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Abstract
In this paper, we study a stage structure population model with fixed-time birth pulse
and state feedback control strategy. The stability of the trivial solution and the
existence of periodic solutions are investigated. Sufficient conditions for the
permanence of the system are obtained. Furthermore, some numerical simulations
are given to illustrate our results. The superiority of the mixed control strategy is also
discussed.
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1 Introduction
Stage structure models have attracted much attention in recent years. In most cases, or-
dinary differential equations are used to build stage structure models [, ]. However, im-
pulsive differential equations [, ] are also suitable for the mathematical simulation of
evolutionary processes in which the parameters state variables undergo relatively long
periods of smooth variation followed by a short-term rapid change in their values. Many
results have been obtained for stage structure models described by impulsive differential
equations [–].

In most models, the increases in population due to births are assumed to be time-
independent. However, many species give birth in a very short time. Caughley [] termed
this growth pattern a birth pulse. Thus, the continuous reproduction of population should
be replaced with a birth pulse. Liu and Chen [] investigated a two-species competitive
system with toxicant and birth pulse and obtained the existence of positive periodic so-
lutions. On the other hand, different kinds of impulsive effects were assumed to occur
simultaneously in building models in most cases for simplicity. But different kinds of im-
pulsive effects occur at different moments in many practical problems. Recently, many
authors considered different kinds of impulsive effects that occur at different moments
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[–]. In [], the authors considered the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = –dx – δx,
y′(t) = δx – dy,

}

t �= nT ,

�x(t) = –( – p)x,
�y(t) = –( – p)y,

}

t = nT ,

�x(t) = (b – c(x + y))y,
�y(t) = ,

}

t = (n + )T ,

(.)

where x(t) and y(t) denote the densities of the immature and mature pests at time t, re-
spectively, and δ >  is the maturity rate that determines the mean length of the juvenile
period. A constant fraction  – p ( < p < ) of pest population is killed under the impulsive
strategy at time t = nT , b >  is the maximum birth rate, c = r(b – d), d is the maximum
death rate, and r is a parameter reflecting the relative importance of density-dependent
population regulation through birth and death. If r = , then all density dependence acts
through the death rate, and if r = , then all density dependence acts through the birth
rate.

In [], the authors addressed some problems on system (.) such as the existence and
stability of positive period-T solutions and the existence of flip bifurcations by means of
bifurcation theory.

In pest management, the pest population can be controlled by many methods, among
which the fixed-time impulsive control strategy is widely performed in practice. However,
this measure has some shortcomings, regardless of the growth rules of the pest and the
cost of management. Another measure based on the state feedback control strategy is pro-
posed in which the pesticide is sprayed only when the observed pest population reaches
a certain threshold size. The latter measure is obviously more reasonable and suitable for
pest control. Motivated by [], we consider the following model with fixed-time birth
pulse and state feedback control strategy:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = –dx – δx,
y′(t) = δx – dy,

}

t �= nT , y(t) < h,

�x(t) = (b – c(x + y))y,
�y(t) = ,

}

t = nT ,

�x(t) = –( – p)x,
�y(t) = –( – p)y,

}

y(t) = h,

(.)

where the threshold h >  is a constant. When the amount of mature pests reaches the
threshold h at time ti(h), controlling measures are taken, and the amounts of the immature
and mature pests abruptly turn to px(ti(h)) and py(ti(h)), respectively.

Jiang et al. [] investigated the periodic solutions and their relationship in an SIS epi-
demic model with fixed-time birth pulses and state feedback pulse treatments. Lin et al.
[] considered an SIS epidemic model with fixed-time birth pulses and state feedback
pulse treatments. They investigated the existence of positive periodic solutions and per-
manence of the system. However, stage structure models with fixed-time birth pulses and
state feedback control strategy have not been discussed. Motivated by this, we seek to
analyze this problem in detail.
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The remaining part of this paper is organized as follows. In the next section, we discuss
the existence of positive periodic solutions of system (.). In Section , the stability of
the trivial solution is considered. We study the permanence of system (.) in Section .
In Section , some numerical simulations are given to illustrate our results. Finally, some
concluding remarks are given.

2 The existence of periodic solutions
In this section, we investigate the existence of periodic solutions.

Set the initial point of system (.) as A(x, y) and suppose that the trajectory orig-
inating from the initial point A reaches the line y(t) = h at the point A(x, y) at time
t = t, where  < t < T . Then the pesticide is spayed, and the trajectory jumps to the point
A+

 (x+
 , y+

 ), where x+
 = px, y+

 = py. The trajectory reaches the point A(x, y) at t = T
and jumps to A+

 (x+
 , y+

 ) due to the effect of birth pulse. Thus, it follows from system (.)
that

{
x+

 = px = px exp(–(d + δ)t),
y+

 = py = p(x + y) exp(–dt) – px exp(–(d + δ)t),
{

x = x+
 exp(–(d + δ)(T – t)),

y = (x+
 + y+

 ) exp(–d(T – t)) – x+
 exp(–(d + δ)(T – t)),

{
x+

 = x + (b – c(x + y))y,
y+

 = y.

Hence,

y = (x + y) exp(–dt) – x exp
(
–(d + δ)t

)
= h, (.)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x+
 = px exp(–(d + δ)T) + bpx exp(–dT)(exp(–δt) – exp(–δT))

+ bph exp(–d(T – t)) – cp
 x

 exp(–dT – δt)(exp(–δt)
– exp(–δT)) – cpphx exp(–dT + dt)( exp(–δt)
– exp(–δT)) – cp

h exp(–d(T – t)),
y+

 = px exp(–dT)(exp(–δt) – exp(–δT)) + ph exp(–d(T – t)).

(.)

If x+
 = x, y+

 = y, then the evolution of the dynamics repeats itself. For this to hold, from
Eq. (.) and system (.) we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = px exp(–(d + δ)T) + bpx exp(–dT)(exp(–δt) – exp(–δT))
+ bph exp(–d(T – t)) – cp

 x
 exp(–dT – δt)(exp(–δt)

– exp(–δT)) – cpphx exp(–dT + dt)( exp(–δt)
– exp(–δT)) – cp

h exp(–d(T – t)),
x = h exp(dt) + x exp(–δt) – px exp(–dT)(exp(–δt)

– exp(–δT)) – ph exp(–d(T – t)).

(.)

By the second equation of system (.) we obtain

x =
h( – p exp(–dT)) exp(dt)

 – exp(–δt) + p exp(–dT)(exp(–δt) – exp(–δT))
� x̄.
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Let

f (x, t) = px exp
(
–(d + δ)T

)
+ bpx exp(–dT)

(
exp(–δt)

– exp(–δT)
)

+ bph exp
(
–d(T – t)

)

– cp
 x

 exp(–dT – δt)
(
exp(–δt) – exp(–δT)

)

– cpphx exp(–dT + dt)
(
 exp(–δt)

– exp(–δT)
)

– cp
h exp

(
–d(T – t)

)
– x.

Thus,

f (x̄, t)|t= =
h(exp(dT) – p)
p( – exp(–δT))

[
p exp

(
–(d + δ)T

)
– 

]
+ bh

–
ch(exp(dT) – p)[exp(dT) + p – p exp(–δT)]

exp(dT)( – exp(–δT))

– cp
h exp(–dT)

and

f (x̄, t)|t=T =
h(exp(dT) – p)

 – exp(–δT)
[
p( – cph) exp

(
–(d + δ)T

)
– 

]

+ bph – cp
h.

If

(
f (x̄, t)|t=

)(
f (x̄, t)|t=T

)
< , (.)

then there exists t̄ ∈ (, T) such that

f (x̄, t)|t=t̄ = .

Hence, there exists a period-T solution of system (.) where the fixed-time birth pulse
occurs at t = nT , n = , , , . . . , whereas the state feedback pulse occurs at t = (n – )T + t̄.
The initial point is (x∗

, y∗
) with

{
x∗

 = h(–p exp(–dT)) exp(dt̄)
–exp(–δt̄)+p exp(–dT)(exp(–δt̄)–exp(–δT)) ,

y∗
 = h exp(dt̄) + x∗

 exp(–δt̄) – x∗
.

(.)

It is easy to see that

y∗
 = h exp(dt̄) + x∗

 exp(–δt̄) – x∗


= h exp(dt̄)
(

 –
( – exp(–δt̄))( – p exp(–dT))

 – exp(–δt̄) + p exp(–dT)(exp(–δt̄) – exp(–δT))

)

> h exp(dt̄)
(

 –
 – exp(–δt̄)

 – exp(–δt̄) + p exp(–dT)(exp(–δt̄) – exp(–δT))

)

> .
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Theorem . Assume that condition (.) holds. Then there exists a period-T solution of
system (.) where the initial point (x∗

, y∗
) is as in (.).

A special period-T solution that is subject to spraying pesticide once, and birth pulse
two times per period T is investigated in the following. Set the initial point of system
(.) as A(x, y). The trajectory originating from the initial point A reaches the point
A(x, y) at t = T and jumps to the point A+

 (x+
, y+

) due to the effect of birth pulse.
Suppose that the trajectory reaches the line y = h at the point A(x, y) for t = T + t,
where  < t < T , and jumps to the point A+

 (x+
, y+

). The trajectory reaches the point
A(x, y) at t = T and jumps to the point A+

 (x+
, y+

). Further, suppose that x+
 = x,

y+
 = y. Then there exists a period-T solution.
By system (.) we obtain

{
x = x exp(–(d + δ)T),
y = (x + y) exp(–dT) – x exp(–(d + δ)T),

{
x+

 = x + (b – c(x + y))y,
y+

 = y,
{

x = x+
 exp(–(d + δ)t),

y = (x+
 + y+

) exp(–dt) – x+
 exp(–(d + δ)t),

{
x+

 = px,
y+

 = py,

and

{
x = x+

 exp(–(d + δ)(T – t)),
y = (x+

 + y+
) exp(–d(T – t)) – x+

 exp(–(d + δ)(T – t)),
{

x+
 = x + (b – c(x + y))y,

y+
 = y.

Thus,

⎧
⎪⎨

⎪⎩

x+
 = x exp(–(d + δ)T) + b(x + y) exp(–dT) – bx exp(–(d + δ)T)

– c(x + y) exp(–dT) + cx(x + y) exp(–d – δT),
y+

 = (x + y) exp(–dT) – x exp(–(d + δ)T),
(.)

y =
(
x+

 + y+

)

exp(–dt) – x+
 exp

(
–(d + δ)t

)
= h, (.)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+
 = px+

 exp(–(d + δ)T) + bpx+
 exp(–dT)(exp(–δt) – exp(–δT))

+ bph exp(–d(T – t)) – cp
 (x+

) exp(–dT – δt)(exp(–δt)
– exp(–δT)) – cpphx+

 exp(–dT + dt)( exp(–δt)
– exp(–δT)) – cp

h exp(–d(T – t)),
y+

 = px+
 exp(–dT)(exp(–δt) – exp(–δT))

+ ph exp(–d(T – t)).

(.)
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If x+
 = x, y+

 = y, then the evolution of the dynamics repeats itself. For this to hold,
from systems (.), (.), and Eq. (.) we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = px+
 exp(–(d + δ)T) + bpx+

 exp(–dT)(exp(–δt) – exp(–δT))
+ bph exp(–d(T – t)) – cp

 (x+
) exp(–dT – δt)(exp(–δt)

– exp(–δT)) – cpphx+
 exp(–dT + dt)( exp(–δt)

– exp(–δT)) – cp
h exp(–d(T – t)),

x = x exp(–δT) + h exp(d(T + t)) + x+
 exp(dT – δt) – x+

 exp(dT)
– px+

 exp(–dT)(exp(–δt) – exp(–δT)) – ph exp(–d(T – t)),
y = –x + x exp(–δT) + h exp(d(T + t)) + x+

 exp(dT – δt)
– x+

 exp(dT).

(.)

Suppose that (x, y) = (x̄, ȳ) is a solution of (.). Then there exists a period-T so-
lution of system (.) where the birth pulse occurs at the moments t = nT , whereas the
pesticide is sprayed at t = (n – )T + t. The initial point is (x̄, ȳ). Then we obtain the
following result.

Theorem . If the initial point (x, y) = (x̄, ȳ), where (x̄, ȳ) is the solution of (.),
then there exists a period-T solution of system (.).

3 The stability of the trivial solution
Now, we discuss the stability of the trivial solution of system (.).

Let N(t) = x(t) + y(t). Then system (.) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N ′(t) = –dN ,
y′(t) = δN – (δ + d)y,

}

t �= nT , y(t) < h,

�N(t) = (b – cN)y,
�y(t) = ,

}

t = nT ,

�N(t) = –N + p(N – y) + py,
�y(t) = –( – p)y,

}

y(t) = h.

(.)

Set p = max{p, p}. Then �N(t) = –N + p(N – y) + py < –N + pN .
Set the initial point of system (.) as A(N, y). In the following, four cases are consid-

ered for N(t).
(H) The trajectory originating from the initial point A does not reach the line y(t) = h

for  < t ≤ T .
(H) The trajectory originating from the initial point A reaches the line y(t) = h once

at time T for  < t ≤ T .
(H) The trajectory originating from the initial point A reaches the line y(t) = h once

at time t for  < t < T where  < t < T .
(H) The trajectory originating from the initial point A reaches the line y(t) = h k

times for  < t < T .
(H) It follows from system (.) that if y(t) < h for  < t ≤ T , then

N
(
T+)

= N(T) +
(
b – cN(T)

)
y(T) ≤ N(T) +

(
b – cN(T)

)
N(T)

= ( + b)N exp(–dT) – cN
 exp(–dT) � f(N).
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(H) Suppose that the trajectory originating from the initial point A reaches the line
y(t) = h at the point A(N, y) for t = T . Then birth pulse occurs, and the pesticide is
spayed. The trajectory jumps to the point A+

(N+
, y+

).
From system (.) we obtain

N+
 = N + (b – cN)y ≤ ( + b)N = ( + b)N exp(–dT) � f(N).

(H) Suppose that the trajectory originating from the initial point A reaches the line
y = h at the point A(N, y) at time t = t, where  < t < T , N = N exp(–dt), and
y = h. Then the pesticide is spayed, and the trajectory jumps to the point A+

(N+
, y+

).
The trajectory reaches the point A(N, y) at t = T and jumps to A+

(N+
, y+

) due to
the effect of birth pulse.

From system (.) we have

N+
 = p(N – y) + py ≤ pN = pN exp(–dt).

So

N = N+
 exp

(
–d(T – t)

) ≤ pN exp(–dt) exp
(
–d(T – t)

)
= pN exp(–dT),

N+
 = N + (b – cN)y ≤ ( + b)N = ( + b)pN exp(–dT) � f(N).

(H) Suppose that the trajectory originating from the initial point A reaches the line
y = h at the point An(Nn, yn) at time t = tn, where  < tn < T ,  < n ≤ k, and jumps to the
point A+

n(N+
n , y+

n). The trajectory reaches the point Ak+(Nk+, yk+) at t = T and jumps to
the point A+

k+(N+
k+, y+

k+) due to the effect of birth pulse.
Similarly to the discussion of case (H), we have

Nk+ ≤ pkN exp(–dT),

N+
k+ = Nk+ + (b – cNk+)yk+ ≤ ( + b)Nk+ ≤ ( + b)pkN exp(–dT)

� f(N).

Hence, for  < b < exp(dT) – ,

 < f ′
 () < ,  < f ′

() < ,  < f ′
() < ,  < f ′

() < .

Therefore, N(t) tends to zero with t increasing for  < b < exp(dT) – . So N(t) < (δ+d)h
δ

over a limited period of time for any initial point (N, y). It is seen from (.) that

dy
dt

= δN – (δ + d)y < 

if N < (δ+d)h
δ

, y > h
 , which means that the trajectory of system (.) will enter region

{(N , y)| < N < (δ+d)h
δ

,  < y < h} over a limited period of time for any initial point (N, y).
Then the trajectory of system (.) no longer reaches the line y = h. Suppose the number
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of mature pests is small (less than the threshold level h). It follows from system (.) that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N ′(t) = –dN ,
y′(t) = δN – (δ + d)y,

}

t �= nT ,

�N(t) = (b – cN)y,
�y(t) = ,

}

t = nT .
(.)

The trajectory originating from the initial point A(N, y) reaches the point A(N, y)
at time t = T and jumps to the point A+

 (N+
 , y+

 ) due to the effect of birth pulse. Similarly
to the above analysis, we get

⎧
⎪⎨

⎪⎩

N+
 = N(T) + (b – cN(T))y(T) ≤ N(T) + (b – cN(T))N(T)

= ( + b)N exp(–dT) – cN
 exp(–dT),

y+
 = N exp(–dT) – (N – y) exp(–(δ + d)T).

Then the following map is obtained:

{
Nn+ = ( + b)Nn exp(–dT) – cN

n exp(–dT),
yn+ = (exp(–dT) – exp(–(δ + d)T))Nn + yn exp(–(δ + d)T).

(.)

There exists a fixed point Ā(, ) of map (.). The associated characteristic polynomial
of the fixed point Ā of map (.) is given by

∣
∣
∣
∣
∣

λ – ( + b) exp(–dT) 
– exp(–dT) + exp

(
–(δ + d)T

)
λ – exp

(
–(δ + d)T

)

∣
∣
∣
∣
∣
.

Therefore,

λ = ( + b) exp(–dT), λ = exp
(
–(δ + d)T

)
.

Note that  < λ <  and  < λ <  for  < b < exp(dT) – . Then it follows that the fixed
point Ā(, ) of map (.) is locally asymptotically stable. Hence, the trivial solution of
system (.) is locally asymptotically stable for  < b < exp(dT) – , which is given in the
following result.

Theorem . The trivial solution of system (.) is locally asymptotically stable for  < b <
exp(dT) – .

4 Permanence
In the following, we discuss the permanence of system (.) by means of system (.) and
assume that c > . We set the initial point of system (.) as A(N, y) where  < y < h.
Two cases are considered.

(E) The trajectory originating from the initial point A does not reach the line y(t) = h
for  < t ≤ T .

(E) The trajectory originating from the initial point A reaches the line y(t) = h at time
t where  < t ≤ T .
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(E) It follows from system (.) that

N
(
T+)

= N(T) +
(
b – cN(T)

)
y(T)

= N exp(–dT) + bN exp(–dT) – b(N – y) exp
(
–(δ + d)T

)

– cN
 exp(–dT) + cN exp(–dT)(N – y) exp

(
–(δ + d)T

)

> N
[
( + b) exp(–dT) – b exp

(
–(δ + d)T

)
– cN exp(–dT)

]
.

Suppose ( + b) exp(–dT) – b exp(–(δ + d)T) > . Then there exists ε >  such that ( +
b) exp(–dT) – b exp(–(δ + d)T) >  + ε. Thus, N(T+) > ( + ε)N if

 < N <
exp(dT)

c
[
 + b – b exp(–δT) – ( + ε) exp(dT)

]
� D. (.)

Assume that

δD – (δ + d)h < . (.)

Then there exists ε >  small enough such that δD – (δ + d)( – ε)h < . From (.) we
obtain

dy
dt

= δN – (δ + d)y < δD – (δ + d)( – ε)h <  for N < D, y > ( – ε)h.

Thus, y(t) < h if N(t) < D for all t > . If N(t) < D for  < t ≤ nT , then

N
(
nT+) ≥ ( + ε)N

(
(n – )T+) ≥ ( + ε)nN. (.)

It follows from (.) that there exists n >  such that N(nT+) > D. In this case, there
exists t > , where nT < t < (n + )T , such that y(t) = h and N(t) ≥ D. Then the
pesticide is sprayed. Let p̄ = min{p, p}. Then

N
(
t+

)

= px(t) + py(t) ≥ p̄N(t).

We need to consider the following two cases.
() N(t+

 ) ≥ D.
() N(t+

 ) < D.
() If N(t+

 ) ≥ D, then, similarly to the above analysis, there exists t < t < (n + )T such
that y(t) = h and N(t+

 ) ≥ p̄N(t). For N(t+
 ) ≥ D, we may continue the same argument.

For N(t+
 ) < D, by the first equation of system (.) we find

N(t) < N
(
t+

)

< D for t < t < (n + )T .

Then y(t) < h for t < t < (n + )T . Thus,

N
(
(n + )T

)
= N

(
t+

)

exp
(
–d

(
(n + )T – t

)) ≥ p̄N(t) exp(–dT).
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Since y(t) = h, from the above discussion we get

N(t) > D.

Then N((n + )T) ≥ p̄D exp(–dT). It is easy to see that the birth pulse �N((n + )T) > ;
then N((n + )T+) ≥ N((n + )T). It is possible that N((n + )T+) ≥ D. It is well known
that this case coincides with the case N(t+

 ) ≥ D, and therefore we omit it.
From the above analysis we get

N(t) ≥ N
(
(n + )T

) ≥ p̄D exp(–dT) for nT < t ≤ (n + )T .

If N((n + )T+) < D, then we have

N
(
(n + )T

)
= N

(
(n + )T+)

exp(–dT) ≥ N
(
(n + )T

)
exp(–dT)

≥ p̄D exp(–dT) � m. (.)

Therefore, N(t) ≥ m for nT < t < (n + )T . Since N((n + )T+) < D, we obtain N((n +
)T+) ≥ N((n + )T+). For N((n + )T+) ≥ D, this case coincides with N(t+

 ) ≥ D. For
N((n + )T+) < D, we obtain

N
(
(n + )T

)
= N

(
(n + )T+)

exp(–dT) ≥ N
(
(n + )T+)

exp(–dT) ≥ m.

Hence,

N(t) > N
(
(n + )T

) ≥ m for (n + )T < t ≤ (n + )T .

Continuing the same argument, we get N(t) ≥ m for t > nT .
() If N(t+

 ) < D, then we find

N
(
(n + )T

)
= N

(
t+

)

exp
(
–d

(
(n + )T – t

)) ≥ p̄N(t) exp(–dT)

≥ p̄D exp(–dT).

From the first and fifth equations of system (.) we have

N(t) ≥ N
(
(n + )T

) ≥ p̄D exp(–dT) > m for nT < t ≤ (n + )T .

It is easy to see that N((n + )T+) ≥ N((n + )T). If N((n + )T+) ≥ D, it is well known
that the case coincides with case (). For N((n + )T+) < D, we obtain

N
(
(n + )T+) ≥ N

(
(n + )T

)
= N

(
(n + )T+)

exp(–dT)

≥ N
(
(n + )T

)
exp(–dT) ≥ p̄D exp(–dT).

From the first and fifth equations of system (.) we get

N(t) ≥ N
(
(n + )T

) ≥ p̄D exp(–dT) = mfor (n + )T < t ≤ (n + )T .
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Since N((n +)T+) < D, we obtain N((n +)T+) ≥ N((n +)T+). For N((n +)T+) ≥ D,
this case coincides with case (). For N((n + )T+) < D, we obtain

N
(
(n + )T

)
= N

(
(n + )T+)

exp(–dT) ≥ N
(
(n + )T+)

exp(–dT)

≥ p̄D exp(–dT) = m.

Hence,

N(t) > N
(
(n + )T

) ≥ m for (n + )T < t ≤ (n + )T .

Continuing the same argument, we get N(t) ≥ m for t > nT .
(E) In this case, we have

y(t) = h for  < t ≤ T .

By case (E) we obtain

N(t) > D.

Similarly to the discussion of case (), that is, N(t+
 ) > D, it is easy to see that N(t) > m for

large enough t > .
In conclusion, for any initial value N > , there exists t >  such that N(t) ≥ m for

t > t.
If y(t) = h for  < t < T , then

�N(t) = –N(t) + p
(
N(t) – y(t)

)
+ py(t) ≤ –N(t) + pN(t).

Thus, N(t+
 ) ≤ pN(t) < N(t). Then the number of the total pests is decreasing when the

pesticide is spayed. Therefore, N(T) ≤ N exp(–dT).
In view of the birth pulse �N = (b – cN)N > , it is easy to see that b – cN(T) ≥ b –

cN exp(–dT) > , that is, N < b exp(dT)
c . From the first and fifth equations of system (.)

we get

N(t) ≤ N <
b exp(dT)

c
for  < t ≤ T .

It is easy to see that

N
(
T+)

= N(T) +
(
b – cN(T)

)
y(T) ≤ N(T) +

(
b – cN(T)

)
N(T)

≤ –cN(T) + ( + b)N(T) ≤ ( + b)

c
.

It is well known that

N(T) ≤ N
(
T+)

exp(–dT) ≤ ( + b)

c
exp(–dT).
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In view of the birth pulse �N(T) = (b – cN(T))N(T) > , we get

N(T) <
b
c

.

For this to hold, the following condition is satisfied;

( + b)

c
exp(–dT) <

b
c

, that is, ( + b) ≤ b exp(dT).

From the first and fifth equations of system (.) we obtain

N(t) ≤ N
(
T+) ≤ ( + b)

c
for T < t ≤ T .

It is easy to see that

N
(
T+)

= N(T) +
(
b – cN(T)

)
y(T) ≤ N(T) +

(
b – cN(T)

)
N(T)

≤ –cN(T) + ( + b)N(T) ≤ ( + b)

c
.

From the first and fifth equations of system (.) we get

N(t) ≤ N
(
T+) ≤ ( + b)

c
for T < t ≤ T

and

N(T) < N
(
T+)

exp(–dT) ≤ ( + b)

c
exp(–dT) ≤ b

c
.

It is well known that

N
(
T+)

= N(T) +
(
b – cN(T)

)
y(T) ≤ N(T) +

(
b – cN(T)

)
N(T)

≤ –cN(T) + ( + b)N(T) ≤ ( + b)

c
.

Continuing the same argument, we obtain

N(t) ≤ ( + b)

c
for nT < t ≤ (n + )T .

Let

M = max

{
b exp(dT)

c
,

( + b)

c

}

. (.)

Thus, for any initial value  < N < b exp(dT)
c and t > ,

N(t) < M.
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Therefore, for large enough t > ,

m ≤ N(t) ≤ M. (.)

Now we consider the persistence of the mature pest populations. It follows from (.)
that there exists t >  such that N(t) ≥ m for t > t. Thus, from system (.) we have

dy
dt

= δN – (δ + d)y ≥ δm – (δ + d)y for t > t.

In the following, we consider three cases.
() ph < δm

δ+d < h.
It is easy to see that for large enough t >  and y < δm

δ+d ,

dy
dt

≥ δm – (δ + d)y > .

Hence, for large enough t > , ph ≤ y(t) ≤ h.
() δm

δ+d ≤ ph.
It is well known that for large enough t > , δm

δ+d ≤ y(t) ≤ h.
() δm

δ+d ≥ h.
For large enough t >  and y ≤ h,

dy
dt

≥ δm – (δ + d)y > .

Thus, for large enough t > , ph ≤ y(t) ≤ h.
In conclusion, for large enough t > , m ≤ y(t) ≤ h, where

m = min

{

ph,
δm

δ + d

}

. (.)

Then we obtain the following result.

Theorem . Assume that condition (.) holds, c > , ( + b) ≤ b exp(dT), and ( +
b) exp(–dT) – b exp(–(δ + d)T) > . Then for any initial point A(x, y) in system (.) such
that  < x + y < b exp(σT)

c and  < y ≤ h, there exists t̄ >  such that m ≤ x(t) + y(t) ≤
M and m ≤ y(t) ≤ h for t > t̄, where m, M, and m are given in (.), (.), and (.),
respectively.

The particular case c =  is investigated as follows. Set the initial point of system (.) as
Ā(x, y) with  < y < h. We consider two cases.

(B) The trajectory originating from the initial point A does not reach the line y(t) = h
for  < t ≤ T .

(B) The trajectory originating from the initial point A reaches the line y(t) = h at time
t where  < t ≤ T .

(B) It follows from system (.) that

x
(
T+)

= x exp
(
–(δ + d)T

)
+ b(x + y) exp(–dT) – bx exp

(
–(δ + d)T

)

> x exp
(
–(δ + d)T

)
+ bx exp(–dT) – bx exp

(
–(δ + d)T

)
.
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It is well known that x(T+) > x if

 – b + b exp(δT) – exp
(
(δ + d)T

)
> . (.)

From system (.) we have

dy
dt

= δx – dy <  for x <
dph

δ
, y > ph.

Thus,

y(t) < h if x(t) <
dph

δ
for all t > .

By (.) it is easy to see that there exists ε >  such that

 – b + b exp(δT) – exp
(
(δ + d)T

)
> ε,

that is,

exp
(
–(δ + d)T

)
+ b exp(–dT) – b exp

(
–(δ + d)T

)
>  + ε.

Hence,

x
(
T+)

> x( + ε).

If x(t) < dph
δ

for  < t ≤ nT , then

x
(
nT+) ≥ ( + ε)x

(
(n – )T+) ≥ ( + ε)nx. (.)

It follows from (.) that there exists n >  such that x(nT+) > dph
δ

. Similarly to the case
c > , there exists t >  such that, for t > t,

x(t) >
dph

δ
exp

(
–(d + δ)T

)
� m̄. (.)

(B) In this case, we get

y(t) = h for  < t ≤ T .

By case (B) we obtain

x(t) >
dph

δ
.

Similarly to the discussion of case (B), it is easy to see that x(t) > m̄ for large enough t > .
By system (.) we obtain

dy
dt

= δx – dy ≥ δm̄ – dy for large enough t > .
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In the following, we discuss three cases.
() ph < δm̄

d < h.
It is easy to see that

dy
dt

≥ δm̄ – dy >  for y <
δm̄

d
.

Hence, for large enough t > , ph ≤ y(t) ≤ h.
() δm̄

d < ph.
It is well known that for large enough t > , δm̄

d ≤ y(t) ≤ h.
() δm̄

d ≥ h.
For large enough t >  and y ≤ h,

dy
dt

≥ δm̄ – dy > .

Thus, for large enough t > , ph ≤ y(t) ≤ h.
In conclusion, for large enough t > , m̄ ≤ y(t) ≤ h, where

m̄ = min

{

ph,
δm̄

d

}

. (.)

Then we obtain the following result.

Theorem . Assume that condition (.) holds and c = . Then for any solution of system
(.), there exists t∗ >  such that m̄ ≤ x(t) and m̄ ≤ y(t) ≤ h for t > t∗, where m̄ and m̄

are given in (.) and (.), respectively.

5 Numerical simulation
Now consider the following example:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = –.x – .x,
y′(t) = .x – .y,

}

t �= nT , y(t) < h,

�x(t) = (b – c(x + y))y,
�y(t) = ,

}

t = nT ,

�x(t) = –( – p)x,
�y(t) = –( – p)y,

}

y(t) = h.

(.)

In our case, d = ., δ = ., T = , c = ., b = exp(dT) –  = exp(. × ) –  ≈ ..

5.1 Species extinction
Set b = ., h = ., p = ., p = ., where b ∈ (, b). The phase portrait of system (.)
with the initial point (, .) is shown in Figure . It is seen that the solution tends to the
trivial solution with t increasing, which means that the trivial solution is asymptotically
stable.

5.2 Species persistence
Firstly, set c = .. The phase portrait of system (.) with h = , b = , p = ., p = .,
and the initial points (., .) and (., .) are shown in Figure . It is seen that
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(a) Time series of x. (b) Time series of y.

(c) Phase portrait.

Figure 1 The stable trivial solution of system (5.1).

(a) The solution with the initial point (., .). (b) The solution with the initial point (., .).

Figure 2 The solutions of system (5.1) with c = 0.2.

the trajectory of system (.) enters a quadrilateral and stays in it forever, which verifies
Theorem ..

Set c = . The phase portrait of system (.) with h = , b = , p = ., p = ., and
the initial points (., .) and (., .) are shown in Figure . It is seen that the
trajectory of system (.) enters a quadrilateral and stays in it forever, which verifies The-
orem ..
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(a) The solution with the initial point (., .). (b) The solution with the initial point (., .).

Figure 3 The solutions of system (5.1) with c = 0.

(a) Time series of x. (b) Time series of y.

(c) Phase portrait.

Figure 4 The period-T solution of system (5.1) with h = 6, b = 5, p1 = p2 = 0.5, and the initial point
(18, 4.154).



Liu and Dai Advances in Difference Equations  (2016) 2016:130 Page 18 of 22

(a) Time series of x. (b) Time series of y.

(c) Phase portrait.

Figure 5 The period-T solution of system (5.1) with h = 6, b = 12, p1 = p2 = 0.5, and the initial point
(41, 3.5).

5.3 The existence of periodic solutions
Set h = , b = , p = p = .. The phase portrait and time series of x and y of system (.)
with the initial point (, .) are shown in Figure , where t = .. It is seen that
y(t) reaches the threshold value y(t) =  at t = n –  + t, where n = , , . . . . The pulse
treatment and birth pulse occur at t = n –  + t and t = n, respectively. Then system
(.) has a period-T solution, which verifies Theorem ..

Set h = , b = , p = p = .. The phase portrait and time series of x and y of system
(.) with the initial point (, .) are shown in Figure , where t ≈ ., t ≈ .. It
is seen that y(t) reaches the threshold value y(t) =  at t = n –  + t and t = n –  + t,
respectively, where n = , , . . . . The pulse treatment occurs at t = n –  + t and t = n –
 + t, respectively. The birth pulse occurs at t = n. Then system (.) has a period-T
solution.

Set h = , b = , p = p = .. The phase portrait and time series of x and y of system
(.) with the initial point (., .) are shown in Figure , where t ≈ .. It is seen that
y(t) reaches the threshold value y(t) =  at t = n –  + t, where n = , , . . . . The pulse
treatment and birth pulse occur at t = n –  + t and t = n, respectively. Then system
(.) has a period-T solution.
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(a) Time series of x. (b) Time series of y.

(c) Phase portrait.

Figure 6 The period-2T solution of system (5.1) with h = 6, b = 3, p1 = p2 = 0.5, and the initial point
(8.9, 3.5).

5.4 The superiority of the mixed control strategy
Set d = ., δ = ., T = , c = ., h = , b = , p = ., p = ., and the initial point
(, .) in system (.). The system of the time-fixed pulse control strategy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = –.x – .x,
y′(t) = .x – .y,

}

t �= n, n = , , , . . . ,

�x(t) = –( – p)x,
�y(t) = –( – p)y,

}

t = n – ,

�x(t) = (b – c(x + y))y,
�y(t) = ,

}

t = n,

(.)

and the state feedback control strategy

{
x(t+) = px,
y(t+) = py,

y(t) = ,

are shown in Figure  and Figure , respectively, where  ≤ t ≤ .
It is seen from Figure (b) that the total number of spraying pesticide is  in the case

of time-fixed pulse control strategy. However, y(t) is larger than the threshold value h = 
at some points. It is seen from Figure (b) that the total number of spraying pesticide is
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(a) Time series of x with time-fixed pulse control

strategy.

(b) Time series of y with time-fixed pulse control

strategy.

(c) Phase portrait with time-fixed pulse control

strategy.

Figure 7 The solution of system (5.2) with h = 6, b = 3, p1 = 0.7, p2 = 0.75, and the initial point (12, 0.1).

seven times in the case of state feedback control strategy, and y(t) is controlled under the
threshold value h = . In view of the total number of spraying pesticide and results of two
control strategies, the state feedback control strategy is more effective than the time-fixed
pulse control strategy.

6 Conclusion
In this paper, we study a stage structure population model with fixed-time birth pulse and
state feedback control strategy. The stability of the trivial solution and the existence of
periodic solutions are discussed. The sufficient conditions for the permanence of system
(.) are obtained. It is shown that the maximum birth rate b plays an important role in
the population dynamics. The trivial solution of system (.) is asymptotically stable for
 < b < exp(dT) – . For b > exp(dT) – , the amount of mature pests can be controlled
under the threshold value y = h. There exist many kinds of periodic solutions of system
(.). The period-T and period-T solutions are discussed.
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(a) Time series of x with time-fixed birth pulse

and state feedback control strategy.

(b) Time series of y with time-fixed birth pulse

and state feedback control strategy.

(c) Phase portrait with time-fixed birth pulse

and state feedback control strategy.

Figure 8 The solution of system (5.1) with h = 6, b = 3, p1 = 0.7, p2 = 0.75, and the initial point (12, 0.1).
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