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Abstract
In this work, we investigate the existence and uniqueness of the solutions for a class
of nonlinear fractional differential equations with nonlocal integral boundary
conditions. Our analysis relies on the fixed point index theory and a u0-positive
operator. Examples are discussed for the illustration of the main work.
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1 Introduction
We consider a class of nonlinear fractional differential equations with nonlocal integral
boundary value conditions of this form:

⎧
⎪⎨

⎪⎩

Dα
+ u(t) + p(t)f (t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,
u() = λIβ

+ u(η) = λ
∫ η


(η–s)β–u(s)

�(β) ds,
(.)

where α ∈ (n – , n] is a real number, n ≥  is an integer,  < η ≤ , λ,β > ,  ≤ λ�(α)ηα+β–

�(α+β) <
, and Dα

+ is the standard Riemann-Liouville differential operator.
Here, we emphasize that the integral boundary condition of (.) can be understood

in the sense that the value of the unknown function at the position t =  is proportional
to the Riemann-Liouville fractional integral of the unknown function λ

∫ η


(η–s)β–u(s)

�(β) ds,
where  < η ≤ . Furthermore, for β = , the integral boundary condition reduces to the
usual form of nonlocal integral condition u() = λ

∫ η

 u(s) ds.
Fractional calculus has been investigated in diverse by several researchers. The recent

development covers the theoretical as well as potential applications of the subject in phys-
ical and technical science. Fractional differential equations have been of great interest re-
cently (see, e.g., [–]). There are many results dealing with the existence and multiplicity
of solutions of nonlinear fractional differential equations by the means of techniques of
nonlinear analysis (see, e.g., [–] and the references therein).
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Wang and Zhang [] studied the existence and multiplicity of positive solutions for the
following nonlinear fractional differential equations:

{
Dα

+ u(t) + h(t)f (t, u(t)) = ,  < t < , n –  < α ≤ n,
u() = u′() = · · · = u(n–)() = , u() =

∑m–
i= ηiu(ξi),

(.)

where α ≥ , ηi ≥  (i = , , . . . , m – ),  < ξ < ξ < · · · < ξm– < ,
∑m–

i= ηiξ
α–
i < , Dα

+ is
the standard Riemann-Liouville derivative.

Zhang [] studied the existence of positive solutions of the following nonlinear frac-
tional differential equation with infinite-point boundary value conditions:

⎧
⎪⎨

⎪⎩

Dα
+ u(t) + q(t)f (t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,
u(i)() =

∑∞
j= αju(ξj),

(.)

where α > , n –  < α ≤ n, i ∈ [, n – ] is a fixed integer, αj ≥ ,  < ξ < ξ < · · · < ξj– < ξ j <
· · · <  (j = , , . . .), � –

∑∞
j= αjξ

α–
j > , � = (α – )(α – ) · · · (α – i), Dα

+ is the standard
Riemann-Liouville derivative. By introducing height functions of the nonlinear term on
some bounded sets and considering integrations of these height functions, several local
existence and multiplicity of positive solutions theorems were obtained.

In [], Ahmad and Agarwal considered the existence and the uniqueness of solutions to
a class of Caputo type fractional differential equations of order q ∈ (n – , n] with slit-strips
type boundary conditions:

⎧
⎪⎨

⎪⎩

cDqu(t) = f (t, u(t)),  < t < ,
u() = u′() = · · · = u(n–)() = ,
u(η) = a

∫ ξ

 u(s) ds + b
∫ 
ζ

u(s) ds,
(.)

where  < ξ < η < ζ < , a and b are positive constants.
Liu et al. [] studied the existence of positive solutions and constructed two successively

iterative sequences to approximate the solutions for the following fractional boundary
value problem:

⎧
⎪⎨

⎪⎩

Dα
+ u(t) + f (t, u(t)) = ,  < t < ,

u() = u′() = u′′() = ,
u() = λIβ

+ u(η),
(.)

where  < α ≤ ,  < η ≤ , λ,β > ,  ≤ λ�(α)ηα+β–

�(α+β) < , and Dα
+ is the standard Riemann-

Liouville differential operator.
For n = , p(t) ≡ , the fractional boundary value problem (.) reduces to the problem

(.). For n = , β = , the boundary conditions of (.) reduce to u() = u′() = u′′() = ,
u() = λ

∫ η

 u(s) ds, which had been considered in [].
Motivated by the work mentioned above, in this article we study the differential equa-

tions (.) by using u-positive operator and fixed point index theory under some con-
ditions concerning the first eigenvalue with respect to the relevant linear operator. The
methods are different from those in previous work; we not only obtain the existence and
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multiplicity of positive solutions for (.) under sublinear and superlinear cases, but we
also get the uniqueness existence of solutions for (.). Moreover, we construct succes-
sively iterative sequences to approximate the unique solutions.

This paper is arranged as follows. Some lemmas needed below are listed in Section .
The existence and multiplicity of the positive solutions to the problem (.) are proved
in the first part of Section . In the second part, one shows the existence and uniqueness
of positive solutions and constructs successively iterative sequences to approximate the
solutions. Finally, in Section , examples are given for the illustration of the main work.

2 Some lemmas
Let Banach space E = C([, ]) be endowed with the norm ‖u‖∞ = max≤t≤ |u(t)|, and θ is
the zero function in E. Define a closed cone Pc ⊂ E by Pc = {u ∈ E | u(t) ≥ , t ∈ [, ]}. For
any  < r < R < +∞, let Br = {u ∈ Pc : ‖u‖ < r}, ∂Br = {u ∈ Pc : ‖u‖ = r}, BR = {u ∈ Pc : ‖u‖ <
R}, BR \ Br = {u ∈ Pc : r ≤ ‖u‖ ≤ R}.

We list the following assumptions adopted in this paper:

(A) p : [, ] → [, +∞) is continuous and  <
∫ 

 p(s) ds < +∞;
(A) f : [, ] × [,∞) → [,∞) is continuous and f (t, ) �≡ .

For the convenience of the reader, we present here some necessary definitions of the
fractional calculus. These definitions can be found in the recent literature [–].

Definition . The Riemann-Liouville fractional integral of order α >  of a function f :
(,∞) → R is given by

Iα
+ f (t) =


�(α)

∫ t


(t – s)α–f (s) ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . The Riemann-Liouville fractional derivative of order α >  of a continuous
function f : (,∞) → R is given by

Dα
+ f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–f (s) ds,

where n –  ≤ α < n, provided that the right-hand side is pointwise defined on (,∞).

Lemma . Assume that y(t) ∈ C([, ]). The problem

⎧
⎪⎨

⎪⎩

Dα
+ u(t) + y(t) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,
u() = λIβ

+u(η) = λ
∫ η


(η–s)β–u(s)

�(β) ds,
(.)

where α ∈ (n – , n], n ≥ , n ∈ N ,  < η ≤ , λ,β > ,  ≤ λ�(α)ηα+β–

�(α+β) < , is equivalent to

u(t) =
∫ 


G(t, s)y(s) ds,
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where

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–P�(α+β)(t–s)α–+�(α+β)(–s)α–tα––�(α)λ(η–s)α+β–tα–

P�(α)�(α+β) ,  ≤ s ≤ t ≤ , s ≤ η,
�(α+β)(–s)α–tα––�(α)λ(η–s)α+β–tα–

P�(α)�(α+β) ,  ≤ t ≤ s ≤ η ≤ ,
–P�(α+β)(t–s)α–+�(α+β)(–s)α–tα–

P�(α)�(α+β) ,  ≤ η ≤ s ≤ t ≤ ,
�(α+β)(–s)α–tα–

P�(α)�(α+β) ,  ≤ t ≤ s ≤ , s ≥ η,

with P =  – λ�(α)
�(α+β)η

α+β–,  < P ≤ . G(t, s) is called the Green’s function of boundary value
problem (.). Obviously, G(t, s) is a continuous function on [, ] × [, ].

Proof A function u ∈ Cn–[, ] ∩ Cn(, ) is called a solution of FBVP (.) if it satisfies
(.). It is shown in [–] that problem (.) is equivalent to the following integral equation:

u(t) = –Iα
+ y(t) + Ctα– + Ctα– + · · · + Cntα–n.

By u() = u′() = · · · = u(n–)() = , we have

C = C = · · · = Cn = .

Then we get

u(t) = –Iα
+ y(t) + Ctα–.

By u() = λIβ

+ u(η), we have

–Iα
+ y() + C = –λIα+β

+ y(η) + λC
�(α)

�(α + β)
ηα+β–.

When  – λ�(α)
�(α+β)η

α+β– �= , we obtain

C =


 – λ�(α)
�(α+β)η

α+β–

(
Iα

+ y() – λIα+β

+ y(η)
)

=:

P

(
Iα

+ y() – λIα+β

+ y(η)
)
.

Therefore, the solution to problem (.) is

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +

tα–

P�(α)

∫ 


( – s)α–y(s) ds

–
λtα–

P�(α + β)

∫ η


(η – s)α+β–y(s) ds.

For t ≤ η, one has

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +

tα–

P�(α)

{∫ t


+

∫ η

t
+

∫ 

η

}

( – s)α–y(s) ds

–
λtα–

P�(α + β)

{∫ t


+

∫ η

t

}

(η – s)α+β–y(s) ds

=
∫ t



–P�(α + β)(t – s)α– + �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

P�(α)�(α + β)
y(s) ds
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+
∫ η

t

�(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

P�(α)�(α + β)
y(s) ds

+
∫ 

η

�(α + β)( – s)α–tα–

P�(α)�(α + β)
y(s) ds

=
∫ 


G(t, s)y(s) ds.

For t ≥ η, one has

u(t) = –


�(α)

{∫ η


+

∫ t

η

}

(t – s)α–y(s) ds +
tα–

P�(α)

{∫ η


+

∫ t

η

+
∫ 

t

}

( – s)α–y(s) ds

–
λtα–

P�(α + β)

∫ η


(η – s)α+β–y(s) ds

=
∫ η



–P�(α + β)(t – s)α– + �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

P�(α)�(α + β)
y(s) ds

+
∫ t

η

–P�(α + β)(t – s)α– + �(α + β)( – s)α–tα–

P�(α)�(α + β)
y(s) ds

+
∫ 

t

�(α + β)( – s)α–tα–

P�(α)�(α + β)
y(s) ds

=
∫ 


G(t, s)y(s) ds.

The proof is finished. �

Lemma . ([]) The Green’s function G(t, s) has the following properties:
() G(t, s) > , ∀t, s ∈ (, );
() G(t, s) ≤ (–s)α–tα–

P�(α) , ∀t, s ∈ (, );

() G(t, s) ≥ λtα–ηα+β–

P�(α+β) {( – s)α– – ( – s)α+β–}, ∀t, s ∈ (, );
() tα–w(s) ≤ G(t, s) ≤ tα–w(s), ∀t, s ∈ (, ),

with w(s) = ληα+β–

P�(α+β) {( – s)α– – ( – s)α+β–}, w(s) = (–s)α–

P�(α) .

Definition . ([]) We say that a bounded linear operator T : E → E is u-positive on
the cone Pc if there exists u ∈ Pc \ {θ} such that for every x ∈ Pc \ {θ} there exist a natural
number n and positive functions α(x) > , β(x) >  such that

α(x)u ≤ Tnx ≤ β(x)u,

where θ is the zero function in E. Furthermore, if u = ϕ, the positive eigenfunction of T
corresponding to its first eigenvalue λ, then T is a ϕ-positive operator.

Lemma . (Krein-Rutmann theorem []) Suppose that T : E → E is a completely con-
tinuous linear operator and T(Pc) ⊆ Pc. If there exist ψ ∈ C[, ]\(–Pc) and a constant c > 
such that cTψ ≥ ψ , then the spectral radius r(T) �=  and A has a positive eigenfunction ϕ

corresponding to its first eigenvalue λ = (r(T))–.
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Define the operator A : C[, ] → C[, ] by

(Au)(t) =
∫ 


G(t, s)p(s)f

(
s, u(s)

)
ds, t ∈ [, ]. (.)

It is not hard to see that the fixed points of operator A coincide with the solutions to the
problem (.). It is obvious that A(Pc) ⊆ Pc when the assumptions (A) and (A) hold. Ap-
plying the Arzel-Ascoli theorem, we conclude that A is a completely continuous operator.

Define the operator T : C[, ] → C[, ] by

(Tu)(t) =
∫ 


G(t, s)p(s)u(s) ds, t ∈ [, ]. (.)

It is not difficult to verify that T : Pc → Pc is a completely continuous linear operator. By
virtue of the Krein-Rutman theorem, we have the following lemma.

Lemma . Suppose T is defined by (.), then the spectral radius r(T) �=  and A has a
positive eigenfunction ϕ corresponding to its first eigenvalue λ = (r(T))–.

Proof By Lemma ., G(t, s) >  for all t, s ∈ (, ). Take [t, t] ⊂ (, ), p(t) > , ∀t ∈ [t, t],
choose ψ ∈ E such that ψ(t) ≥  for all t ∈ [, ], ψ(t) >  for all t ∈ [t, t], ψ(t) =  for all
t ∈ [, t) ∪ (t, ]. Thus, we have

(Tψ)(t) =
∫ 


G(t, s)p(s)ψ(s) ds =

∫ t

t

G(t, s)p(s)ψ(s) ds > .

So, there exists a constant c >  such that c(Tψ)(t) ≥ ψ(t), ∀t ∈ [, ]. By Lemma ., we
complete the proof. �

Lemma . T is a u-positive operator with u(t) = tα–. In addition, T is a ϕ-positive
operator, where ϕ is the positive eigenfunction corresponding to its first eigenvalue.

Proof For any x ∈ Pc\{θ}, by Lemma ., we have

(Tx)(t) =
∫ 


G(t, s)p(s)x(s) ds

≤
∫ 


w(s)p(s)x(s) ds · tα–.

On the other hand, we have

(Tx)(t) =
∫ 


G(t, s)p(s)x(s) ds

≥
∫ 


w(s)p(s)x(s) ds · tα–.

Therefore, T is a u-positive operator with u(t) = tα–, i.e.

α(x)u ≤ Tx ≤ β(x)u, ∀x ∈ Pc\{θ}.
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Let ϕ is the positive eigenfunction of T corresponding to λ, i.e. ϕ = λTϕ. Then there
exist α̃(ϕ), β̃(ϕ) >  such that

α̃(ϕ)u ≤ Tϕ =

λ

ϕ ≤ β̃(ϕ)u.

Hence, we see that T is a ϕ-positive operator.
The proof is completed. �

Lemma . ([, ]) Let � ⊂ E be a bounded open set, and A : � ∩ Pc → Pc is completely
continuous.

(i) If there exists u ∈ Pc \ {θ} such that u – Au �= μu, ∀μ ≥ , u ∈ ∂� ∩ Pc, then
i(A,� ∩ Pc, Pc) = .

(ii) Let θ ∈ � ⊂ E, if u �= μAu, ∀u ∈ ∂� ∩ Pc,  ≤ μ ≤ , then i(A,� ∩ Pc, Pc) = .

Lemma . ([, ]) Let � and � be two bounded open sets in E such that θ ∈ � and
� ⊂ �. Let operator A : (� \ �) ∩ Pc → Pc is completely continuous. Suppose that one
of the two conditions is satisfied:

(i) Au � u, ∀u ∈ Pc ∩ ∂�, Au � u, ∀u ∈ Pc ∩ ∂�;
(ii) Au � u, ∀u ∈ Pc ∩ ∂�, Au � u, ∀u ∈ Pc ∩ ∂�.

Then A has at least one fixed point in (� \ �) ∩ Pc.

3 Main results
3.1 Existence and multiplicity results
For convenience, we list the following assumptions:

(H) limu→+ mint∈[,]
f (t,u)

u > λ;
(H) limu→∞ maxt∈[,]

f (t,u)
u < λ;

(H) limu→+ maxt∈[,]
f (t,u)

u < λ;
(H) limu→∞ mint∈[,]

f (t,u)
u > λ;

(H) there exist r > , such that

f
(
t, u(t)

)
<

[∫ 


w(s)p(s) ds

]–

r, ∀ < u ≤ r, t ∈ [, ];

(H) there exist r̄ > , such that

f
(
t, u(t)

)
>

[∫ –τ

τ

τ α–w(s)p(s) ds
]–

r̄,

∀ < u ≤ r̄, t ∈ [τ ,  – τ ], where τ ∈ (, ), such that p(t) �≡ , t ∈ [τ ,  – τ ].

Theorem . Suppose that conditions (H)-(H) hold, then the FBVP (.) has at least one
positive solution.

Proof By (H), there exist r > , ε >  such that

f (t, u) ≥ (λ + ε)u, t ∈ [, ], u ∈ [, r].
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Let ϕ be the positive eigenfunction of T corresponding to λ, i.e. ϕ = λTϕ. For all
u ∈ Br ∩ Pc, we have

(Au)(t) ≥ (λ + ε)
∫ 


G(t, s)p(s)u(s) ds = (λ + ε)(Tu)(t), t ∈ [, ].

Without loss of generality, we may assume that A has no fixed points on ∂Br ∩ Pc. Now we
claim that

u – Au �= μϕ, ∀u ∈ ∂Br ∩ Pc,μ ≥ . (.)

Otherwise, there exist u ∈ ∂Br ∩ Pc and μ ≥  such that u – Au = μϕ, then u ≥ μϕ.
Put τ ∗ = sup{τ | u ≥ τϕ}. T is a positively linear operator, then we have

(λ + ε)T(u) ≥ λT(u) ≥ τ ∗λT(ϕ) = τ ∗ϕ.

Thus, u = Au + μϕ ≥ (λ + ε)Tu + μϕ ≥ (τ ∗ + μ)ϕ, which contradicts the definition
of τ ∗. Hence, (.) holds. By Lemma . yields

i(A, Br ∩ Pc, Pc) = . (.)

In addition, by (H), there exist ε ∈ (,λ), m >  such that f (t, u) ≤ (λ –ε)u+m, ∀u ≥ R,
t ∈ [, ]. Let

W :=
{

u ∈ Pc | u = μAu,μ ∈ [, ]
}

; (.)

u(t) = μ(Au)(t) ≤
∫ 


G(t, s)p(s)f

(
s, u(s)

)
ds

≤
∫ 


G(t, s)p(s)

(
(λ – ε)u(s) + m

)
ds

= (λ – ε)(Tu)(t) + u, (.)

where u := m
∫ 

 G(t, s)q(s) ds. Notice that r((λ – ε)T) < , thus the operator I – (λ – ε)T
is invertible. Combining this with (.) yields u ≤ ((λ – ε)T)–u, this implies that W is
bounded. Choose R > max{R, sup W }, we have

u �= μAu, ∀u ∈ ∂BR ∩ Pc,μ ∈ [, ].

By Lemma .,

i(A, BR ∩ Pc, Pc) = . (.)

By (.) and (.), we have i(A, (BR \ Br) ∩ Pc, Pc) = i(A, BR ∩ Pc, Pc) – i(A, Br ∩ Pc, Pc) = .
Hence the operator A has at least one fixed point on (BR \ Br) ∩ Pc.

The proof is finished. �

Theorem . Suppose that conditions (H), (H) hold, then the FBVP (.) has at least one
positive solution.



Liu et al. Advances in Difference Equations  (2016) 2016:122 Page 9 of 14

Proof The proof is similar to Theorem . of [, ], so we omit the details.
By (H) and Lemma ., we get

i(A, Br ∩ Pc, Pc) = . (.)

By (H) and Lemma ., we get

i(A, BR ∩ Pc, Pc) = . (.)

Hence the operator A has at least one fixed point on (BR \ Br) ∩ Pc. �

Theorem . Suppose that conditions (H), (H) hold, then the FBVP (.) has at least one
positive solution.

Proof Similar to the proof of Theorem ., by (H), we have

i(A, Br ∩ Pc, Pc) = . (.)

By (H), choose r > r, we have

f
(
t, u(t)

)
<

[∫ 


w(s)p(s) ds

]–

r, ∀ < u ≤ r, t ∈ [, ].

Now we claim that

u �= μAu, ∀u ∈ ∂Br ∩ Pc,μ ∈ [, ]. (.)

If otherwise, there exist u ∈ ∂Br ∩ Pc, and μ ∈ [, ] such that u = μAu. Noticing

Au =
∫ 


G(t, s)p(s)f

(
s, u(s)

)
ds <

∫ 


w(s)p(s)f

(
s, u(s)

)
ds < r = ‖u‖, t ∈ [, ].

Thus,

‖u‖ > ‖Au‖ ≥ μ‖Au‖,

which contradicts the fact of u = μAu. Then (.) holds. By Lemma .,

i(A, Br ∩ Pc, Pc) = . (.)

Therefore, i(A, (Br \ Br) ∩ Pc, Pc) = i(A, Br ∩ Pc, Pc) – i(A, Br ∩ Pc, Pc) = , then the FBVP
(.) has at least one positive solution in (Br \ Br) ∩ Pc.

The proof is finished. �

Theorem . Suppose that conditions (H), (H) hold, then the FBVP (.) has at least one
positive solution.
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Proof By (H), we have

i(T , BR ∩ Pc, Pc) = . (.)

By (H), choose R > r̄, we have

f
(
t, u(t)

)
>

[∫ –τ

τ

τ α–w(s)p(s) ds
]–

r̄,

∀ < u ≤ r̄, t ∈ [τ ,  – τ ], where τ ∈ (, ), such that p(t) �≡ , t ∈ [τ ,  – τ ]. Now we claim
that

Au � u, ∀u ∈ ∂Br̄ ∩ Pc. (.)

If otherwise, there exist u ∈ ∂Br̄ ∩ Pc such that Au ≤ u. Noticing

Au =
∫ 


G(t, s)p(s)f

(
s, u(s)

)
ds ≥

∫ 


sα–w(s)p(s)f

(
s, u(s)

)
ds

>
∫ –τ

τ

τ α–w(s)p(s)f
(
s, u(s)

)
ds > r̄ = ‖u‖, t ∈ [, ].

Thus, ‖Au‖ > ‖u‖, which contradicts the fact of Au � u. Then (.) holds. By Lem-
ma .,

i(A, Br̄ ∩ Pc, Pc) = . (.)

Thus the FBVP (.) has at least one positive solution in (BR \ Br̄ ) ∩ Pc.
The proof is finished. �

Similarly, we can get the following result.

Corollary . Suppose that conditions (H), (H) hold, then the FBVP (.) has at least
one positive solution.

Corollary . Suppose that conditions (H), (H) hold, then the FBVP (.) has at least
one positive solution.

Corollary . Suppose that conditions (H), (H), (H) hold, then the FBVP (.) has at
least two positive solutions.

Corollary . Suppose that conditions (H), (H), (H) hold, then the FBVP (.) has at
least two positive solutions.

3.2 Uniqueness results
Theorem . Suppose that there exists k ∈ [, ) such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ kλ|u – v|, ∀t ∈ [, ], u, v ∈ Pc,
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where λ is the first eigenvalue of T . Then the FBVP (.) has a unique positive solution u∗,
moreover, for any u ∈ Pc, there exist iterative sequences {un}∞n= with

un+ = Aun, lim
n→∞ un = u∗, n = , , , . . . .

Proof First of all, it is not hard to see that the fixed points of operator A coincide with the
solutions to the problem (.).

Second, we will show that A has fixed points in Pc. For any given u ∈ Pc, let un+ = Aun.
By Lemma ., there exists β = β(|u – u|) > , such that

(
T |u – u|

)
(t) ≤ βϕ(t), t ∈ [, ].

Then, for any m ∈ N, we have

|um+ – um| =
∣
∣(Aum)(t) – (Aum–)(t)

∣
∣

=
∣
∣
∣
∣

∫ 


G(t, s)p(s)

[
f
(
s, um(s)

)
– f

(
s, um–(s)

)]
ds

∣
∣
∣
∣

≤
∫ 


G(t, s)p(s)

∣
∣f

(
s, um(s)

)
– f

(
s, um–(s)

)∣
∣ds

≤ kλ

∫ 


G(t, s)p(s)|um – um–|ds

= kλT
(|um – um–|

)
(t) ≤ · · ·

≤ kmλm
 Tm(|u – u|

)
(t)

≤ kmλm
 Tm–βϕ(t) = βkmλm–

 Tm–ϕ(t)

= βkmλϕ(t).

Thus, for n, m ∈N, we have

|un+m+ – un| = |un+m+ – un+m + · · · + un+ – un|
≤ |un+m+ – un+m| + · · · + |un+ – un|
≤ β

[
kn+m + · · · + kn]λϕ(t)

= βλ
kn( – km+)

 – k
ϕ(t).

Therefore,

 ≤ ‖un+m+ – un‖ ≤ βλ
kn( – km+)

 – k
∥
∥ϕ(t)

∥
∥ → , as n, m → .

By the completeness of E, there exist a u∗ ∈ Pc such that limn→∞ un = u∗.
Thus, u∗ = limn→∞ un+ = limn→∞ Aun = Au∗, A have fixed points in Pc.
Finally, we will show that A has at most one fixed point in Pc.
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Suppose there exist two fixed points u, v ∈ Pc, u = Au, v = Av. By Lemma ., there exists
β = β(|u – v|) > , such that

(
T |u – v|)(t) ≤ βϕ(t), t ∈ [, ].

Then ∀n ∈N, the following hold:

|u – v| =
∣
∣Anu – Anv

∣
∣ ≤ βkmλϕ.

This means that u = v, A has at most one fixed point in Pc.
The proof is completed. �

Remark . The iterative sequences in Theorem . starting with a simple function is
helpful for calculating.

By the same method of [], we have the following results. We omit the details.

Corollary . Suppose that there exists u ∈ Pc such that

Dα
+ u(t) + p(t)f

(
t, u(t)

) ≥ ,  < t < ,

u() = u′
() = · · · = u(n–)

 () = , u() ≤ λIβ

+ u(η),

and ∀u, v ∈ �, u(t) ≥ v(t), there exist k ∈ [, ) such that

 ≤ f
(
t, u(t)

)
– f

(
t, v(t)

) ≤ kλ
(
u(t) – v(t)

)
,

where � = {u ∈ Pc | u ≥ u}. Then FBVP (.) has a unique solution u∗ with limn→∞ un = u∗,
un+ = Aun, n = , , , . . . .

Corollary . Suppose that there exists u ∈ Pc such that

Dα
+ u(t) + p(t)f

(
t, u(t)

) ≤ ,  < t < ,

u() = u′
() = · · · = u(n–)

 () = , u() ≥ λIβ

+ u(η),

and ∀u, v ∈ �, u(t) ≥ v(t), there exist k ∈ [, ) such that

 ≤ f
(
t, u(t)

)
– f

(
t, v(t)

) ≤ kλ
(
u(t) – v(t)

)
,

where � = {u ∈ Pc | u ≤ u}. Then FBVP (.) has a unique solution u∗ with limn→∞ un = u∗,
un+ = Aun, n = , , , . . . .

4 Examples
Example . Consider the following boundary value problem:

{
D/

+ u(t) + λ(–t)–/

(+λ) [u +  + sin u + u] = ,  < t < ,
u() = u′() = u′′() = , u() = I/

+ u( 
 ),

(.)
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where α = 
 , β = 

 , η = 
 , λ = ,  ≤ λ�(α)ηα+β–

�(α+β) ≈ . < , and p(t) = (–t)–/

+λ
, f (t, u(t)) =


λ[u +  + sin u + u], λ > λ, λ is the first eigenvalue of the operator T .

By simple computation, it is clear that (A), (A), (H), (H) hold.
Choose r = , then ∀ < u ≤ , t ∈ [, ], we have

f
(
t, u(t)

)
=



λ

[
u +  + sin u + u] ≤ λ,

[∫ 


w(s)p(s)ds

]–

r ≈ .( + λ).

Thus, (H) holds.
It follows from Corollary . that FBVP (.) has at least two positive solutions.

Example . Consider the following boundary value problem:

{
D/

+ u(t) + λ( – t)–/[ 
 u +  + t + sin t + 

 u/] = ,  < t < ,
u() = u′() = u′′() = , u() = I/

+ u( 
 ),

(.)

where α = 
 , β = 

 , η = 
 , λ = ,  ≤ λ�(α)ηα+β–

�(α+β) ≈ . < , and p(t) = ( – t)–/,
f (t, u(t)) = λ[ 

 u +  + t + sin t + 
 u/],  < λ < λ, λ is the first eigenvalue of the op-

erator T .
It is clear that (A), (A) hold.
For ∀u, v ∈ Pc, we have

∣
∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣
∣ ≤ λ

∣
∣
∣
∣

[



(u – v) +


(
u/ – v/)

]∣
∣
∣
∣ ≤ λ




|u – v|.

It follows from Theorem . that FBVP (.) has a unique positive solution, moreover,
for any u ∈ Pc, there exist iterative sequences {un}∞n= with

un+ = Aun, lim
n→∞ un = u∗, n = , , , . . . .
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