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Abstract
This paper is concerned with regular approximations of isolated eigenvalues of
singular second-order symmetric linear difference equations. It is shown that the kth
eigenvalue of any given self-adjoint subspace extension is exactly the limit of the kth
eigenvalues of the induced regular self-adjoint subspace extensions in the case that
each endpoint is either regular or in the limit circle case. Furthermore, error estimates
for the approximations of eigenvalues are given in this case. In addition, it is shown
that isolated eigenvalues in every gap of the essential spectrum of any self-adjoint
subspace extension are exactly the limits of eigenvalues of suitably chosen induced
regular self-adjoint subspace extensions in the case that at least one endpoint is in
the limit point case.
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1 Introduction
Consider the following second-order symmetric linear difference equation:

–∇(
p(t)�x(t)

)
+ q(t)x(t) = λw(t)x(t), t ∈ I, (.λ)

where I is the integer set {t}b
t=a, a is a finite integer or –∞ and b is a finite integer or +∞;

� and ∇ are the forward and backward difference operators, respectively, i.e., �x(t) =
x(t + ) – x(t), ∇x(t) = x(t) – x(t – ); p(t) and q(t) are all real-valued with p(t) �=  for t ∈ I ,
p(a – ) �=  if a is finite and p(b + ) �=  if b is finite; w(t) >  for t ∈ I ; and λ is a complex
spectral parameter.

Spectral problems can be divided into two classifications. Those defined over finite
closed intervals with well-behaved coefficients are called regular; otherwise they are called
singular. Regular approximations of spectra of singular differential equations have been in-
vestigated widely and deeply, and some good results have been obtained, including spec-
tral inclusion in general cases and spectral exactness in the case that each endpoint is
either regular or in the limit circle case (briefly, l.c.c.) [–]. In particular, Stolz, Weid-
mann, and Teschl [–] got spectral exactness for isolated eigenvalues in essential spectral
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gaps. In addition, Brown et al. [] constructed a sequence of regular problems for a given
fourth-order singular symmetric differential operator and showed that the eigenvalues of
the singular problem are exactly the limits of eigenvalues of this sequence in the case that
each endpoint is either regular or in l.c.c.

In the present paper, we are wondering whether there are analogous results for singular
symmetric difference equations. We shall study a similar problem for singular second-
order symmetric linear difference equations. Note that for a symmetric linear difference
equation, its minimal operator may not be densely defined, and its minimal and maxi-
mal operators may be multi-valued (cf. [–]). So it cannot be treated by the methods
described in [, –], which are based on self-adjoint extensions of densely defined Her-
mitian operators.

This major difficulty can be overcome by using the theory of self-adjoint subspace ex-
tensions of Hermitian subspaces. This theory was developed by Coddington, Dijksma,
de Snoo, and others (cf. [–]). The second author of the present paper extended the
classical Glazman-Krein-Naimark (briefly, GKN) theory to Hermitian subspaces [], and
based on this, she with her coauthor Sun presented complete characterizations of self-
adjoint extensions for second-order symmetric linear difference equation in both regular
and singular cases []. Later, she studied some spectral properties of self-adjoint sub-
spaces together with her coauthors Shao and Ren []. Recently, based on the above re-
sults, we studied the resolvent convergence and spectral approximations of sequences of
self-adjoint subspaces [].

Applying the results given in [, ], we studied regular approximations of spectra of
singular second-order symmetric linear difference equations []. We constructed suit-
able induced regular self-adjoint subspace extensions and proved that the sequence of in-
duced regular self-adjoint subspace extensions is both spectrally inclusive and exact for a
given self-adjoint subspace extension in the case that each endpoint is either regular or in
l.c.c., while, in general, it is only spectrally inclusive in the case that at least one endpoint
is in the limit point case (briefly, l.p.c.). Here, we shall further investigate how to approx-
imate the spectrum of singular second-order symmetric linear difference equations with
eigenvalues of regular problems in the case that each endpoint is either regular or in l.c.c.
Furthermore, we shall also give their error estimates. In addition, enlightened by Stolz,
Weidmann, and Teschl’s work [–], we shall show the spectral exactness in an open in-
terval laking essential spectral points in the case that at least one endpoint is in l.p.c.

In the study of regular approximation problems, the related induced regular self-adjoint
extensions should be extended to the whole interval referred for the singular problems.
This problem can easily be dealt with by ‘zero extension’ in the continuous case. But it
is somewhat difficult in the discrete case. This difficulty was overcome in Section . in
[] and recalled in Section . in the present manuscript. So the method used in the
present manuscript is not a trivial and direct generalization of that used for ODEs [, –
]. Further, we shall remark that although the minimal operator is densely defined in the
case that a = –∞ and b = +∞, the minimal operators of the induce regular problems that
will be used to approximate the singular one are not densely defined, and so their self-
adjoint extensions have to be characterized by the theory of subspaces. These self-adjoint
extensions are multi-valued in general. Therefore, it is better for us to uniformly apply the
theory of subspaces to study regular approximations in all the cases in the present paper.
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The rest of this paper is organized as follows. In Section , some basic concepts and
fundamental results about subspaces in Hilbert spaces and second-order symmetric lin-
ear difference equations are introduced. In addition, the induced regular self-adjoint sub-
space extensions for any given self-adjoint subspace extension are introduced. In particu-
lar, a sufficient condition is given for spectral exactness of a sequence of self-adjoint sub-
spaces in an open interval laking essential spectral points. It will play an important role
in the study of regular approximations in the case that at least one endpoint is in l.p.c. In
Section , regular approximations of isolated eigenvalues of equation (.) are studied in
the case that each endpoints is either regular or in l.c.c. It is shown that the kth eigenvalue
of the given self-adjoint subspace extension is exactly the limit of the kth eigenvalues of
the induced regular self-adjoint subspace extensions. In addition, their error estimates are
given. Spectral exactness in every gap of the essential spectrum of any self-adjoint sub-
space extension is obtained in the other three cases in Sections -, separately.

2 Preliminaries
This section is divided into three parts. In Section ., some basic concepts and funda-
mental results about subspaces are listed. In Section ., the maximal, pre-minimal, and
minimal subspaces corresponding to equation (.) are introduced. In Section ., some
results about self-adjoint subspace extensions of the minimal subspace and their induced
self-adjoint restrictions given in [] are recalled.

2.1 Some basic concepts and fundamental results about subspaces
By C, R, and N denote the sets of the complex numbers, real numbers, and positive integer
numbers, respectively. Let X be a complex Hilbert space with inner product 〈·, ·〉, and T
a linear subspace (briefly, subspace) in the product space X with the following induced
inner product, still denoted by 〈·, ·〉 without any confusion:

〈
(x, f ), (y, g)

〉
= 〈x, y〉 + 〈f , g〉, (x, f ), (y, g) ∈ X.

Denote the domain, range, and null space of T by D(T), R(T), and N(T), respectively. Its
adjoint subspace T∗ is defined by

T∗ =
{

(y, g) ∈ X : 〈g, x〉 = 〈y, f 〉 for all (x, f ) ∈ T
}

.

Further, denote

T(x) :=
{

f ∈ X : (x, f ) ∈ T
}

, T– :=
{

(f , x) : (x, f ) ∈ T
}

.

It is evident that T() = {} if and only if T can uniquely determine a (singled-valued)
linear operator from D(T) into X whose graph is T . For convenience, a linear operator in
X will always be identified with a subspace in X via its graph.

Let T and S be two subspaces in X and λ ∈ C. Define

λT :=
{

(x,λf ) : (x, f ) ∈ T
}

,

T + S :=
{

(x, f + g) : (x, f ) ∈ T , (x, g) ∈ S
}

,
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ST :=
{

(x, g) ∈ X : (x, f ) ∈ T , (f , g) ∈ S for some f ∈ X
}

.

It is evident that if T is closed, then T –λIid is closed and (T –λIid)∗ = T∗ – λ̄Iid , where Iid :=
{(x, x) : x ∈ X}, briefly denoted by I without any confusion between it and the interval I .

Throughout the whole paper, denote the resolvent set, spectrum, point spectrum, es-
sential spectrum, and discrete spectrum of T by ρ(T), σ (T), σp(T), σe(T), and σd(T), re-
spectively.

Definition . ([], Definition .) Let {Tn}∞n= and T be subspaces in X.
() The sequence {Tn}∞n= is said to be spectrally inclusive for T if for any λ ∈ σ (T), there

exists a sequence {λn}∞n=, λn ∈ σ (Tn), such that limn→∞ λn = λ.
() The sequence {Tn}∞n= is said to be spectrally exact for T if it is spectrally inclusive

and every limit point of any sequence {λn}∞n= with λn ∈ σ (Tn) belongs to σ (T).
() The sequence {Tn}∞n= is said to be spectrally exact for T in some set � ⊂ R if the

condition in () holds in �.

Lemma . ([], Lemma .) Let T be a closed subspace in X. Then

ρ
(
T–) \ {} =

{
λ– : λ ∈ ρ(T) with λ �= 

}
,

σ
(
T–) \ {} =

{
λ– : λ ∈ σ (T) with λ �= 

}
.

Consequently, if ρ(T) �= ∅, then

σ
(
(λI – T)–) \ {} =

{
(λ – λ)– : λ ∈ σ (T)

}
, λ ∈ ρ(T).

Let T and S be two subspaces in X. If T ∩ S = {(, )}, denote

T +̇S :=
{

(x + y, f + g) : (x, f ) ∈ T , (y, g) ∈ S
}

.

Further, if T and S are orthogonal, denoted by T ⊥ S; that is, 〈(x, f ), (y, g)〉 =  for any
(x, f ) ∈ T , (y, g) ∈ S, we denote

T ⊕ S := T +̇S.

In addition, we introduce the following notation for convenience:

T � S :=
{

(x, f ) ∈ T : 〈x, y〉 + 〈f , g〉 =  for all (y, g) ∈ S
}

.

In , Arens [] introduced the following important decomposition for a closed sub-
space T in X:

T = Ts ⊕ T∞,

where

T∞ :=
{

(, f ) ∈ X : (, f ) ∈ T
}

, Ts := T � T∞.
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It can easily be verified that Ts is an operator, and T is an operator if and only if T =
Ts. Ts and T∞ are called the operator and pure multi-valued parts of T , respectively. In
addition,

R(T∞) = T(), T∞ = {} × T(), R(Ts) ⊂ T()⊥, D(Ts) = D(T), (.)

and D(Ts) = D(T) is dense in T∗()⊥.
Throughout the present paper, the resolvent set and spectrum of Ts and T∞ mean those

of Ts and T∞ restricted to (T()⊥) and T(), respectively.

Lemma . ([], Proposition . and Theorems ., ., and .) Let T be a closed Her-
mitian subspace in X. Then

T∞ = T ∩ T(), Ts = T ∩ (
T()⊥

),

Ts is a closed Hermitian operator in T()⊥, T∞ is a closed Hermitian subspace in T(),

ρ(T) = ρ(Ts), σ (T) = σ (Ts), σ (T∞) = ∅,

σp(T) = σp(Ts), σe(T) = σe(Ts), σd(T) = σd(Ts),

and N(T – λI) = N(Ts – λI) for every λ ∈ σp(T).

Lemma . ([], p.) If T is a self-adjoint subspace in X, then T∞ and Ts are self-
adjoint subspaces in T() and (T()⊥), respectively.

To end this subsection, we shall briefly recall the concept of the spectral family of a self-
adjoint subspace, which was introduced by Coddington and Dijksma in [].

Let T be a self-adjoint subspace in X. By Lemma ., Ts is a self-adjoint operator in
T()⊥. Then Ts has the following spectral resolution:

Ts =
∫

t dEs(t),

where {Es(t)}t∈R is the spectral family of Ts in T()⊥. The spectral family of the subspace
T is defined by

E(t) = Es(t) ⊕ O, t ∈ R,

where O is the zero operator defined on T(). It is obvious that for any t ∈ R and any f ∈ X,

E(t)f = Es(t)f, (.)

where f = f + f with f ∈ T()⊥ and f ∈ T().
The following result weakens the condition (.) of Theorem . in []. It will be useful

in studying spectral exactness in every gap of the essential spectrum of any self-adjoint
subspace extension in Sections -.
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Lemma . Let {Tn}∞n= and T be self-adjoint subspaces in X, and let E(Tn,λ) and E(T ,λ)
be spectral families of Tn and T , respectively. Assume that I ⊂ R is an open interval and
satisfies

I ∩ σe(T) = ∅, I ∩ σd(T) �= ∅. (.)

Let γ ∈ I. If for any given α,β ∈ I ∩ ρ(T) with α < γ ≤ β , there exists an integer n ≥ 
such that for all n ≥ n,

dim R
{

E(Tn,β) – E(Tn,α)
}

= dim R
{

E(T ,β) – E(T ,α)
}

, (.)

then {Tn}∞n= is spectrally exact for T in I.

Proof By Theorem . in [], it suffices to show that (.) holds for all α,β ∈ I ∩ ρ(T)
with α < β . Fix any α,β ∈ I ∩ ρ(T) with α < β . The following discussions are divided into
three cases.

Case . γ ∈ (α,β]. Obviously, (.) holds in this case.
Case . γ ≤ α. By (.), there exists ε >  such that γ –ε ∈ I ∩ρ(T). By (.), there exists

n ≥  such that for all n ≥ n,

dim R
{

E(Tn,β) – E(Tn,γ – ε)
}

= dim R
{

E(T ,β) – E(T ,γ – ε)
}

,

dim R
{

E(Tn,α) – E(Tn,γ – ε)
}

= dim R
{

E(T ,α) – E(T ,γ – ε)
}

.
(.)

Note that

E(Tn,β) – E(Tn,α) =
{

E(Tn,β) – E(Tn,γ – ε)
}

–
{

E(Tn,α) – E(Tn,γ – ε)
}

,

E(T ,β) – E(T ,α) =
{

E(T ,β) – E(T ,γ – ε)
}

–
{

E(T ,α) – E(T ,γ – ε)
}

;

that is,

E
(
Tn, (α,β]

)
= E

(
Tn, (γ – ε,β]

)
– E

(
Tn, (γ – ε,α]

)
,

E
(
T , (α,β]

)
= E

(
T , (γ – ε,β]

)
– E

(
T , (γ – ε,α]

)
.

(.)

Since E(Tn, (α,β]) and E(T , (α,β]) are orthogonal projections and

R
{

E
(
Tn, (γ – ε,α]

)} ⊂ R
{

E
(
Tn, (γ – ε,β]

)}
,

R
{

E
(
T , (γ – ε,α]

)} ⊂ R
{

E
(
T , (γ – ε,β]

)}
,

by (c) of Theorem . in [] we have

R
{

E
(
Tn, (α,β]

)}
= R

{
E
(
Tn, (γ – ε,β]

)} � R
{

E
(
Tn, (γ – ε,α]

)}
,

R
{

E
(
T , (α,β]

)}
= R

{
E
(
T , (γ – ε,β]

)} � R
{

E
(
T , (γ – ε,α]

)}
.

It follows that

dim R
{

E
(
Tn, (α,β]

)}
= dim R

{
E
(
Tn, (γ – ε,β]

)}
– dim R

{
E
(
Tn, (γ – ε,α]

)}
,
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dim R
{

E
(
T , (α,β]

)}
= dim R

{
E
(
T , (γ – ε,β]

)}
– dim R

{
E
(
T , (γ – ε,α]

)}
.

This, together with (.), shows that (.) holds in this case.
Case . γ > β . With a similar argument for Case , one can easily show that (.) holds

in Case . This completes the proof. �

2.2 Maximal, pre-minimal and minimal subspaces
In this subsection, we first introduce the concepts of maximal, pre-minimal and minimal
subspaces corresponding to (.) and then briefly recall their properties.

Since a, b may be finite or infinite, we give the following convention for briefness in the
sequent expressions: a –  means –∞ in the case of a = –∞; b +  means +∞ in the case
of b = +∞.

Denote

l
w(I) :=

{

x =
{

x(t)
}b+

t=a– ⊂ C :
b∑

t=a
w(t)

∣∣x(t)
∣∣ < +∞

}

.

Then l
w(I) is a Hilbert space with the inner product

〈x, y〉 :=
b∑

t=a
w(t)ȳ(t)x(t),

where x = y in l
w(I) if and only if ‖x – y‖ = , i.e., x(t) = y(t), t ∈ I , while ‖ · ‖ is the induced

norm.
The natural difference operator corresponding to (.) is denoted by

L(x)(t) := –∇(
p(t)�x(t)

)
+ q(t)x(t), t ∈ I.

Now, we introduce the corresponding maximal, pre-minimal, and minimal subspaces
corresponding to (.) in the interval I . Let

H :=
{

(x, f ) ∈ (
l
w(I)

) : L(x)(t) = w(t)f (t), t ∈ I
}

,

H :=
{

(x, f ) ∈ H : there exist two integers t, t ∈ I with t < t

such that x(t) =  for t ≤ t and t ≥ t
}

,

where H and H are called the maximal and pre-minimal subspaces corresponding to L
or (.), respectively. The subspace H := H̄ is called the minimal subspace correspond-
ing to L or (.). By Corollary . and Theorem . in [], H is a closed densely defined
Hermitian operator in l

w(I) in the case that a = –∞ and b = +∞, and a closed non-densely
defined Hermitian operator in l

w(I) in the other case that at least one of a and b is finite.
In addition, H ⊂ H

∗ and H = H
∗ in the sense of the norm ‖ · ‖.

In addition, we take the notation for convenience:

(x, y)(t) = p(t)
[(�ȳ(t)

)
x(t) – ȳ(t)�x(t)

]
, t = {t}b

t=a–. (.)
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2.3 Self-adjoint subspace extensions and their induced self-adjoint restrictions
In this subsection, we recall the results about self-adjoint subspace extensions of H and
their induced regular self-adjoint subspace extensions, i.e., induced self-adjoint restric-
tions constructed in [].

Let Ir = {t}br
t=ar , where –∞ < ar +  < br –  < +∞, ar+ ≤ ar < br ≤ br+, r ∈ N, and ar → a,

br → b as r → ∞. That is, limr→∞ Ir = I . If a (resp. b) is finite, take ar = a (resp. br = b). For
convenience, by Hr and Hr

 denote the corresponding maximal and minimal subspaces
to equation (.) or L on Ir , respectively. Noting that all the coefficient functions p and q
and weight function w in (.) are real-valued, one has d+(H) = d–(H), where d±(H) are
the positive and negative defect indices of H. Consequently, H has self-adjoint subspace
extensions by [].

Let ϕ(·,λ) and ϕ(·,λ) be two linearly independent solutions of (.λ) with λ ∈ R satis-
fying the following initial conditions:

ϕ(d – ,λ) = , p(d – )�ϕ(d – ,λ) = –,

ϕ(d – ,λ) = , p(d – )�ϕ(d – ,λ) = ,
(.)

where d ∈ I is any fixed.
In the case that I = [a, +∞) (resp. I = (–∞, b]), L is regular at a (resp. b) and either in

l.c.c. or l.p.c. at t = +∞ (resp. t = –∞). In the case that I = (–∞, +∞), L is either in l.c.c. or
l.p.c. at each endpoint. Consequently, the following discussions are divided into the five
cases due to different expressions of their self-adjoint subspace extensions.

Case . One endpoint is regular and the other in l.c.c.
Without loss of generality, we only consider the case that L is regular at a and in l.c.c. at

t = +∞. Take d = a in (.) in this case.
Suppose that H is any fixed self-adjoint subspace extension of H. Then, by (.) in [],

we have

H =
{

(x, f ) ∈ H : (x, ŷj)(a – ) – (x, ŷj)(+∞) = , j = , 
}

, (.)

where

ŷj(a – ) = –mj, p(a – )�ŷj(a – ) = mj, ŷj(t) = uj(t), t ≥ c, (.)

JM∗ =

(
–m –m

m m

)

, N = –(nij)×, uj :=
∑

k=

n̄jkϕk , j = , ,

while

J =

(
 –
 

)

,

matrices M, N ∈ C× satisfying rank(M, N) =  and MJM∗ = NJN∗, and c > a +  is any
fixed integer.

Let ar = a and br > c. According to (.) in [], an induced self-adjoint restriction of
H on Ir can be given by

H,r =
{

(x, f ) ∈ Hr : (x, ŷj)(a – ) – (x, ŷj)(br) = , j = , 
}

. (.)
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Case . One endpoint is regular and the other in l.p.c.
Without loss of generality, we only consider the case that L is regular at a and in l.p.c.

at t = +∞. Still take d = a in (.) in this case.
Suppose that H is any fixed self-adjoint subspace extension of H. Then, by (.) in [],

we have

H =
{

(x, f ) ∈ H : (x, ŷ)(a – ) = 
}

, (.)

where

ŷ(a – ) = –m, p(a – )�ŷ(a – ) = m, ŷ(t) = , t ≥ c, (.)

with M = (m, m) ∈ R× and M �= , and c > a +  is any fixed integer.
Let ar = a and br > c. According to the discussion for (.) in [], an induced self-

adjoint restriction of H on Ir can be given by

H,r =
{

(x, f ) ∈ Hr : (x, ŷ)(a – ) = , (x, u)(br) = 
}

, (.)

where

u = nϕ(·,λ) + nϕ(·,λ), (.)

with N = (n, n) ∈ R× and N �= .
Case . Both endpoints are in l.c.c.
Suppose that H is any fixed self-adjoint subspace extension of H. Then, by (.) in [],

we have

H =
{

(x, f ) ∈ H : (x, ŷj)(–∞) – (x, ŷj)(+∞) = , j = , 
}

, (.)

where

ŷj =

{
uj, t ≤ d – ,
vj, t ≥ d + ,

uj :=
∑

k=

m̄jkϕk(·,λ), vj :=
∑

k=

n̄jkϕk(·,λ), j = , , (.)

with matrices M = (mjk)× and N = (njk)× satisfying rank(M, N) =  and MJM∗ = NJN∗.
Let ar < d – , br > d. Based on the discussion for (.) in [], an induced self-adjoint

restriction of H on Ir can be given by

H,r =
{

(x, f ) ∈ Hr : (x, ŷj)(ar – ) – (x, ŷj)(br) = , j = , 
}

. (.)

Case . One endpoint is in l.c.c. and the other in l.p.c.
Without loss of generality, we only consider the case that L is in l.c.c. at t = –∞ and l.p.c.

at t = +∞.
Suppose that H is any fixed self-adjoint subspace extension of H. According to the

discussion for (.) in [], we have

H =
{

(x, f ) ∈ H : (x, ŷ)(–∞) = 
}

, (.)
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where

ŷ(t) =

{
mϕ(t,λ) + mϕ(t,λ), t ≤ d – ,
, t ≥ d + ,

(.)

while M = (m, m) ∈ R× with M �= .
Let ar < d – , br > d. By the discussion for (.) in [], an induced self-adjoint re-

striction of H on Ir can be given by

H,r =
{

(x, f ) ∈ Hr : (x, ŷ)(ar – ) = , (x, u)(br) = 
}

, (.)

where

u = nϕ(·,λ) + nϕ(·,λ), (.)

while N = (n, n) ∈ R× with N �= .
Case . Both endpoints are in l.p.c.
In this case thatL is in l.p.c. at both endpoints t = ±∞, H = H is the unique self-adjoint

subspace extension of H.
Let ar < d – , br > d. By the discussion for (.) in [], an induced self-adjoint re-

striction of H on Ir can be given by

H,r =
{

(x, f ) ∈ Hr : (x, u)(ar – ) = , (x, u)(br) = 
}

, (.)

where

u =

{
mϕ(·,λ) + mϕ(·,λ), t ≤ d – ,
nϕ(·,λ) + nϕ(·,λ), t ≥ d + ,

(.)

while M = (m, m) ∈ R× with M �=  and N = (n, n) ∈ R× with N �= .

Remark . By Theorem . in [], each self-adjoint subspace extension H of H is a
self-adjoint operator in the case that I = (–∞, +∞); that is, H can define a single-valued
self-adjoint operator in l

w(–∞, +∞) whose graph is H.

To end this section, we consider extensions of the induced self-adjoint restrictions
from Ir to I .

Note that H, H,r are self-adjoint subspaces in (l
w(I)) and (l

w(Ir)), respectively. It is
difficult to study the convergence of H,r to H in some sense since l

w(I) and l
w(Ir) are

different spaces. In order to overcome this problem, we extended l
w(Ir) and H,r to l̃

w(Ir)
and H̃,r , separately, in []. Now, we recall them for convenience.

In the case that I = [a, +∞),

l̃
w(Ir) :=

{
f ∈ l

w(I) : f (t) = , t ≥ br + 
}

,

H̃,r :=
{

(x̃, f̃ ) ∈ (
l̃
w(Ir)

) : there exists (x, f ) ∈ H,r such that (.)

x̃(t) = x(t), f̃ (t) = f (t), a –  ≤ t ≤ br
}

.
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In the case that I = (–∞, +∞),

l̃
w(Ir) :=

{
f ∈ l

w(I) : f (t) = , t ≤ ar –  and t ≥ br + 
}

,

H̃,r :=
{

(x̃, f̃ ) ∈ (
l̃
w(Ir)

) : there exists (x, f ) ∈ H,r such that (.)

x̃(t) = x(t), f̃ (t) = f (t), ar ≤ t ≤ br
}

.

Let Pr be the orthogonal projection from l
w(I) onto l̃

w(Ir). Define

H ′
,r := H̃,rG(Pr). (.)

Lemma . ([], Lemmas ., ., . and .) H̃,r and H ′
,r are self-adjoint subspaces

in (l̃
w(Ir)) and (l

w(I)), respectively, D(H ′
,r) = D(H̃,r) ⊕ (l̃

w(Ir))⊥, σ (H̃,r) = σ (H,r), and
σ (H ′

,r) = σ (H̃,r) ∪ {} = σ (H,r) ∪ {}.

The following result can be directly derived from (.)-(.).

Lemma . H ′
,r() = H̃,r() = {f̃ ∈ l̃

w(Ir) : there exists f ∈ H,r() such that f̃ (t) = f (t)
for t ∈ Ir}.

3 One endpoint is regular or in l.c.c. and the other in l.c.c
In this section, we study regular approximations of isolated eigenvalues of (.) in Cases 
and . Without loss of generality, we only consider the case that L is regular or in l.c.c. at a
and l.c.c. at t = +∞.

We showed that the induced self-adjoint restrictions {H,r}∞r= is spectrally exact for the
given self-adjoint subspace extension H in Cases  and  in []. Now, we shall further
study how the spectrum σ (H) of H is approximated by the eigenvalues of H,r . In addition,
we also give their error estimates.

Lemma . Each self-adjoint subspace extension of H has a pure discrete spectrum in
Cases  and .

Proof According to Theorems . and . in [] and Lemma ., it suffices to prove that
(zI – H)– is a Hilbert-Schmidt operator for any z ∈ ρ(H).

We only prove that (zI – H)– is a Hilbert-Schmidt operator for any z ∈ ρ(H) in Case 
with I = [a, +∞). For the other cases, it can be proved similarly.

By Proposition . in [], for any z ∈ ρ(H) and any f ∈ l
w(I),

(zI – H)–(f )(t) =
+∞∑

j=a

G(t, j, z)w(j)f (j), t ∈ I,

where

G(t, j, z) =

{∑
k,l= mklφk(t)φl(j), a ≤ j ≤ t < +∞,

∑
k,l= nklφk(t)φl(j), a ≤ t < j < +∞,
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while mkl , nkl ( ≤ k, l ≤ ) are constants, and φ, φ are two linearly independent solutions
of (.z) satisfying certain initial conditions. It is evident that φ,φ ∈ l

w(I). Denote

m := max
k,l=,

{|mkl|
}

, α := max
k=,

{‖φk‖
}

.

Define

F(f )(t) :=
+∞∑

j=a

F(t, j, z)w(j)f (j),

F(f )(t) :=
+∞∑

j=a

F(t, j, z)w(j)f (j), t ∈ I,

where

F(t, j, z) =

{∑
k,l= mklφk(t)φl(j), a ≤ j ≤ t < +∞,

, a ≤ t < j < +∞,

F(t, j, z) =

{
, a ≤ j ≤ t < +∞,
∑

k,l= nklφk(t)φl(j), a ≤ t < j < +∞.

Obviously, (zI – H)– = F + F. Thus, it is sufficient to prove that F and F are both
Hilbert-Schmidt operators.

We first prove that F is a Hilbert-Schmidt operator. Let {en : n ∈ N} be an orthonormal
basis of l

w(I). Then

∞∑

n=

∥∥F(en)
∥∥ =

∞∑

n=

∥∥
∥∥∥

t∑

j=a

∑

k,l=

mklφk(t)φl(j)w(j)en(j)

∥∥
∥∥∥



≤ m
α




∑

l=

∞∑

n=

∣
∣〈φl, en〉

∣
∣

≤ m
α


 < ∞,

in which Parseval’s identity have been used. Therefore, F is a Hilbert-Schmidt operator.
Similarly, one can show that F is a Hilbert-Schmidt operator and thus (zI – H)– is a
Hilbert-Schmidt operator. The proof is complete. �

Remark .
() In Lemma . in [], Teschl showed that each self-adjoint operator extension H

with separated boundary conditions has a pure discrete spectrum, and its resolvent
is a Hilbert-Schmidt operator in Case .

() By applying the Green functions of resolvents of H,r given in Propositions .
and . in [], which still hold for z ∈ ρ(H,r), it can easily be verified that the
resolvents of H,r are Hilbert-Schmidt operators in Cases  and . In addition, by
(.)-(.), it is evident that the resolvent of H̃,r is also a Hilbert-Schmidt
operator in Cases  and . Moreover, we point out that the results given in
Propositions . and . in [] still hold for z ∈ ρ(H).
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The following useful lemma can be directly derived from (i)-(ii) of Theorem . in [].

Lemma . Assume that X is a proper closed subspace in X, P : X → X the orthogonal
projection, and T a self-adjoint operator on X. Then

(i) T ′ = TP is a self-adjoint operator on X with D(T ′) = D(T) ⊕ X⊥
 ;

(ii) σ (T ′) = σ (T) ∪ {}.

By Lemma ., H has a discrete spectrum. Via translating it if necessary, we may suppose
that  is not an eigenvalue of H. The eigenvalues of H may be ordered as (multiplicity
included):

· · · ≤ λ– ≤ λ– ≤ λ– <  < λ ≤ λ ≤ · · · ≤ λn ≤ · · · . (.)

For convenience, we briefly denote it by σ (H) = {λn : n ∈ � ⊂ Z\{}}, where Z denotes
the set of all integer numbers. Recall that {H,r} is spectrally exact for H if  /∈ σ (H) (see
Theorems . and . in []). Since  /∈ σ (H), there exists r such that  /∈ σ (H,r) for
all r ≥ r. Therefore, for r ≥ r, the eigenvalues of H,r may be ordered as (multiplicity
included):

λ
(r)
–m(r) ≤ · · · ≤ λ

(r)
– ≤ λ

(r)
– <  < λ

(r)
 ≤ λ

(r)
 ≤ · · · ≤ λ

(r)
n(r), (.)

where m(r) and n(r) are the numbers of negative and positive eigenvalues of H,r , respec-
tively. For convenience, we briefly denote it by σ (H,r) = {λ(r)

n : n ∈ �r ⊂ Z\{}}. Let

S = (–H)–, Sr = (–H̃,r)–, r ≥ r.

Then, according to () of Remark . and Lemma ., it follows that SrPr and S are both
self-adjoint and Hilbert-Schmidt operators. Note that the results of Theorems . and .
in [] still hold for every z ∈ ρ(H) ∩ ρ(H̃,r). By Lemma ., σ (H,r) = σ (H̃,r), which
implies that  ∈ ρ(H̃,r) as r ≥ r, and thus  ∈ ρ(H)∩ρ(H̃,r) as r ≥ r. Therefore, SrPr→S
in norm as r → ∞ by Theorems . and . in [].

Theorem . In Cases  and , for each n ∈ �, there exists an rn ≥ r such that for r ≥ rn,
n ∈ �r and λ

(r)
n → λn as r → ∞.

Proof Based on the above discussion, S and SrPr are self-adjoint and Hilbert-Schmidt op-
erators for r ≥ r, and SrPr→S in norm as r → ∞. Thus they are self-adjoint and compact
operators with eigenvalues μn = –/λn for n ∈ � and μ

(r)
n = –/λ(r)

n for n ∈ �r , separately,
by Lemma .. (SrPr also has  as an eigenvalue of infinite multiplicity. But it is not related
to H,r or H, and so can be ignored.) Furthermore, since SrPr→S in norm as r → ∞, we
can get SrPr→S in the norm resolvent sense as r → ∞ according to the proof of Theo-
rem . in [] (for the concept of convergence of self-adjoint operators in the norm resol-
vent sense, please see [, ]). Let E(SrPr ,λ) and E(S,λ) be spectral families of SrPr and S,
respectively. Then, by (b) of Theorem . in [], it follows that for any α,β ∈ R ∩ ρ(S)
with α < β ,

∥∥{
E(SrPr ,β) – E(SrPr ,α)

}
–

{
E(S,β) – E(S,α)

}∥∥ →  as r → ∞,
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which, together with Theorem . in [], shows that

dim R
{

E(SrPr ,β) – E(SrPr ,α)
}

= dim R
{

E(S,β) – E(S,α)
}

for all sufficiently large r. Hence, for each n ∈ �, there exists an rn ≥ r such that for r ≥ rn,
μ

(r)
n exists. This implies that H,r has an eigenvalue λ

(r)
n for all r ≥ rn; namely, n ∈ �r for all

r ≥ rn.
Next, we show that λ

(r)
n → λn as r → ∞. To do so, it suffices to prove that μ

(r)
n → μn as

r → ∞. The negative eigenvalues are described by a min-max principle, and the positive
eigenvalues by a max-min principle according to Section . in []; that is,

μn =

⎧
⎪⎨

⎪⎩

minVn maxx∈Vn ,
‖x‖=

〈Sx, x〉, n ∈ � with n > ,

maxVn minx∈Vn ,
‖x‖=

〈Sx, x〉, n ∈ � with n < ,
(.)

where Vn runs through all the |n|-dimensional subspaces of l
w(I). For r ≥ rn, μ

(r)
n is simi-

larly expressed in terms of 〈SrPrx, x〉; that is,

μ(r)
n =

⎧
⎪⎨

⎪⎩

minVn maxx∈Vn ,
‖x‖=

〈SrPrx, x〉, n ∈ � with n > ,

maxVn minx∈Vn ,
‖x‖=

〈SrPrx, x〉, n ∈ � with n < .
(.)

We first consider the case that n ∈ � with n > . Let r ≥ rn. It follows from (.)-(.)
that there exist two n-dimensional subspaces Vn and Ṽn of l

w(I) such that

μn = max
x∈Vn ,
‖x‖=

〈Sx, x〉, μ(r)
n = max

x∈Ṽn ,
‖x‖=

〈SrPrx, x〉. (.)

In addition, there exist x ∈ Ṽn with ‖x‖ =  and x ∈ Vn with ‖x‖ =  such that

max
x∈Ṽn ,
‖x‖=

〈Sx, x〉 = 〈Sx, x〉, max
x∈Vn ,
‖x‖=

〈SrPrx, x〉 = 〈SrPrx, x〉. (.)

From (.)-(.), we have

μn – μ(r)
n ≤ max

x∈Ṽn ,
‖x‖=

〈Sx, x〉 – max
x∈Ṽn ,
‖x‖=

〈SrPrx, x〉 ≤ 〈
(S – SrPr)x, x

〉
,

μn – μ(r)
n ≥ max

x∈Vn ,
‖x‖=

〈Sx, x〉 – max
x∈Vn ,
‖x‖=

〈SrPrx, x〉 ≥ 〈
(S – SrPr)x, x

〉
.

Therefore, it follows that

∣∣μn – μ(r)
n

∣∣ ≤ max
{∣∣〈(S – SrPr)x, x

〉∣∣,
∣∣〈(S – SrPr)x, x

〉∣∣}

≤ ‖S – SrPr‖ →  as r → ∞. (.)

Thus, μ(r)
n → μn as r → ∞ for n ∈ � with n > .

Similarly, we can get μ
(r)
n → μn as r → ∞ for n ∈ � with n < . This completes the

proof. �
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At the end of this section, we shall try to give an error estimate for the approximation
of λn by λ

(r)
n for each n ∈ �. Obviously, it is very important in numerical analysis and

applications. In order to give error estimates of λ
(r)
n to λn, in view of λn = –/μn and λ

(r)
n =

–/μ(r)
n , we shall first investigate the error estimates of μ

(r)
n to μn for n ∈ � instead.

In view of the arbitrariness of λ ∈ R in (.), we might as well take λ =  in (.) in the
following discussions.

Proposition . Assume that L is regular at t = a and in l.c.c. at t = +∞. Then, for each
n ∈ � and r ≥ rn, where rn is specified in Theorem .,

∣
∣μ(r)

n – μn
∣
∣ ≤ α

(
m

 + n

) 



(
 +


p(a – )

)
εr , (.)

where α, m, and n are constants and determined by (.)-(.), and εr is completely
determined by the coefficients of (.), more precisely, it is determined by (.)-(.), (.),
(.)-(.). In addition, εr →  as r → ∞.

Proof Note that the results of Propositions . and . and Theorem . in [] still
hold for every z ∈ ρ(H) ∩ ρ(H̃,r). By Lemma ., σ (H,r) = σ (H̃,r), which implies that
 ∈ ρ(H̃,r) as r ≥ r, and thus  ∈ ρ(H) ∩ρ(H̃,r) as r ≥ r. Consequently, by (.)-(.)
in [], one has

‖S – SrPr‖ ≤ α
[
α


(
m

r + n
r
)

+
(
m

 + n

)
α

r
] 

 , r ≥ r, (.)

where

m := max
k,l=,

{∣∣m
kl
∣
∣}, n := max

k,l=,

{∣∣n
kl
∣
∣}, mr := max

k,l=,

{∣∣m
kl – mr

kl
∣
∣},

nr := max
k,l=,

{∣∣n
kl – nr

kl
∣∣}, α := max

i=,

{‖φi‖
}

, (.)

αr := max
i=,

{ ∞∑

t=br+

∣∣φi(t)
∣∣w(t)

}

,

while φ and φ are two linearly independent solutions of (.λ) with λ =  satisfying the
following initial conditions:

φ(a – ) = , φ(a – ) = –,

p(a – )�φ(a – ) = , p(a – )�φ(a – ) = ,
(.)

M =

(
–m

 m


–m
 m



)

= I + N, (.)

N =

(
–n

 n


–n
 n



)

= –
(
Ŷ ∗

 (a – ) + K
)–K , K = lim

t→+∞ Ŷ ∗
 (t)J�(t), (.)

Mr =

(
–mr

 mr


–mr
 mr



)

= I + Nr , (.)

Nr =

(
–nr

 nr


–nr
 nr



)

= –
(
Ŷ ∗

 (a – ) + Kr
)–Kr , Kr = Ŷ ∗

 (br)J�(br), (.)
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�(t) =

(
φ(t) φ(t)

p(t)�φ(t) p(t)�φ(t)

)

, Ŷ(t) =

(
ŷ(t) ŷ(t)

p(t)�ŷ(t) p(t)�ŷ(t)

)

, (.)

where ŷ(t) and ŷ(t) are defined by (.). Noting that ŷ, ŷ, φ, and φ are both solutions
of (.λ) with λ =  in [c, +∞), where c is the same as in (.). Since br > c, by Lemma .
in [], we get K = Kr , which shows that Mr = M, Nr = N, and thus mr = nr = .

Now, it remains to estimate αr . Let

W (t) :=

(
w(t + ) 

 w(t)

)

, U(t) :=

(
c(t) –d(t)

 

)

, t ≥ a, (.)

where

c(t) :=  +
q(t)
p(t)

+
p(t – )

p(t)
, d(t) :=

p(t – )
p(t)

, t ≥ a. (.)

From (.λ) with λ = , we get

x(t + ) = c(t)x(t) – d(t)x(t – ), t ≥ a.

It follows that

(
x(t + )

x(t)

)

= U(t)

(
x(t)

x(t – )

)

, t ≥ a. (.)

By (.) and (.), we get

w(t + )x(t + ) + w(t)x(t)

=
(
x(t + ), x(t)

)
W (t)

(
x(t + ), x(t)

)�

=
(
x(t), x(t – )

)
U�(t)W (t)U(t)

(
x(t), x(t – )

)�

=
(
x(a), x(a – )

)
V �(t)W (t)V (t)

(
x(a), x(a – )

)�, t ≥ a, (.)

where

V (t) := U(t)U(t – ) · · ·U(a + )U(a), t ≥ a. (.)

Let x(a) and x(a – ) be any real numbers. Since L is regular at t = a and in l.c.c. at t = +∞,
it follows from (.) that

∞∑

t=br+

w(t)x(t)

=
∞∑

i=

[
w(br + i + )x(br + i + ) + w(br + i + )x(br + i + )

]

=
(
x(a), x(a – )

)
Dr

(
x(a), x(a – )

)� →  as r → ∞, (.)
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where

Dr :=
∞∑

i=

V �(br + i + )W (br + i + )V (br + i + ). (.)

Denote

εr := ‖Dr‖, (.)

where the norm of the matrix Dr = (dr
ij)× is defined as ‖Dr‖ =

∑
i,j= |dr

ij|. Since Dr is
symmetric and (x(a), x(a – )) is arbitrary, it follows from (.) that εr →  as r → ∞. In
addition, since φ and φ satisfy (.), it follows that

αr = max
i=,

{(
φi(a), φi(a – )

)
Dr

(
φi(a), φi(a – )

)�}

≤ εr max
i=,

{
φ

i (a) + φ
i (a – )

}

≤ εr

(
 +


p(a – )

)
, (.)

in which (.) has been used. This, together with mr = nr = , (.), and (.), shows that
(.) holds. This completes the proof. �

Theorem . Assume that L is regular at t = a and in l.c.c. at t = +∞. Then, for each
n ∈ �, there exists an r′

n ≥ rn such that for all r ≥ r′
n,

∣∣λ(r)
n – λn

∣∣ ≤ |λ(r)
n |er

 – |λ(r)
n |er

, (.)

∣
∣λ(r)

n – λn
∣
∣ ≤ |λn|er

 – |λn|er
, (.)

where er denotes the number on the right-hand side in (.).

Proof For each n ∈ �, λn and λ
(r)
n have the same sign for sufficiently large r. In view of

λk = –/μk and λ
(r)
k = –/μ(r)

k , it follows from (.) that for each n ∈ �,

∣∣∣
∣


λ

(r)
n

–

λn

∣∣∣
∣ ≤ er , r ≥ rn,

which shows that

∣
∣λ(r)

n – λn
∣
∣ ≤ er

∣
∣λ(r)

n
∣
∣|λn|, r ≥ rn. (.)

Thus,

|λn| =
∣∣λn + λ(r)

n – λ(r)
n

∣∣ ≤ ∣∣λn – λ(r)
n

∣∣ +
∣∣λ(r)

n
∣∣ ≤ er

∣∣λ(r)
n

∣∣|λn| +
∣∣λ(r)

n
∣∣, r ≥ rn,

which implies that

|λn|
(
 –

∣∣λ(r)
n

∣∣er
) ≤ ∣∣λ(r)

n
∣∣. (.)



Liu and Shi Advances in Difference Equations  (2016) 2016:128 Page 18 of 29

By Theorem . and Proposition ., there exists an r′
n ≥ rn such that  – |λ(r)

n |er > . Hence,
it follows from (.) and (.) that (.) holds. With a similar argument, one can show
that (.) holds. This completes the proof. �

We now turn to error estimates of approximations of λ
(r)
n to λn in Case .

Proposition . Assume that L is in l.c.c. at t = ±∞. Then, for each n ∈ � and r ≥ rn,
where rn is specified in Theorem .,

∣
∣μ(r)

n – μn
∣
∣ ≤ 

√
α̃

(
m̃

 + ñ

) 



(
 +


p(d – )

)
ε̃r , (.)

where α̃, m̃, and ñ are constants and given by (.), d is the same as in (.), and
ε̃r is completely determined by the coefficients of (.), more precisely, it is determined by
(.)-(.), (.), (.)-(.). In addition, ε̃r →  as r → ∞.

Proof The main idea of the proof is similar to that of Proposition ., where the interval
I = [a, +∞) is replaced by I = (–∞, +∞). For completeness, we now give its detailed proof.

Note that the results of Propositions . and . and Theorem . in [] still hold for
every z ∈ ρ(H) ∩ ρ(H̃,r). By Lemma ., σ (H,r) = σ (H̃,r), which implies that  ∈ ρ(H̃,r)
as r ≥ r, and thus  ∈ ρ(H) ∩ρ(H̃,r) as r ≥ r. Consequently, by Theorem . in [] one
has

‖S – SrPr‖ ≤ α̃
[
α̃


(
m̃

r + ñ
r
)

+ 
(
m̃

 + ñ

)
α̃

r
] 

 , r ≥ r, (.)

where

m̃ := max
k,l=,

{∣∣m
kl
∣∣}, ñ := max

k,l=,

{∣∣n
kl
∣∣},

m̃r := max
k,l=,

{∣∣m
kl – mr

kl
∣
∣}, ñr := max

k,l=,

{∣∣n
kl – nr

kl
∣
∣}, (.)

α̃ := max
i=,

{‖φi‖
}

, α̃r := max
i=,

{ ar–∑

t=–∞

∣
∣φi(t)

∣
∣w(t) +

∞∑

t=br+

∣
∣φi(t)

∣
∣w(t)

}

,

while m
kl , n

kl and mr
kl , nr

kl are given by (.) and (.) in [], separately; φ and φ are two
linearly independent solutions of (.λ) with λ =  satisfying the initial conditions (.),
in which a is replaced by d given in (.). With a similar discussion to that in the proof
of Proposition ., we can prove that m̃r = ñr = . Therefore, it remains to estimate α̃r .

Let W (t), U(t), c(t), d(t) be defined as these in (.)-(.) for every t ∈ I . It is evident
that U(t) is invertible for any t ∈ I . From (.λ) with λ = , we get

x(t + ) = c(t)x(t) – d(t)x(t – ), t ∈ I,

which shows that
(

x(t + )
x(t)

)

= U(t)

(
x(t)

x(t – )

)

, t ∈ I. (.)
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By (.) and (.), we get

w(t + )x(t + ) + w(t)x(t)

=
(
x(t + ), x(t)

)
W (t)

(
x(t + ), x(t)

)�

=
(
x(t), x(t – )

)
U�(t)W (t)U(t)

(
x(t), x(t – )

)�

=
(
x(d), x(d – )

)
V �

+ (t)W (t)V+(t)
(
x(d), x(d – )

)�, t ≥ d, (.)

w(t)x(t) + w(t – )x(t – )

=
(
x(t), x(t – )

)
W (t – )

(
x(t), x(t – )

)�

=
(
x(t + ), x(t)

)(
U–)�(t)W (t – )U–(t)

(
x(t + ), x(t)

)�

=
(
x(d), x(d – )

)
V �

– (t)W (t – )V–(t)
(
x(d), x(d – )

)�, t ≤ d – , (.)

where

V+(t) = U(t)U(t – ) · · ·U(d + )U(d), t ≥ d,

V–(t) = U–(t)U–(t + ) · · ·U–(d – )U–(d – ), t ≤ d – .
(.)

Let x(d) and x(d – ) be any real numbers. Recall that ar < d – , br > d. Since L is in
l.c.c. at t = ±∞, it follows from (.)-(.) that

∞∑

t=br+

w(t)x(t)

=
∞∑

i=

[
w(br + i + )x(br + i + ) + w(br + i + )x(br + i + )

]

=
(
x(d), x(d – )

)
Dr+

(
x(d), x(d – )

)� →  as r → ∞, (.)

ar–∑

t=–∞
w(t)x(t)

=
∞∑

i=

[
w(ar – i – )x(ar – i – ) + w(ar – i – )x(ar – i – )

]

=
(
x(d), x(d – )

)
Dr–

(
x(d), x(d – )

)� →  as r → ∞, (.)

where

Dr+ :=
∞∑

i=

V �
+ (br + i + )W (br + i + )V+(br + i + ),

Dr– :=
∞∑

i=

V �
– (ar – i – )W (ar – i – )V–(ar – i – ).

(.)

Denote

εr+ := ‖Dr+‖, εr– := ‖Dr–‖, (.)



Liu and Shi Advances in Difference Equations  (2016) 2016:128 Page 20 of 29

where the norm of the matrix D = (dij)× is defined as ‖D‖ =
∑

i,j= |dij|. Since Dr+ and Dr+

are both symmetric and (x(d), x(d – )) is arbitrary, it follows from (.)-(.) that

ε̃r := εr+ + εr– →  as r → ∞. (.)

In addition, since φ and φ satisfy (.)-(.), one gets

αr = max
i=,

{(
φi(d), φi(d – )

)
(Dr+ + Dr– )

(
φi(d), φi(d – )

)�}

≤ ε̃r max
i=,

{
φ

i (d) + φ
i (d – )

}

≤ ε̃r

(
 +


p(d – )

)
, (.)

in which (.) with a = d has been used. This, together with m̃r = ñr = , (.), and (.),
shows that (.) holds. This completes the proof. �

The proof of the following result is similar to that of Theorem . and so its details are
omitted.

Theorem . Assume that L is in l.c.c. at t = ±∞. Then, for each n ∈ �, there exists an
r′

n ≥ rn such that for all r ≥ r′
n,

∣∣λ(r)
n – λn

∣∣ ≤ |λ(r)
n |ẽr

 – |λ(r)
n |ẽr

,
∣∣λ(r)

n – λn
∣∣ ≤ |λn|ẽr

 – |λn|ẽr
,

where ẽr denotes the number on the right-hand side in (.).

Remark . The authors in [, ] and [] gave similar results to Theorem . for singular
second-order and fourth-order differential Sturm-Liouville problems, respectively, where
the results in [, ] hold under the assumption that each endpoint is regular or in l.c.c. and
non-oscillatory. However, they did not give any error estimate for the approximations of
isolated eigenvalues. To the best of our knowledge, there have been no results about error
estimates for approximations of isolated eigenvalues of singular differential and difference
equations in the existing literature.

4 One endpoint is regular and the other in l.p.c
In this section, we shall study spectral exactness in an open interval laking essential spec-
tral points in Case . Without loss of generality, we only consider the case that L is regular
at a and in l.p.c. at t = +∞.

In [], we proved that the sequence of induced self-adjoint restrictions {H,r}∞r= is spec-
trally inclusive for a given self-adjoint subspace extension H in Case  and pointed out
that it is not spectrally exact in general. In this section, we will choose a sequence of spe-
cial induced self-adjoint restrictions, still denoted by {H,r}∞r= without any confusion, such
that it is spectrally exact for H in an interval laking essential spectral points.

The following are some useful lemmas.
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Lemma . ([], Exercise .) Let T be a self-adjoint operator with spectral family E,
and S a subspace in D(T) such that ‖(λ – T)f ‖ ≤ c‖f ‖ for all f ∈ S. Then dim R{E(λ + c) –
E(λ – c–)} ≥ dim S.

Lemma . ([], Lemma ..) If P and Pn are orthogonal projections on X with
dim R(Pn) ≤ dim R(P) < ∞ for n ≥  and Pn is strongly convergent to P as n→∞, denoted
by Pn

s→ P, then dim R(Pn) = dim R(P) for sufficiently large n.

Lemma . Let L be regular or in l.c.c. at one endpoint and in l.p.c. at the other endpoint,
i.e., in Case  or Case . If for some λ ∈ R the equation (.λ) has no nontrivial square
summable solutions, then λ belongs to the essential spectrum of every self-adjoint subspace
extension H of H.

Proof By the assumption, λ is not an eigenvalue of H. Denote

Mλ :=
{

(x,λx) ∈ H
}

.

Then Mλ = Mλ̄ = {(, )}. Hence, by Lemma . in [] we have R(H –λI)⊥ = D(Mλ̄) = {}.
In addition, since the deficiency indices of H are (,), λ is not in the regularity domain
of H by Theorem . in [], and therefore it is not in the resolvent set of H. Hence, λ is
in the essential spectrum of H, i.e., λ ∈ σe(H). This completes the proof. �

Remark . Teschl in Lemma . in [] showed the same statement as Lemma . when
one endpoint is finite and the other endpoint is in l.p.c. and H is an operator. The authors
in Corollary . in [] showed a similar result to Lemma . when it is regular at one
endpoint and in l.p.c. at the other endpoint. Since our proof of Lemma . is more simple,
we list it here.

Let Es(H,λ), Es(H,r ,λ), Es(H̃,r ,λ), and Es(H ′
,r,λ) be spectral families of H,s, H,r,s, H̃,r,s,

and H ′
,r,s, respectively, which denote the operator parts of H, H,r , H̃,r , and H ′

,r , respec-
tively.

Theorem . Assume that L is regular at t = a and in l.p.c. at t = +∞. Let H be any
fixed self-adjoint subspace extension of H given by (.). Assume that  /∈ I ⊂ R is an
open interval with I ∩ σe(H) = ∅ and I ∩ σd(H) �= ∅. Let v be a nontrivial real square
summable solution of (.γ ) with any fixed γ ∈ I, H,r the induced self-adjoint restriction
of H on Ir defined by

H,r =
{

(x, f ) ∈ Hr : (x, ŷ)(a – ) = , (x, v)(br) = 
}

, (.)

where ŷ is defined by (.) and {br}∞r= specified in Section . satisfies v(br) �=  for r ∈ N.
Then {H,r}∞r= is spectrally exact for H in I.

By Lemma ., there exists at least one nontrivial square summable solution v of (.γ )
for any γ ∈ I, where I is specified in Theorem .. Consequently, there are infinite t ∈
I = {t}+∞

t=a such that v(t) �= , and so we can choose {br}∞r= specified in Section . such that
v(br) �=  for r ∈ N in (.). Hence, H,r given by (.) is well defined.
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Proof of Theorem . By (.) and Lemmas . and ., it suffices to show that

H ′
,r() = H(), (.)

and for any given α,β ∈ I ∩ ρ(H) with α < γ ≤ β , there exists an integer r̃ ≥  such that
for all r ≥ r̃,

dim R
{

Es
(
H ′

,r ,β
)

– Es
(
H ′

,r,α
)}

= dim R
{

Es(H,β) – Es(H,α)
}

. (.)

We first prove (.). By (.) and (.), it can be deduced that

H() =
{

f ∈ l
w(I) : ŷ(a)f (a) = , f (t) = , t ≥ a + 

}
, (.)

By (.) and v(br) �=  we get

H,r() =
{

f ∈ l
w(Ir) : ŷ(a)f (a) = , f (t) = , a +  ≤ t ≤ br

}
,

which, together with Lemma ., shows that

H ′
,r() = H̃,r() =

{
f ∈ l

w(I) : ŷ(a)f (a) = , f (t) = , t ≥ a + 
}

.

Therefore, (.) holds.
Next, we show that (.) holds. Fix any α,β ∈ I ∩ ρ(H) with α < γ ≤ β . For any fixed r,

let λ, . . . ,λkr be all kr (counting multiplicity) eigenvalues of H,r in (α,β], and η, . . . ,ηkr

the corresponding orthonormal eigenfunctions. By Lemma . and the assumption that
 /∈ I we get

σ
(
H ′

,r
) ∩ (α,β] = σ (H̃,r) ∩ (α,β] = σ (H,r) ∩ (α,β] = {λ, . . . ,λkr }.

By (i) of Theorem . in [] we have

dim R
{

Es
(
H ′

,r ,β
)

– Es
(
H ′

,r ,α
)}

= dim R
{

Es(H̃,r ,β) – Es(H̃,r ,α)
}

= dim R
{

Es(H,r ,β) – Es(H,r ,α)
}

= kr . (.)

In addition, it follows from Lemma . that λ, . . . ,λkr are all kr (counting multiplicity)
eigenvalues of H,r,s in (α,β], and η, . . . ,ηkr are the corresponding orthonormal eigen-
functions. Since ηj ∈ D(H,r), by (.) we have ηj(br + ) = v(br+)

v(br ) ηj(br),  ≤ j ≤ kr . Hence,
there exist constants cj,  ≤ j ≤ kr , such that

(
ηj(br)

ηj(br + )

)

= cj

(
v(br)

v(br + )

)

. (.)

For every j ∈ {, . . . , kr}, let

ψj(t) =

{
ηj(t), a –  ≤ t ≤ br ,
cjv(t), t ≥ br + .
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Then ψj ∈ D(H). This, together with (.) and ηj ∈ D(H,r), shows that ψj ∈ D(H) =
D(H,s), where (.) has been used. Let

S := L{ψ, . . . ,ψkr }.

Then S obviously is kr-dimensional, and every ψ ∈ S is of the form

ψ(t) =

{∑kr
j= djηj(t), a –  ≤ t ≤ br ,

cv(t), t ≥ br + ,
(.)

where dj, j = , . . . , kr , are constants, and c =
∑kr

j= djcj. It follows from (.) that

‖ψ‖ =
+∞∑

t=a
w(t)

∣∣ψ(t)
∣∣ =

kr∑

j=

|dj| + |c|
+∞∑

t=br+

w(t)
∣∣v(t)

∣∣.

Therefore,

∥∥
∥∥

(
H,s –

α + β



)
ψ

∥∥
∥∥



=
+∞∑

t=a
w(t)

∣
∣∣
∣

(
H,s –

α + β



)
ψ(t)

∣
∣∣
∣



=
kr∑

j=

|dj|
br∑

t=a
w(t)

∣∣
∣∣

(
λj –

α + β



)
ηj(t)

∣∣
∣∣



+ |c|
+∞∑

t=br+

w(t)
∣∣
∣∣

(
γ –

α + β



)
v(t)

∣∣
∣∣



=
kr∑

j=

|dj|
∣∣∣
∣λj –

α + β



∣∣∣
∣



+ |c|
∣∣∣
∣γ –

α + β



∣∣∣
∣

 +∞∑

t=br+

w(t)
∣∣v(t)

∣∣

≤
(

β – α



)

‖ψ‖.

This shows that
∥
∥∥∥

(
H,s –

α + β



)
ψ

∥
∥∥∥ ≤ β – α


‖ψ‖.

Consequently, by Lemma . one has

kr = dim S ≤ dim R
{

Es(H,β) – Es(H,α–)
}

< ∞. (.)

Further, note that α ∈ ρ(H) = ρ(H,s) by Lemma .. Hence, by Theorem . in [] we
have

dim R
{

Es(H,β) – Es(H,α–)
}

= dim R
{

Es(H,β) – Es(H,α)
}

,

which, together with (.) and (.), shows that

dim R
{

Es
(
H ′

,r ,β
)

– Es
(
H ′

,r,α
)} ≤ dim R

{
Es(H,β) – Es(H,α)

}
. (.)
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On the other hand, one can show that {H ′
,r} converges to H in the strong resolvent sense

with a completely similar argument to that in the proof of Theorem . in [] (for the
concept of convergence of self-adjoint subspaces in the strong resolvent sense, please see
Definition . in []). From (.), it follows that {H ′

,r,s} converges to H,s in the strong
resolvent sense by Theorem . in []. Therefore, by Theorem . in [] we get

Es
(
H ′

,r,λ
) s→ Es(H,λ) for λ ∈ R \ σp(H), (.)

where σp(H) = σp(H,s) has been used. By (.)-(.), (.) follows from Lemma .. This
completes the proof. �

The following result is a direct consequence of Theorem ..

Corollary . Assume that L is regular at t = a and in l.p.c. at t = +∞. Let H be any fixed
self-adjoint subspace extension of H given by (.). If H has a pure discrete spectrum,
then the sequence {H,r}∞r= defined by (.) is spectrally exact for H if  /∈ σ (H).

5 One endpoint is in l.c.c. and the other in l.p.c
In this section, we shall study spectral exactness in an open interval laking essential spec-
tral points in Case . Without loss of generality, we only consider the case that L is in l.c.c.
at t = –∞ and in l.p.c. at t = +∞.

In this case, it was shown that the sequence of induced self-adjoint restrictions {H,r}
is spectrally inclusive for any given self-adjoint subspace extension H but not spectrally
exact for it in general in []. By Remark ., every H given by (.) is a self-adjoint
operator extension of H. Now, we shall try to choose a sequence of induced regular self-
adjoint operator extensions, still denoted by {H,r} without any confusion, such that it is
spectrally exact for H in an open interval laking essential spectral points.

Let H be any fixed self-adjoint operator extension of H given by (.). Denote I :=
{t}d–

t=–∞, where d is the same as in (.). Let Ha and Ha, be the left maximal and minimal
subspaces corresponding to (.) or L on I, respectively. Let

Ĥa, =
{

(x, f ) ∈ Ha : x(d – ) = x(d) =  and (x, y)(–∞) =  for all y ∈ D
(
H∗

a,
)}

.

Assume that  /∈ I ⊂ R is an open interval and I ∩ σe(H) = ∅, I ∩ σd(H) �= ∅. Then for ŷ
defined by (.) and any fixed δ ∈ I, by virtue of Theorem . in [], there exist uniquely
y ∈ D(Ĥa,) and one solution h in l

w(I) of (.δ) such that

ŷ(t) = y(t) + h(t), t ≤ d – . (.)

We assert that h is nontrivial. In fact, if the assertion would not hold, then ŷ(t) = y(t)
for t ≤ d – . Hence, for any (x, f ) ∈ H , one has (x, ŷ)(–∞) = (x, y)(–∞) = , where the
definition of Ĥa, and Ha ⊂ H∗

a, have been used. So, it follows from (.) that H = H .
This leads to a contradiction. Thus, this assertion holds. For any (x, f ) ∈ H , it follows from
(.) that

(x, ŷ)(–∞) = (x, h)(–∞). (.)
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Therefore, H determined by (.) can be expressed as

H =
{

(x, f ) ∈ H : (x, h)(–∞) = 
}

.

In addition, by Lemma ., there exists at least one nontrivial square summable solution
v of (.γ ) for any γ ∈ I. Consequently, we can choose {ar}∞r= and {br}∞r= specified in
Section . such that h(ar) �=  and v(br) �=  for r ∈ N.

Theorem . Assume that L is in l.c.c. at t = –∞ and in l.p.c. at t = +∞. Let H be any
fixed self-adjoint operator extension of H given by (.). Assume that  /∈ I ⊂ R is an
open interval with I ∩ σe(H) = ∅ and I ∩ σd(H) �= ∅. Let v be a nontrivial real square
summable solution of (.γ ) with any fixed γ ∈ I, H,r the induced self-adjoint restriction
of H on Ir defined by

H,r =
{

(x, f ) ∈ Hr : (x, h)(ar – ) = , (x, v)(br) = 
}

, (.)

where h is determined by (.) with δ = γ and {ar}∞r= and {br}∞r= specified in Section .
satisfy h(ar) �=  and v(br) �=  for r ∈ N, respectively. Then {H,r}∞r= is spectrally exact for
H in I.

Proof The main idea of the proof is similar to that of the proof of Theorem .. For com-
pleteness, we shall give its details.

Since v(br) �=  and h(ar) �= , we have H,r() = {}. Therefore, H,r given by (.) is a
self-adjoint operator extension of Hr

. This, together with Lemma ., shows that H̃,r and
H ′

,r are self-adjoint operators in l̃
w(Ir) and l

w(I), respectively.
By Lemmas . and ., in order to prove {H,r}∞r= is spectrally exact for H in I, it

suffices to show that for any given α,β ∈ I ∩ρ(H) with α < γ ≤ β and sufficiently large r,

dim R
{

E
(
H ′

,r ,β
)

– E
(
H ′

,r ,α
)}

= dim R
{

E(H,β) – E(H,α)
}

. (.)

Fix any α,β ∈ I ∩ρ(H) with α < γ ≤ β . For any fixed r, let λ, . . . ,λkr be all kr (counting
multiplicity) eigenvalues of H,r in (α,β], and η, . . . ,ηkr the corresponding orthonormal
eigenfunctions. Then, by Lemma ., the assumption that  /∈ I, and the first proposition
in [], p., we get

dim R
{

E
(
H ′

,r ,β
)

– E
(
H ′

,r,α
)}

= dim R
{

E(H̃,r,β) – E(H̃,r,α)
}

= dim R
{

E(H,r,β) – E(H,r,α)
}

= kr . (.)

On the other hand, it is obvious that ηj ∈ D(H,r) and thus by (.) we have

ηj(ar – ) =
h(ar – )

h(ar)
ηj(ar), ηj(br + ) =

v(br + )
v(br)

ηj(br),  ≤ j ≤ kr .

Hence, there exist constants cj and dj,  ≤ j ≤ kr , such that

(
ηj(ar – )

ηj(ar)

)

= cj

(
h(ar – )

h(ar)

)

,

(
ηj(br)

ηj(br + )

)

= dj

(
v(br)

v(br + )

)

. (.)
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For every j ∈ {, . . . , kr}, let

ψj(t) =

⎧
⎪⎨

⎪⎩

cjh(t), t ≤ ar – ,
ηj(t), ar ≤ t ≤ br ,
djv(t), t ≥ br + .

(.)

Then ψj ∈ D(H). Since ŷ ∈ D(H), it follows from (.) that (h, ŷ)(–∞) = (ŷ, ŷ)(–∞) =  and
thus ψj ∈ D(H) by (.). Let

S := L{ψ, . . . ,ψkr }.

Then S obviously is kr-dimensional, and every ψ ∈ S is of the form

ψ(t) =

⎧
⎪⎨

⎪⎩

ch(t), t ≤ ar – ,
∑kr

j= ljηj(t), ar ≤ t ≤ br ,
dv(t), t ≥ br + ,

(.)

where lj,  ≤ j ≤ kr , are constants, c =
∑kr

j= ljcj, and d =
∑kr

j= ljdj. It follows from (.) that

‖ψ‖ =
+∞∑

t=–∞
w(t)

∣∣ψ(t)
∣∣

= |c|
ar–∑

t=–∞
w(t)

∣
∣h(t)

∣
∣ +

kr∑

j=

|lj| + |d|
+∞∑

t=br+

w(t)
∣
∣v(t)

∣
∣.

Therefore,

∥∥
∥∥

(
H –

α + β



)
ψ

∥∥
∥∥



=
+∞∑

t=–∞
w(t)

∣
∣∣
∣

(
H –

α + β



)
ψ(t)

∣
∣∣
∣



=
ar–∑

t=–∞
w(t)

∣
∣∣
∣

(
γ –

α + β



)
ch(t)

∣
∣∣
∣



+
br∑

t=ar

w(t)

∣
∣∣
∣∣

(
λj –

α + β



) kr∑

j=

ljηj(t)

∣
∣∣
∣∣



+
+∞∑

t=br+

w(t)
∣∣∣
∣

(
γ –

α + β



)
dv(t)

∣∣∣
∣



= |c|
∣
∣∣
∣γ –

α + β



∣
∣∣
∣

 ar–∑

t=–∞
w(t)

∣∣h(t)
∣∣ +

kr∑

j=

|lj|
∣
∣∣
∣λj –

α + β



∣
∣∣
∣



+ |d|
∣∣
∣∣γ –

α + β



∣∣
∣∣

 +∞∑

t=br+

w(t)
∣
∣v(t)

∣
∣

≤
(

β – α



)

‖ψ‖.
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Thus,
∥
∥∥
∥

(
H –

α + β



)
ψ

∥
∥∥
∥ ≤ β – α


‖ψ‖.

Consequently, by Lemma . one has

kr = dim S ≤ dim R
{

E(H,β) – E(H,α–)
}

< ∞. (.)

Since α ∈ ρ(H), by Theorem . in [] we have

dim R
{

E(H,β) – E(H,α–)
}

= dim R
{

E(H,β) – E(H,α)
}

,

which, together with (.) and (.), shows that

dim R
{

E
(
H ′

,r ,β
)

– E
(
H ′

,r ,α
)} ≤ dim R

{
E(H,β) – E(H,α)

}
. (.)

On the other hand, one can show that {H ′
,r} converges to H in the strong resolvent sense

with a completely similar argument to that in the proof of Theorem . in [] and so we
omit the details. Therefore, by Theorem . in [], it follows that

E
(
H ′

,r ,λ
) s→ E(H,λ) for λ ∈ R \ σp(H).

Together with (.), (.) follows from Lemma .. This completes the proof. �

The following result is a direct consequence of Theorem ..

Corollary . Assume that L is in l.c.c. at t = –∞ and in l.p.c. at t = +∞. Let H be any
fixed self-adjoint subspace extension of H given by (.). If H has a pure discrete spec-
trum, then the sequence {H,r}∞r= defined by (.) is spectrally exact for H if  /∈ σ (H).

6 Both endpoints are in l.p.c
In this section, we shall study spectral exactness in an open interval laking essential spec-
tral points in Case . In this case, H = H = H is a self-adjoint operator. In [], it was
shown that the sequence of induced self-adjoint restrictions {H,r} is spectrally inclusive
for H but not spectrally exact for H in general. Now, we shall try to choose a sequence
of induced regular self-adjoint operator extensions, denoted by {H,r}, which is spectrally
exact for H in an open interval laking essential spectral points.

Denote I := {t}+∞
t=d

, where d is the same as in (.). Let Hb and Hb, be the right maximal
and minimal subspaces corresponding to (.) or L on I, respectively. I, Ha, and Ha, are
specified in Section . Let Ha, and Hb, be any self-adjoint subspace extensions of Ha, and
Hb,, separately. Then, by Theorem . in [] and Corollary . in [], one has

σe(H) = σe(H) = σe(Ha,) ∪ σe(Hb,) (.)

in Case . Assume that  /∈ I ⊂ R is an open interval with I ∩σe(H) = ∅ and I ∩σd(H) �=
∅. Then, by Lemma . and (.), there exist two nontrivial real solutions v in l

w(I) and v

in l
w(I) of (.γ ) with any γ ∈ I. Consequently, we can choose {ar}∞r= and {br}∞r= specified

in Section . such that v(ar) �=  and v(br) �=  for r ∈ N.



Liu and Shi Advances in Difference Equations  (2016) 2016:128 Page 28 of 29

Theorem . Assume that L is in l.p.c. at t = ±∞,  /∈ I ⊂ R is an open interval with
I ∩ σe(H) = ∅ and I ∩ σd(H) �= ∅. Let v and v be two nontrivial real solutions of (.γ )
with any fixed γ ∈ I, which are square summable near ∓∞, respectively, H,r the induced
self-adjoint restriction of H on Ir defined by

H,r =
{

(x, f ) ∈ Hr : (x, v)(ar – ) = , (x, v)(br) = 
}

, (.)

where {ar}∞r= and {br}∞r= specified in Section . satisfy v(ar) �=  and v(br) �=  for r ∈ N,
respectively. Then {H,r}∞r= is spectrally exact for H in I.

Proof The main idea of the proof is similar to that of the proof of Theorem .. So we omit
its details. This completes the proof. �

Corollary . Assume that L is in l.p.c. at t = ±∞, and H has a pure discrete spectrum.
Then the sequence {H,r}∞r= defined by (.) is spectrally exact for H if  /∈ σ (H).

Remark . H,r defined by (.), (.), and (.) can be viewed as special cases of those
defined by (.), (.), and (.), respectively. For example, consider H,r defined by
(.). It can be obtained by taking λ = γ in (.) and u = v in (.) and choosing {br}∞t=

specified in Section . such that v(br) �=  for r ∈ N.
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