]
ϕ(x)

}

+
∫ T

ω

min
t∈[η,T]q,ω

G(t, qs + ω)f
(
s, x(s), Dp,θ x(ps + θ )

)
dq,ωs

≥ 

ϒrσ

∗ max
t∈[ω,T]q,ω

{[
 +

(λ – )(t – ω)



]
ϕ(x)

}

+


�rσ

∗ max
t∈[ω,T]q,ω

∫ T

ω

G(t, qs + ω) dq,ωs

=


ϒrσ

∗
(

λ(T – η)



)
+



�rσ

∗
∫ T

ω

G(qs + ω, qs + ω) dq,ωs

=
r


+

r


= r.

Since |(Dp,θAx)(t)| < |(Ax)(t)| ≤ r, we have

‖Ax‖C ≥ ‖x‖C whenever x ∈P ∩ ∂�. (.)
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We conclude by Theorem . that the operator A has a fixed point. This implies that
problem (.) has a positive solution, say x∗, where r ≤ ‖x∗‖C ≤ r. �

6 Example
In this section, to illustrate our results, we consider an example.

Example Consider the following boundary value problem for the second-order Hahn dif-
ference equation

D

 , 


x(t) +

e– cos(π t)

(t + ) ·
|x| + arctan(cos(π t))[D 

 , 


x( 
 t + 

 )]

|x| + 
e

= ,

x
(




)
=

∞∑

i=

Ci|x(ti)|
 + |x(ti)| , ti = 

(



)i

+



[i] 


,

x() =



x
(




)
,

(.)

where t ∈ [ 
 , ] 

 , 


, and Ci are given positive constants with 
e ≤ ∑∞

i= Ci ≤ 
e .

Set q = 
 , ω = 

 , ω = 
 , p = 

 = 
 , θ = 

 [ –( 
 )

– 


] = 
 , T = , η = ( 

 ) + 
 [] 


= 

 ,

λ = 
 , ϕ(x) =

∑∞
i=

Ci|x(ti)|
+|x(ti)| , and

f
(
t, x(t), Dp,θ x(pt + θ )

)
=

e– cos(π t)

(t + )

×
|x| + arctan(cos(π t))[D 

 , 


x( 
 t + 

 )]

|x| + 
e

.

I. The existence and uniqueness of solution to problem (.). We can show that

 ≤ λ <



≈ , 
 ≈ ., � ≈ ., and  ≈ ..

Clearly,

∣∣f
(
t, x(t), Dp,θ x(pt + θ )

)
– f

(
t, y(t), Dp,θ y(pt + θ )

)∣∣

<
|x(t) – y(t)|

(t + ) +
arctan()|Dp,θ x(pt + θ ) – Dp,θ y(pt + θ )|

(t + )

≤ .
∣∣x(t) – y(t)

∣∣ + .
∣∣Dp,θ x(pt + θ ) – Dp,θ y(pt + θ )

∣∣,

so that (H) holds with γ = ., γ = ., and γ = max{γ,γ} = ., and

∣∣ϕ(x) – ϕ(y)
∣∣ =

∣∣
∣∣
∣

∞∑

i=

Ci|x(ti)|
 + |x(ti)| –

∞∑

i=

Ci|y(ti)|
 + |y(ti)|

∣∣
∣∣
∣

<
∞∑

i=

Ci
∣∣x(ti) – y(ti)

∣∣ ≤ 
e ‖x – y‖,

so that (H) holds with � = 
e .



Sitthiwirattham Advances in Difference Equations  (2016) 2016:116 Page 24 of 25

Also, we can show that

S = γ� + � ≈ . < .

Hence, by Theorem . problem (.) has a unique solution.
II. The existence of at least one positive solution to problem (.). We can show that

σ = min

{
λ(η – ω)
q(T – ω)

,
T – η

(T – ω) – q(η – ω)

}

= min{., .} = .,


λ

= . ≤ σ < ,

σ ∗ = min
{
σ , min{σ}

}
= .,

♦ =


∫ T
ω

G(qs + ω, qs + ω) dq,ωs
= .,

� =


σ ∗ ∫ T
ω

G(qs + ω, qs + ω) dq,ωs
= .,

ϒ =



λ(T – η)
= ., and ϒ =




σ ∗[λ(T – η)]
= ..

Clearly,

∣∣f
(
t, x(t), Dp,θ x(pt + θ )

)∣∣ ≤  + π


( 
 + )

= . = .
♦


for  ≤ x ≤ r ≤ .,

∣∣f
(
t, x(t), Dp,θ x(pt + θ )

)∣∣ ≥ 
e()

[ |x|
|x| + 

]
>


e

= . = .
�



for . = .σ ∗ ≤ x ≤ r ≤ .,

ϕ(x) ≤ 
e = . = .

ϒ


for  ≤ x ≤ r ≤ ., and

ϕ(x) ≥ 
e = . = .

ϒ


for . = .σ ∗ ≤ x ≤ r ≤ ..

Therefore, conditions (A)-(A) are satisfied. Consequently, by Theorem . problem (.)
has at least one positive solution x∗ such that r = . ≤ ‖x∗‖C ≤ . = r.
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