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Abstract
In this paper, we investigate the existence and uniqueness of solutions for a nonlocal
boundary value problem of impulsive fractional qk-difference equations involving a
new qk-shifting operator a�qk (m) = qkm + (1 – qk)a. Our main results rely on Banach’s
contraction mapping principle, Leray-Schauder nonlinear alternative, and Rothe fixed
point theorem. Examples illustrating the obtained results are also presented.
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1 Introduction
The main purpose of this manuscript is to study the existence and uniqueness of solutions
for impulsive boundary value problems of fractional qk-difference equations of the form

⎧
⎪⎨

⎪⎩

tk Dαk
qk x(t) = f (t, x(t)), t ∈ Jk ⊆ [, T], t �= tk ,

tk I–αk
qk x(t+

k ) – x(tk) = ϕk(x(tk)), k = , , . . . , m,
at I–α

q x() = bx(T) +
∑m

l= cltl I
γl
ql x(tl+),

(.)

where  = t < t < · · · < tm < tm+ = T , tk Dαk
qk denotes the Riemann-Liouville qk-fractional

derivative of order αk on Jk ,  < αk ≤ ,  < qk < , Jk = (tk , tk+], J = [, t], k = , , . . . , m,
J = [, T], f ∈ C(J ×R,R), ϕk ∈ C(R,R), k = , , . . . , m, tk Iαk

qk denotes the Riemann-Liouville
qk-fractional integral of order αk >  on Jk , a, b, cl ∈ R, γl > , l = , , , . . . , m.

The quantum calculus is known as the calculus without limits and provides a descent
approach to deal with sets of nondifferentiable functions by considering difference opera-
tors. Quantum difference operators play an important role in several mathematical areas
such as orthogonal polynomials, basic hyper-geometric functions, combinatorics, the cal-
culus of variations, mechanics, and the theory of relativity. The book by Kac and Cheung
[] covers many fundamental aspects of the quantum calculus.

In recent years, the topic of q-calculus has attracted the attention of several researchers,
and a variety of new results can be found in the papers [–] and the references therein.

In [], the notions of qk-derivative and qk-integral for a function f : Jk := [tk , tk+] →
R, were introduced, and several their properties were obtained. Also, the existence
and uniqueness results for initial value problems of first- and second-order impulsive
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qk-difference equations were studied. qk-calculus analogues of some classical inte-
gral inequalities such as Hölder, Hermite-Hadamard, trapezoid, Ostrowski, Cauchy-
Bunyakovsky-Schwarz, Grüss and Grüss-Čebyšev were proved in [].

In [], new concepts of fractional quantum calculus were defined by introducing a new
q-shifting operator a�q(m) = qm + ( – q)a. After giving the basic properties of the new
q-shifting operator, the q-derivative and q-integral were defined. New definitions of the
Riemann-Liouville fractional q-integral and q-difference on an interval [a, b] were given,
and their basic properties were discussed. As applications of the new concepts, exis-
tence and uniqueness results for first- and second-order initial value problems for impul-
sive fractional q-difference equations were presented. Recently, the existence of solutions
for impulsive fractional q-difference equations with antiperiodic boundary conditions
was discussed in [], whereas the existence results for a nonlinear impulsive qk-integral
boundary value problem were obtained in [].

In this paper, we consider a boundary value problem of impulsive fractional qk-dif-
ference equations (.) by introducing a new qk-shifting operator a�qk (m) = qkm+(–qk)a
and establish some existence results for the new problem. The rest of this paper is orga-
nized as follows: In Section , we recall some known facts about fractional qk-calculus,
present an auxiliary lemma, which is used to convert problem (.) into a fixed point prob-
lem, and a lemma dealing with useful bounds. Section  contains the main results, whereas
some illustrative examples are presented in Section .

2 Preliminaries
For any positive integer k, the qk-shifting operator: a�qk (m) = qkm + ( – qk)a [] satisfies
the relation

a�
k
qk

(m) = a�
k–
qk

(
a�qk (m)

)
with a�


qk

(m) = m.

We define the power of qk-shifting operator as

a(n – m)()
qk

= , a(n – m)(k)
qk

=
k–∏

i=

(
n – a�

i
qk

(m)
)
, k ∈N∪ {∞}.

If γ ∈R, then

a(n – m)(γ )
qk

= n(γ )
∞∏

i=

 – a
n
�i

qk
(m/n)

 – a
n
�

γ +i
qk (m/n)

, n �= .

The qk-derivative of a function f on interval [a, b] is defined by

(aDqk f )(t) =
f (t) – f (a�qk (t))

( – qk)(t – a)
, t �= a and (aDqk f )(a) = lim

t→a
(aDqk f )(t),

and the qk-derivative of higher order is given by

(
aDk

qk
f
)
(t) = aDk–

qk
(aDqk f )(t),

(
aD

qk
f
)
(t) = f (t), k ∈N.
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The qk-integral of a function f defined on the interval [a, b] is given by

(aIqk f )(t) =
∫ t

a
f (s)a ds = ( – qk)(t – a)

∞∑

i=

qi
kf

(
a�qi

k
(t)

)
, t ∈ [a, b]

and

(
aIk

qk
f
)
(t) = aIk–

qk
(aIqk f )(t),

(
aI

qk
f
)
(t) = f (t), k ∈N.

The fundamental theorem of qk-calculus applies to the operator aDqk and aIqk as follows:

(aDqk aIqk f )(t) = f (t).

If f is continuous at t = a, then

(aIqk aDqk f )(t) = f (t) – f (a).

The formula of qk-integration by parts on the interval [a, b] is

∫ b

a
f (s)aDqk g(s)a dqk s = (fg)(t)

∣
∣b
a –

∫ b

a
g
(

a�qk (s)
)

aDqk f (s)a dqk s.

Now we recall the definitions of the Riemann-Liouville fractional qk-integral and qk-dif-
ference on interval [a, b].

Definition . Let ν ≥ , and let f be a function defined on [a, b]. The fractional
qk-integral of Riemann-Liouville type is given by (aI

qk
f )(t) = h(t) and

(
aIν

qk
f
)
(t) =


�qk (ν)

∫ t

a
a
(
t – a�qk (s)

)(ν–)
qk

f (s)a dqk s, ν > , t ∈ [a, b].

Definition . The fractional qk-derivative of Riemann-Liouville type of order ν ≥  on
the interval [a, b] is defined by (aD

qk
f )(t) = f (t) and

(
aDν

qk
f
)
(t) =

(
aDl

qk aIl–ν
qk

f
)
(t), ν > ,

where l is the smallest integer greater than or equal to ν .

Lemma . Let α,β ∈ R
+, and let f be a continuous function on [a, b], a ≥ . The Riemann-

Liouville fractional qk-integral has the following semigroup property:

aIβ
qk aIα

qk
f (t) = aIα

qk aIβ
qk

f (t) = aIα+β
qk

f (t).

Lemma . Let f be a qk-integrable function on [a, b]. Then

aDα
qk aIα

qk
f (t) = f (t) for α > , t ∈ [a, b].
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Lemma . Let α > , and let p be a positive integer. Then, for t ∈ [a, b],

aIα
qk aDp

qk
f (t) = aDp

qk aIα
qk

f (t) –
p–∑

k=

(t – a)α–p+k

�qk (α + k – p + ) aDk
qk

f (a).

From [] we have the following formulas

aDα
qk

(t – a)β =
�qk (β + )

�qk (β – α + )
(t – a)β–α , (.)

aIα
qk

(t – a)β =
�qk (β + )

�qk (β + α + )
(t – a)β+α . (.)

In the sequel, we define PC(J ,R) = {x : J → R, x(t) is continuous everywhere except for
some tk at which x(t+

k ) and x(t–
k ) exist and x(t–

k ) = x(tk), k = , , , . . . , m}. For β ∈ R+,
we introduce the space Cβ ,k(Jk ,R) = {x : Jk → R : (t – tk)βx(t) ∈ C(Jk ,R)} with the norm
‖x‖Cβ ,k = supt∈Jk

|(t – tk)βx(t)| and PCβ = {x : J →R : for each t ∈ Jk , (t – tk)βx(t) ∈ C(Jk ,R),
k = , , , . . . , m} with the norm

‖x‖PCβ
= max

{
sup
t∈Jk

∣
∣(t – tk)βx(t)

∣
∣ : k = , , , . . . , m

}
.

Clearly, PCβ is a Banach space.

Lemma . Let y ∈ AC(J ,R). Then x ∈ PC(J ,R) is a solution of

⎧
⎪⎨

⎪⎩

tk Dαk
qk x(t) = y(t), t ∈ J , t �= tk ,

tk I–αk
qk x(t+

k ) – x(tk) = ϕk(x(tk)), k = , , . . . , m,
at I–α

q x() = bx(T) +
∑m

l= cltl I
γl
ql x(tl+),

(.)

if and only if

x(t) =
(t – tk)αk –

�qk (αk)

(k–∏

j=

(tj+ – tj)αj–

�qj (αj)

){
b
	

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj y(tj+) + ϕj+

(
x(tj+)

)}
]

+
b
	

tm Iαm
qm y(T)

+
m∑

l=

cl(tl+ – tl)αl+γl–

	�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj y(tj+) + ϕj+

(
x(tj+)

)}
]

+
m∑

l=

cl

	
tl I

αl+γl
ql

y(tl+)

}

+
(t – tk)αk –

�qk (αk)

[ k–∑

j=

( ∏

j<i≤k–

(ti+ – ti)αi–

�qi (αi)

)
{

tj I
αj
qj y(tj+) + ϕj+

(
x(tj+)

)}
]

+ tk Iαk
qk

y(t), (.)
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where
∑b

a(·) = ,
∏b

a(·) =  for a > b,
∏

a<a(·) = , and the nonzero constant 	 is defined by

	 = a – b

( m∏

j=

(tj+ – tj)αj–

�qj (αj)

)

–
m∑

l=

cl(tl+ – tl)αl+γl–

�ql (αl + γl)

( l–∏

j=

(tj+ – tj)αj–

�qj (αj)

)

. (.)

Proof Applying the Riemann-Liouville fractional q-integral of order α to both sides of
the first equation of (.) for t ∈ J, we obtain

t Iα
q t Dα

q x(t) = t Iα
q t Dq t I–α

q x(t) = t Iα
q y(t). (.)

From Lemmas ., ., and . for t ∈ J, we have

x(t) =
tα–

�q (α) t I–α
q x() + t Iα

q y(t).

For t ∈ J, applying the Riemann-Liouville fractional q-integral of order α again to the
first equation in (.) and using the previous process, we get

x(t) =
(t – t)α–

�q (α) t I–α
q x

(
t+

)

+ t Iα
q y(t). (.)

The impulsive condition implies that

x(t) =
(t – t)α–

�q (α)

[
tα–


�q (α) t I–α
q x() + t Iα

q y(t) + ϕ
(
x(t)

)
]

+t Iα
q y(t).

Similarly, for t ∈ J, we have

x(t) =
(t – t)α–

�q (α)

[
(t – t)α–

�q (α)

(
tα–


�q (α) t I–α
q x() + t Iα

q y(t) + ϕ
(
x(t)

)
)

+ t Iα
q y(t) + ϕ

(
x(t)

)
]

+ t Iα
q y(t).

Repeating this process for t ∈ Jk ⊆ J , k = , , , . . . , m, we obtain

x(t) =
(t – tk)αk –

�qk (αk)

(k–∏

j=

(tj+ – tj)αj–

�qj (αj)

)
(

t I–α
q x()

)

+
(t – tk)αk –

�qk (αk)

[ k–∑

j=

( ∏

j<i≤k–

(ti+ – ti)αi–

�qi (αi)

)
{

tj I
αj
qj y(tj+) + ϕj+

(
x(tj+)

)}
]

+ tk Iαk
qk

y(t). (.)
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In particular, for t = T , we get

x(T) =

( m∏

j=

(tj+ – tj)αj–

�qj (αj)

)
(

t I–α
q x()

)

+

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)
{

tj I
αj
qj y(tj+) + ϕj+

(
x(tj+)

)}
]

+ tm Iαm
qm y(T).

Taking the Riemann-Liouville fractional ql-integral of order γl on (.) from tl to tl+ and
using (.), we have

tl I
γl
ql

x(tl+) =
(tl+ – tl)αl+γl–

�ql (αl + γl)

( l–∏

j=

(tj+ – tj)αj–

�qj (αj)

)
(

t I–α
q x()

)

+
(tl+ – tl)αl+γl–

�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj y(tj+) + ϕj+

(
x(tj+)

)}
]

+ tl I
αl+γl
ql

y(tl+).

By the boundary condition of (.) we find that

t I–α
q x() =

b
	

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj y(tj+) + ϕj+

(
x(tj+)

)}
]

+
b
	

tm Iαm
qm y(T)

+
m∑

l=

cl(tl+ – tl)αl+γl–

	�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj y(tj+) + ϕj+

(
x(tj+)

)}
]

+
m∑

l=

cl

	
tl I

αl+γl
ql

y(tl+).

Substituting the value of t I–α
q x() into (.) yields (.). The converse follows by direct

computation. This completes the proof. �

Lemma . Assume that all conditions of Lemma . hold. In addition, assume that
supt∈J |y(t)| = N and there exists a constant N such that |ϕk(x)| ≤ N for k = , , . . . , m
and x ∈R. Then the following inequality holds:

∣
∣x(t)

∣
∣ ≤ 
N + 
N (.)

for all t ∈ J , where


 =

( m∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

[ m∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)
(tj+ – tj)αj

�qj (αj + )

]

+
m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)
(tj+ – tj)αj

�qj (αj + )

]
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+
m∑

l=

|cl|
|	|

(tl+ – tl)αl+γl

�ql (αl + γl + )

}

+
m∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)
(tj+ – tj)αj

�qj (αj + )

and


 =

( m∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

+
m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)}

+
m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

.

Proof For any t ∈ Jk , we have

∣
∣x(t)

∣
∣ ≤ (t – tk)αk –

�qk (αk)

(k–∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj

∣
∣y(tj+)

∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

+
|b|
|	| tm Iαm

qm

∣
∣y(T)

∣
∣

+
m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj

∣
∣y(tj+)

∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

+
m∑

l=

|cl|
|	| tl I

αl+γl
ql

∣
∣y(tl+)

∣
∣

}

+
(t – tk)αk –

�qk (αk)

[ k–∑

j=

( ∏

j<i≤k–

(ti+ – ti)αi–

�qi (αi)

)
{

tj I
αj
qj

∣
∣y(tj+)

∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

+ tk Iαk
qk

∣
∣y(t)

∣
∣

≤ (T – tm)αm–

�qm (αm)

(m–∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

× {
Ntj I

αj
qj  + N

}
]

+
|b|
|	|Ntm Iαm

qm  +
m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

×
[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)
{

Ntj I
αj
qj  + N

}
]

+
m∑

l=

|cl|
|	|Ntl I

αl+γl
ql



}

+
(T – tm)αm–

�qm (αm)

[m–∑

j=

( ∏

j<i≤m–

(ti+ – ti)αi–

�qi (αi)

)
{

Ntj I
αj
qj  + N

}
]

+ Ntm Iαm
qm 

=

( m∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)
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×
{

N
(tj+ – tj)αj

�qj (αj + )
+ N

}]

+
|b|
|	|N

(T – tm)αm

�qm (αm + )
+

m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

×
[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

){

N
(tj+ – tj)αj

�qj (αj + )
+ N

}]

+
m∑

l=

|cl|
|	|N

(tl+ – tl)αl+γl

�ql (αl + γl + )

}

+

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

×
{

N
(tj+ – tj)αj

�qj (αj + )
+ N

}]

+ N
(T – tm)αm

�qm (αm + )

≤ 
N + 
N.

This completes the proof. �

3 Main results
In view of Lemma ., we define the operator L : PC(J ,R) → PC(J ,R) by

Lx(t) =
(t – tk)αk –

�qk (αk)

(k–∏

j=

(tj+ – tj)αj–

�qj (αj)

){
b
	

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj f

(
tj+, x(tj+)

)
+ ϕj+

(
x(tj+)

)}
]

+
b
	

tm Iαm
qm f

(
T , x(T)

)

+
m∑

l=

cl(tl+ – tl)αl+γl–

	�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj f

(
tj+, x(tj+)

)
+ ϕj+

(
x(tj+)

)}
]

+
m∑

l=

cl

	
tl I

αl+γl
ql

f
(
tl+, x(tl+)

)
}

+
(t – tk)αk –

�qk (αk)

[ k–∑

j=

( ∏

j<i≤k–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj f

(
tj+, x(tj+)

)
+ ϕj+

(
x(tj+)

)}
]

+ tk Iαk
qk

f
(
t, x(t)

)
, (.)

where

aIp
q f

(
u, x(u)

)
=


�q(p)

∫ u

a
a
(
u – a�q(s)

)(p–)
q f

(
s, x(s)

)
a dqs,

a ∈ {t, t, . . . , tm}, q ∈ {q, q, . . . , qm}, p ∈ {α,α, . . . ,αm,α + γ,α + γ, . . . ,αm + γm}, u ∈
{t, t, t, . . . , tm, T}.

Now we present our first result, which deals with the existence and uniqueness of solu-
tions for problem (.) and is based on the Banach contraction mapping principle.

Theorem . Assume that there exist a function M ∈ C(J ,R+) and a positive constant M

such that

(H) |f (t, x) – f (t, y)| ≤ M(t)|x – y| and |ϕk(x) – ϕk(y)| ≤ M|x – y| for t ∈ J , x, y ∈ R and
k = , , . . . , m.
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Then problem (.) has a unique solution on J if

(M
 + M
)Tβ < , (.)

where M = supt∈J |M(t)|, the constants 
, 
 are defined in Lemma ., and β > .

Proof Consider the operator L : PC(J ,R) → PC(J ,R) defined by (.) and show that L ∈
PCβ . For this, let τ, τ ∈ Jk . Then we have

∣
∣(τ – tk)βLx(τ) – (τ – tk)βLx(τ)

∣
∣

≤
∣
∣
∣
∣
(τ – tk)β+αk – – (τ – tk)β+αk –

�qk (αk)

∣
∣
∣
∣Kx

+
∣
∣(τ – tk)β tk Iαk

qk
f
(
τ, x(τ)

)
– (τ – tk)β tk Iαk

qk
f
(
τ, x(τ)

)∣
∣,

where

Kx :=

(k–∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

+
|b|
|	| tm Iαm

qm

∣
∣f

(
T , x(T)

)∣
∣

+
m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

+
m∑

l=

|cl|
|	| tl I

αl+γl
ql

∣
∣f

(
tl+, x(tl+)

)∣
∣

}

+

[ k–∑

j=

( ∏

j<i≤k–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

. (.)

As τ → τ, we get |(τ – tk)βLx(τ) – (τ – tk)βLx(τ)| →  for each k = , , . . . , m. Thus,
Lx(t) ∈ PCβ .

Now we define the ball Br = {x ∈ PCβ (J ,R) : ‖x‖PCβ
≤ r}. We will show that LBr ⊂ Br .

Let supt∈J |f (t, )| = A, max{|ϕ()| : k = , . . . , m} = A and choose a constant r such that

r ≥ (A
 + A
)Tβ

 – (M
 + M
)Tβ
.

Then, for any x ∈ Br and t ∈ J , we have

(t – tk)β
∣
∣Lx(t)

∣
∣ ≤ (t – tk)β+αk –

�qk (αk)
Kx + (t – tk)β tk Iαk

qk

∣
∣f

(
t, x(t)

)∣
∣, (.)
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where Kx is given by (.). Using the inequalities

∣
∣f (s, x)

∣
∣ ≤ ∣

∣f (s, x) – f (s, )
∣
∣ +

∣
∣f (s, )

∣
∣ ≤ Mr + A,

∣
∣ϕ(x)

∣
∣ ≤ ∣

∣ϕ(x) – ϕ()
∣
∣ +

∣
∣ϕ()

∣
∣ ≤ Mr + A

in (.) for x ∈ Br and s ∈ J and the computational details of Lemma ., together with

Kx ≤
(k–∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

×
{

(Mr + A)
(

(tj+ – tj)αj

�(αj + )

)

+ (Mr + A)
}]

+ (Mr + A)
|b|
|	|

(
(T – tm)αm

�(αm + )

)

+
m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

×
{

(Mr + A)
(

(tj+ – tj)αj

�(αj + )

)

+ (Mr + A)
}]

+
m∑

l=

|cl|
|	|

(tl+ – tl)αl+γl

�ql (αl + γl + )

}

+

[ k–∑

j=

( ∏

j<i≤k–

(ti+ – ti)αi–

�qi (αi)

){

(Mr + A)
(

(tj+ – tj)αj

�(αj + )

)

+ (Mr + A)
}]

,

we obtain

(t – tk)β
∣
∣Lx(t)

∣
∣ ≤ (t – tk)β

(

(Mr + A) + 
(Mr + A)

)

≤ r(
 + M)Tβ + (
A + 
A)Tβ

≤ r.

This implies that ‖Lx‖PCβ
≤ r and, consequently, LBr ⊂ Br .

For all x, y ∈ PCβ (J ,R) and t ∈ J , as in Lemma ., we get

∣
∣Lx(t) – Ly(t)

∣
∣ ≤ (M
 + M
)‖x – y‖PCβ

.

Multiplying both sides of this inequality by (t – tk)β for each t ∈ Jk , we have

(t – tk)β
∣
∣Lx(t) – Ly(t)

∣
∣ ≤ (t – tk)β (M
 + M
)‖x – y‖PCβ

≤ Tβ (M
 + M
)‖x – y‖PCβ
,

which leads to ‖Lx –Ly‖PCβ
≤ Tβ (M
 + M
)‖x – y‖PCβ

. In view of condition (.), it
follows by the Banach contraction mapping principle that the operator L is a contraction.
Hence, L has a fixed point, which is a unique solution of problem (.) on J . �

The next existence result is based on Leray-Schauder’s nonlinear alternative.
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Lemma . (Nonlinear alternative for single valued maps []) Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C, and  ∈ U . Suppose that F : U → C
is continuous and compact (that is, F(U) is a relatively compact subset of C) map. Then
either

(i) F has a fixed point in U , or
(ii) there are u ∈ ∂U (the boundary of U in C) and θ ∈ (, ) with u = θF(u).

Theorem . Assume that

(H) there exist continuous nondecreasing functions Q, V : [,∞) → (,∞) and a continu-
ous function p : J →R

+ such that

∣
∣f (t, x)

∣
∣ ≤ p(t)Q

(|x|) and
∣
∣ϕk(x)

∣
∣ ≤ V

(|x|) (.)

for all (t, x) ∈ (J ×R) and k = , , . . . , m;
(H) there exists a constant M∗ >  such that such that

M∗

(p∗Q(M∗)
 + V (M∗)
)Tβ
> , (.)

where p∗ = supt∈J |p(t)|, β > , and the constants 
, 
 are defined in Lemma ..

Then problem (.) has at least one solution on J .

Proof First, we show that the operator L defined by (.) maps bounded sets (balls) into
bounded sets in PCβ . To accomplish this, for a positive number ρ , let Bρ = {x ∈ PCβ :
‖x‖PCβ

≤ ρ} be a ball in PCβ . Then, for x ∈ Bρ and t ∈ J , using the method of proof used
in Lemma ., we obtain

∣
∣Lx(t)

∣
∣ ≤ (t – tk)αk–

�qk (αk)
Kx + tk Iαk

qk

∣
∣f

(
t, x(t)

)∣
∣,

where Kx is defined by (.). From (H) we have

Kx ≤
(k–∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

×
{

p∗Q(ρ)
(

(tj+ – tj)αj

�(αj + )

)

+ V (ρ)
}]

+ p∗Q(ρ)
|b|
|	|

(
(T – tm)αm

�(αm + )

)

+
m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

×
{

p∗Q(ρ)
(

(tj+ – tj)αj

�(αj + )

)

+ V (ρ)
}]

+
m∑

l=

|cl|
|	|

(tl+ – tl)αl+γl

�ql (αl + γl + )

}

+

[ k–∑

j=

( ∏

j<i≤k–

(ti+ – ti)αi–

�qi (αi)

){

p∗Q(ρ)
(

(tj+ – tj)αj

�(αj + )

)

+ V (ρ)
}]

,
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and thus

∣
∣Lx(t)

∣
∣ ≤ p∗Q(ρ)
 + V (ρ)
.

Therefore, (t – tk)β |Lx(t)| ≤ (t – tk)β (p∗Q(ρ)
 + V (ρ)
), which means that ‖Lx‖PCβ
≤

Tβ (p∗Q(ρ)
 + V (ρ)
).
Next we show that L maps bounded sets into equicontinuous sets of PCβ .
Letting τ, τ ∈ Jk for some k ∈ {, , , . . . , m} with τ < τ and x ∈ Bρ , where Bρ is a ball

in PCβ , we have

∣
∣Lx(τ) – Lx(τ)

∣
∣ ≤

∣
∣
∣
∣
(τ – tk)αk – – (τ – tk)αk –

�qk (αk)

∣
∣
∣
∣Kx

+
∣
∣tk Iαk

qk
f
(
τ, x(τ)

)
– tk Iαk

qk
f
(
τ, x(τ)

)∣
∣

≤
∣
∣
∣
∣
(τ – tk)αk – – (τ – tk)αk –

�qk (αk)

∣
∣
∣
∣Kx

+ p∗Q(ρ)
∣
∣
∣
∣
(τ – tk)αk – (τ – tk)αk

�qk (αk + )

∣
∣
∣
∣. (.)

As τ → τ, the right-hand side of inequality (.) tends to zero independently of x, that
is,

∣
∣(τ – tk)βLx(τ) – (τ – tk)βLx(τ)

∣
∣ →  as |τ – τ| → .

Therefore, by the Arzelà-Ascoli theorem, L : PCβ → PCβ is completely continuous.
Our result will follow from the Leray-Schauder nonlinear alternative once we show the

boundedness of the set of all solutions to the equation x(t) = λLx(t) for  < λ < . Let x be
a solution. For any t ∈ J and x ∈ PCβ , following the method of proof used in the first step
together with condition (H), we get

‖x‖PCβ
≤ (

p∗Q
(‖x‖PCβ

)

 + V

(‖x‖PCβ

)



)
Tβ .

In consequence, we have

‖x‖PCβ

(p∗Q(‖x‖PCβ
)
 + V (‖x‖PCβ

)
)Tβ
≤ .

By condition (H) there exists M∗ such that ‖x‖PCβ
�= M∗. We define U = {x ∈ PCβ :

‖x‖PCβ
< M∗}. Note that the operator L : U → PCβ is continuous and completely con-

tinuous. By the choice of U there is no x ∈ ∂U such that x = λLx for some λ ∈ (, ). Con-
sequently, by the nonlinear alternative of Leray-Schauder type (Lemma .) we deduce
that L has a fixed point x ∈ U , which is a solution of problem (.) on J . This completes
the proof. �

A key to prove the final result is based on the following fixed point theorem.

Lemma . [] Suppose that A : 	̄ → E is a completely continuous operator. Suppose that
one of the following condition is satisfied:
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(i) (Altman) ‖Ax – x‖ ≥ ‖Ax‖ – ‖x‖ for all x ∈ ∂	,
(ii) (Rothe) ‖Ax‖ ≤ ‖x‖ for all x ∈ ∂	,

(iii) (Petryshyn) ‖Ax‖ ≤ ‖Ax – x‖ for all x ∈ ∂	.
Then deg(I – A,	, θ ) = , and hence A has at least one fixed point in 	.

Theorem . Assume that

(H) the continuous functions f : J ×R →R and ϕk : R →R, k = , , . . . , m, satisfy

lim
x→

f (t, x)
x

=  and lim
x→

ϕk(x)
x

= , k = , , . . . , m. (.)

Then problem (.) has at least one solution on J .

Proof Let x ∈ PCβ . Taking ε sufficiently small, we can choose two positive constants δ and
δ such that |f (t, x)| < ε|x| whenever ‖x‖PCβ

< δ and ϕk(x) < ε|x| whenever ‖x‖PCβ
< δ for

k = , , . . . , m. Setting δ = min{δ, δ}, we define the open ball Bδ = {x ∈ PCβ : ‖x‖PCβ
< δ}.

As in Theorem ., it is clear that the operator L : PC → PC is completely continuous.
For any x ∈ ∂Bδ , we have

∣
∣Lx(t)

∣
∣ =

(t – tk)αk –

�qk (αk)

(k–∏

j=

(tj+ – tj)αj–

�qj (αj)

){
|b|
|	|

[m–∑

j=

( ∏

j<i≤m

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

+
|b|
|	| tm Iαm

qm

∣
∣f

(
T , x(T)

)∣
∣

+
m∑

l=

|cl|(tl+ – tl)αl+γl–

|	|�ql (αl + γl)

[ l–∑

j=

( ∏

j<i≤l–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

+
m∑

l=

|cl|
|	| tl I

αl+γl
ql

∣
∣f

(
tl+, x(tl+)

)∣
∣

}

+
(t – tk)αk –

�qk (αk)

[ k–∑

j=

( ∏

j<i≤k–

(ti+ – ti)αi–

�qi (αi)

)

× {
tj I

αj
qj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
}
]

+ tk Iαk
qk

∣
∣f

(
t, x(t)

)∣
∣

≤ (
 + 
)ε|x|.

Setting ε ≤ (
 + 
)–, we deduce that

|Lx| ≤ |x|.

Multiplying both sides of this inequality by (t – tk)β , we have ‖Lx‖PCβ
≤ ‖x‖PCβ

. It follows
from Lemma .(ii) that problem (.) has at least one solution on J . �

4 Examples
In this section, we present three examples to illustrate our results.
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Example . Consider the following nonlocal boundary value problem for impulsive frac-
tional q-difference equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tk D
( k+

k+ )

( k+
k+

)
x(t) = ( cos t+e–t

 )( x(t)+|x(t)|
|x(t)|+ ) + 

 , t ∈ [, /] \ tk ,

tk I
( 

k+ )

( k+
k+

)
x(t+

k ) – x(tk) = 
πk sin(|πx(tk)|), tk = k

 , k = , , ,


 I






x() = 
 x( 

 ) +
∑

l=( l+l+
l+l+ )tl I

( l+
l+ )

( l+
l+

)
x(tl+).

(.)

Here αk = (k + )/(k + ), qk = (k + )/(k + ), γk = (k + )/(k + ), ck = (k + k + )/(k +
k + ), k = , , , , a = /, b = /, T = /, tk = k/, k = , , . With the given values, we
find that 	 = –., 
 = ., and 
 = .. Also, we have

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ cos t + e–t


|x – y| ≤ 


|x – y|

and

∣
∣ϕk(x) – ϕk(y)

∣
∣ ≤ 


|x – y|, k = , , ,

which suggests that (H) is satisfied with M = / and M = /. Further, there exists β =
 such that (M
 +M
)Tβ = . < . Thus, all the conditions of Theorem .
hold. Therefore, by the conclusion of Theorem ., problem (.) has a unique solution on
[, /].

Example . Consider the problem of impulsive fractional q-difference equations given
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

tk D
( k+k+

k+k+
)

( k+k+
k+k+

)
x(t) = e–t

+t log
e ( |x(t)|

 + ), t ∈ [, ] \ tk ,

tk I
( k+

k+k+
)

( k+k+
k+k+

)
x(t+

k ) – x(tk) = x(tk )
(|x(tk )|+) + 

k , tk = k, k = , , , ,


 I






x() = 
 x() +

∑
l=( l+

l+l+ )tl I
( l+l+

l+ )

( l+l+
l+l+

)
x(tl+).

(.)

Here αk = (k + k + )/(k + k + ), qk = (k + k + )/(k + k + ), γk = (k + k + )/(k + ),
ck = (k + )/(k + k + ), k = , , , , , a = /, b = /, T = , tk = k, k = , , , . With this
data, we find that 	 = –., 
 = ., and 
 = .. Further,
we have

∣
∣f (t, x)

∣
∣ =

∣
∣
∣
∣

e–t

 + t log
e

( |x|


+ 
)∣

∣
∣
∣ ≤ e–t

 + t

( |x|


+ 
)

and

∣
∣ϕk(x)

∣
∣ =

x

(|x| + )
+


k

≤ |x|


+



, k = , , , .
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Setting Q(x) = (x/) + , V (x) = (x/) + (/), p∗ = /, and β = , there exists a constant
M∗ > . satisfying (.). Thus, the hypothesis of Theorem . is satisfied. In
consequence, the conclusion of Theorem . applies, and problem (.) has at least one
solution on [, ].

Example . Consider the problem of impulsive fractional q-difference equations given
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk D
( k+k+

k+k+
)

( k+k+
k+k+

)
x(t) = t

t+ (sin x(t) – x(t))ex(t) cos x(t), t ∈ [, /] \ tk ,

tk I
( k+k+

k+k+
)

( k+k+
k+k+

)
x(t+

k ) – x(tk) = kx(tk )+kx(tk )
log(|x(tk )|+) , tk = k, k = , , , ,


 I






x() = 
 x( 

 ) +
∑

l=( l+l+
l+l+ )tl I

( l+
 )

( l+l+
l+l+

)
x(tl+).

(.)

Here αk = (k + k + )/(k + k + ), qk = (k + k + )/(k + k + ), γk = (k + )/,
ck = (k + k + )/(k + k + ), k = , , , , , a = /, b = /, T = /, tk = k/,
k = , , , . With this data, we find that |	| = . �= . The functions f (t, x) =
((t)/(t + ))(sin x – x)ex cos x and ϕk(x) = (kx + kx)/(log(|x| + )), k = , , , , satisfy

lim
x→

f (t, x)
x

= lim
x→

t
t + 

(
sin x

x
– 

)

ex cos x = 

and

lim
x→

ϕk(x)
x

= lim
x→

kx + kx
log(|x| + )

= , k = , , , .

Thus, condition (H) of Theorem . holds. Therefore, by applying Theorem . we con-
clude that problem (.) has at least one solution on [, /].
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