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Abstract
Pulse vaccination is an important strategy to eradicate an infectious disease. In this
paper, we investigate an SIR epidemic model with stage structure and pulse
vaccination. By using the discrete dynamical system determined by stroboscopic
map, we obtain the conditions for the global asymptotical stability of the
infection-free periodic solution of the studied system. The permanent conditions of
the investigated system are also given. The results indicate that a large pulse
vaccination rate is a sufficient condition to eradicate the disease. It provides a reliable
tactic basis for preventing the epidemic outbreak.
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1 Introduction
The SIR (susceptible, infectious, recovered) epidemic model is one of the most popular
epidemic models in epidemiology; it was initially proposed by Kermack and Mckendrick
[–]. Since then, the SIR models have been considered by many researchers [–]. They
have made a wealth of research achievements. In s, Hethcote [] considered the ini-
tial value problem (IVP) for the SIR model of an endemic disease with vital dynamics as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(NS(t))′ = –λSNI + μN – μNS,

(NI(t))′ = λSNI – γ NI – μNI,

(NR(t))′ = γ NI – μNR,

NS() = NS > , NI() = NI ≥ ,

NR() = NR ≥ ,

NS(t) + NI(t) + NR(t) = N ,

where the contact rate λ, the removal rate constant γ and the death rate constant μ are
positive constants. For more details of a simple SIR model, we can refer to the books of
Hethcote [] and Anderson and May [].

In addition, Gao et al. [] have investigated a delayed SIR epidemic model with pulse
vaccination. They conclude that the infection-free periodic solution is globally attractive
and the system is permanent. Meng and Chen [] studied the SIR epidemic model with
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both vertical and horizontal transmission, analyzed some dynamical behaviors, such as the
infection-free equilibrium, the positive equilibrium, the permanence, global asymptotic
behavior and so on, and one obtained some important qualitative properties.

Recently, pulse vaccination strategy, a new vaccination strategy against measles, has
been proposed. Its theoretical study was started by Agur et al. in []. As for pulse vacci-
nation strategy, a lot of original work has been done in [–, –].

In the real world, individual members of many species experience two stages of life,
immature and mature ones. Stage-structured population models have received great at-
tention, and many stage-structured models have been studied in recent years [–].

Theories of impulsive differential equations have been introduced into population dy-
namics lately [–]. Impulsive equations are found in almost every domain of applied
science and have been studied in many investigations [, , –]. They generally de-
scribe phenomena which are subject to steep or instantaneous changes.

Motivated by the above studies, our study is to investigate transmission dynamics of an
SIR epidemic model with stage structure and pulse vaccination. We assume that the ma-
tured population approaches a steady state, if there is no disease infection and all matured
individuals are susceptible. We assume full immunity of recovered individuals; that is to
say, those individuals are no longer susceptible after they have recovered.

The present paper is to introduce birth pulse of the population, state structure and pulse
vaccination into SIR epidemic model and obtain some important qualitative properties for
the investigated system. As a matter of fact, pulse birth is used in an epidemic model. To
the best of our knowledge, no such research has been conducted.

2 The model
In this work, we consider an SIR epidemic model with stage structure and pulse vaccina-
tion:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –(c + d)S(t),

dS(t)
dt = cS(t) – dS(t) – βS(t)I(t),

dI(t)
dt = βS(t)I(t) – (r + d)I(t),

dR(t)
dt = rI(t) – dR(t),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= nτ , t �= (n + l)τ ,

�S(t) = S(t)(a – bS(t)),

�S(t) = ,

�I(t) = ,

�R(t) = ,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t = nτ , n = , , . . . ,

�S(t) = ,

�S(t) = –μS(t),

�I(t) = ,

�R(t) = μS(t),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t = (n + l)τ , n = , , . . . ,

()

where S(t), S(t) represent the numbers of the immature and the mature of the suscepti-
ble. I(t), R(t) represent the numbers of the infectious, and the recovered, respectively. c is
called the rate of the immature susceptible turning into the mature susceptible. d, d, d,
d, respectively denote the natural death rate of the immature susceptible, the mature sus-
ceptible, the infectious and the recovered. β is the average number of adequate contacts
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of a mature infectious individual per unit time. r stands for the recovery rate of the mature
infectious individual. The mature susceptible is birth pulse with intrinsic rate of natural
increase and density dependence rate of the mature susceptible denoted by a, b, respec-
tively. The pulse birth and pulse vaccination occurs every τ period (τ is a positive con-
stant). �S(t) = S(t+) – S(t). μ ( < μ < ) is the proportion of the successful vaccination
which is called pulse vaccination rate, at t = (n+ l)τ ,  < l < , n ∈ Z+. �S(t) = S(t+)–S(t),
and S(t)(a – bS(t)) represents the birth effort of the mature susceptible at t = nτ , n ∈ Z+.

In this paper, we assume:
(i) The susceptible is infertile after being infected; that is to say, the infectious and the

recovered have no ability to reproduce.
(ii) The immature susceptible is immune to the disease for taking from their parent

population; that is to say, the immature susceptible achieves temporary immunity.
As the first, second, and third equations do not comprise R(t), we can simplify system

() as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –(c + d)S(t),

dS(t)
dt = cS(t) – dS(t) – βS(t)I(t),

dI(t)
dt = βS(t)I(t) – (r + d)I(t),

⎫
⎪⎪⎬

⎪⎪⎭

t �= nτ , t �= (n + l)τ ,

�S(t) = S(t)(a – bS(t)),

�S(t) = ,

�I(t) = ,

⎫
⎪⎪⎬

⎪⎪⎭

t = nτ , n = , , . . . ,

�S(t) = ,

�S(t) = –μS(t),

�I(t) = ,

⎫
⎪⎪⎬

⎪⎪⎭

t = (n + l)τ , n = , , . . . .

()

This is equivalent to system ().

3 Some lemmas
Before discussing the main results, we will introduce some definitions, notations, and lem-
mas. Denote by f = (f, f, f, f) the map defined by the right-hand side of system (), the
solution of (), denoted by z(t) = (S(t), S(t), I(t), R(t))T , is a piecewise continuous function
z : R+ → R

+, where R+ = [,∞), R
+ = {z ∈ R : z > }. z(t) is continuous on (nτ , (n+ l)τ ]×R

+

and ((n + l)τ , (n + )τ ] × R
+ (n ∈ Z+,  < l < ). According to [, ], the global existence

and uniqueness of solutions of system () is guaranteed by the smoothness properties of
f , the mapping defined by the right-hand side of system ().

Let V : R+ × R
+ → R+. Then V is said to be belonged to class V if:

(i) V is continuous in (nτ , (n + l)τ ] × R
+ and ((n + l)τ , (n + )τ ] × R, for all z ∈ R

+,
n ∈ Z+, and lim(t,y)→((n+l)τ+,z) V (t, y) = V ((n + l)τ+, z) and
lim(t,y)→((n+)τ+,z) V (t, y) = V ((n + )τ+, z) exist.

(ii) V is locally Lipschitzian in z.

Definition . If V ∈ V, then, for (t, z) ∈ (nτ , (n + l)τ ] × R
+ and ((n + l)τ , (n + )τ ) × R

+,
the upper right derivative of V (t, z) with respect to the impulsive differential system () is
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defined as

D+V (t, z) = lim
h→

sup

h
[
V
(
t + h, z + hf (t, z)

)
– V (t, z)

]
.

Lemma . (see [], Theorem ..) Let the function m ∈ PC′[R+, R] satisfy the inequal-
ities
⎧
⎨

⎩

m′(t) ≤ p(t)m(t) + q(t), t �= tk , k = , , . . . ,

m(t+
k ) ≤ dkm(tk) + bk , t = tk , t ≥ t,

()

where p, q ∈ C[R+, R] and dk ≥  and bk are constants. Then

m(t) ≤ m(t)
∏

t<tk <t
dk exp

(∫ t

t

p(s) ds
)

+
∑

t<tk <t

( ∏

tk <tj<t
dj exp

(∫ t

tk

p(s) ds
))

bk

+
∫ t

t

∏

s<tk<t
dk exp

(∫ t

s
p(σ ) dσ

)

q(s) ds, t ≥ t.

Lemma . There exists a constant M >  such that S(t) ≤ M, S(t) ≤ M, I(t) ≤ M, R(t) ≤
M for each solution (S(t), S(t), I(t), R(t)) of system () with t large enough.

Proof Define V (t) = S(t) + S(t) + I(t) + R(t), d = min{d, d, d, d}. When t �= (n + l)τ ,
t �= (n + )τ , we have

D+V (t) + dV (t) = –cS(t) – dS(t) + cS(t) – dS(t) – βS(t)I(t)

+ βS(t)I(t) – (r + d)I(t) + rI(t) – dR(t)

+ dS(t) + dS(t) + dI(t) + dR(t)

= –(d – d)S(t) – (d – d)S(t)

– (d – d)I(t) – (d – d)R(t) ≤ δ ≤ .

When t = (n + l)τ , we have

V
(
(n + l)τ+) = S

(
(n + l)τ+) + S

(
(n + l)τ+) + I

(
(n + l)τ+) + R

(
(n + l)τ+)

= S
(
(n + l)τ

)
+ ( – μ)S

(
(n + l)τ

)
+ I
(
(n + l)τ

)

+ R
(
(n + l)τ

)
+ μS

(
(n + l)τ

)

= S
(
(n + l)τ

)
+ S
(
(n + l)τ

)
+ I
(
(n + l)τ

)
+ R
(
(n + l)τ

)

= V
(
(n + l)τ

)
.

When t = (n + )τ , we have

V
(
(n + )τ+) = S

(
(n + )τ+) + S

(
(n + )τ+) + I

(
(n + )τ+) + R

(
(n + )τ+)

=
[
S
(
(n + )τ

)
+ S
(
(n + )τ

)(
a – bS

(
(n + )τ

))]
+ S
(
(n + )τ

)

+ I
(
(n + )τ

)
+ R
(
(n + )τ

)
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= S
(
(n + )τ

)
+ S
(
(n + )τ

)(
a – bS

(
(n + )τ

))
+ S
(
(n + )τ

)

+ I
(
(n + )τ

)
+ R
(
(n + )τ

)

= V
(
(n + )τ

)
+ S
(
(n + )τ

)(
a – bS

(
(n + )τ

))

≤ V
(
(n + )τ

)
+

a

b
.

We make a notation as ξ = a

b > . Then by Lemma ., for t ∈ (nτ , (n + )τ ], we have

V (t) ≤ V () exp(–dt) +
∫ t


δ exp
(
–d(t – s)

)
ds +

∑

<nτ<t

ξ exp
(
–d(t – nτ )

)

= V () exp(–dt) +
δ

d
(
 – exp(–dt)

)
+ ξ

exp(–d(t – τ )) – exp(–d(t – (n + )τ ))
 – exp(dτ )

< V () exp(–dt) +
δ

d
(
 – exp(–dt)

)
+

ξ exp(–d(t – τ ))
 – exp(dτ )

+
ξ exp(dτ )

exp(dτ ) – 

→ δ

d
+

ξ exp(dτ )
exp(dτ ) – 

as t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t) we see that there
exists a constant M > , such that S(t) ≤ M, S(t) ≤ M, I(t) ≤ M, R(t) ≤ M for t large
enough.

We choose the following notation:


∗ =
(c + d – d)[ + e–(c+d–d)τ – e–(c+d)τ – edτ ] + ac[ – e–(c+d–d)τ ]

(c + d – d)[ – e–(c+d)τ ] + ac[ – e–(c+d–d)lτ ]
.

If I(t) = , then we have the following subsystem of ():

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –(c + d)S(t),

dS(t)
dt = cS(t) – dS(t),

⎫
⎬

⎭
t �= nτ , t �= (n + l)τ ,

�S(t) = S(t)(a – bS(t)),

�S(t) = ,

⎫
⎬

⎭
t = nτ , n = , , . . . ,

�S(t) = ,

�S(t) = –μS(t),

⎫
⎬

⎭
t = (n + l)τ , n = , , . . . .

()

We easily obtain the analytic solution of system () between pulses as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S(t) = S(nτ+)e–(c+d)(t–nτ ), t ∈ (nτ , (n + )τ ],

S(t) =

⎧
⎪⎪⎨

⎪⎪⎩

e–d(t–nτ )[S(nτ+) + cS(nτ+)(–e–(c+d–d)(t–nτ ))
c+d–d

], t ∈ (nτ , (n + l)τ ],

e–d(t–(n+l)τ )[S((n + l)τ+) + cS((n+l)τ+)(–e–(c+d–d)(t–(n+l)τ ))
c+d–d

],

t ∈ ((n + l)τ , (n + )τ ].

()
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Considering the fourth, fifth, seventh, and eighth equations of system (), we have the
stroboscopic map of ()

⎧
⎪⎪⎨

⎪⎪⎩

S((n + )τ+) = [e–(c+d)τ + acζ
c+d–d

]S(nτ+) + a( – μ)e–dτ S(nτ+)

– b[ cζ
c+d–d

S(nτ+) + ( – μ)e–dτ S(nτ+)],

S((n + )τ+) = cζ
c+d–d

S(nτ+) + ( – μ)e–dτ S(nτ+),

()

where ζ = e–dτ [( – μ)( – e–(c+d–d)lτ ) + e–(c+d–d)lτ – e–(c+d–d)τ ] > . If we choose A =
e–(c+d)τ + acζ

c+d–d
> , B = a( – μ)e–dτ > , C = cζ

c+d–d
, D = ( – μ)e–dτ , A < , and  < D <

, the following two equivalence relations are found by calculation:

μ < 
∗ ⇔  – A – D + AD – BC < ,

μ > 
∗ ⇔  – A – D + AD – BC > .

The two fixed points of () are obtained as G(, ) and G(S∗
 , S∗

), where
⎧
⎨

⎩

S∗
 = (–D–A+AD–BC)(–+D)

bC , μ < 
∗,

S∗
 = –(–D–A+AD–BC)

bC , μ < 
∗.
()
�

Lemma . (i) If μ > 
∗, then the fixed point G(, ) is globally asymptotically stable.
(ii) If μ < 
∗, then the fixed point G(S∗

 , S∗
) is globally asymptotically stable.

Proof This proof is similar to Lemma . of []. For convenience, denote (Sn
 , Sn

) =
(S(nτ+), S(nτ+)). The linear form of () can be written as
(

Sn+


Sn+


)

= M

(
Sn



Sn


)

. ()

Obviously, the near dynamics of G(, ) and G(S∗
 , S∗

) are determined by linear system
(). The stabilities of G(, ) and G(S∗

 , S∗
) are determined by the eigenvalue of M less

than . If M satisfies the Jury criterion [], we know that the eigenvalue of M is less than ,

 – tr M + det M > . ()

(i) If μ > 
∗, namely  – D – A + AD – BC > , G(, ) is the unique fixed point of system
of (), we have

M =

(
A B
C D

)

. ()

Calculating  – tr M + det M =  – (A + D) + (AD – BC) > , and from the Jury criterion,
G(, ) is locally stable, and then it is globally asymptotically stable.

(ii) If μ < 
∗, say –A–D+AD–BC < , G(, ) is unstable. For –A–D+AD–BC < ,
G(S∗

 , S∗
) exists, and

M =

(
A – b(CS∗

 + DS∗
)C B – b(CS∗

 + DS∗
)D

C D

)

. ()
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Also

 – tr M + det M

=  –
{[

A – b
(
CS∗

 + DS∗

)
C
]

+ D
}

+
{[

A – b
(
CS∗

 + DS∗

)
C
]× D –

[
B – b

(
CS∗

 + DS∗

)
D
]× C

}

=  – A + b
(
CS∗

 + DS∗

)
C – D

+
[
AD – b

(
CS∗

 + DS∗

)
CD – BC + b

(
CS∗

 + DS∗

)
DC
]

=  – A – D + b
(
CS∗

 + DS∗

)
C + AD – BC

= ( – A – D + AD – BC) + b

×
(

C
( – D – A + AD – BC)(– + D)

bC + D
–( – D – A + AD – BC)

bC

)

C

= ( – A – D + AD – BC)

+ 
(
( – D – A + AD – BC)(– + D) – D( – D – A + AD – BC)

)

= ( – A – D + AD – BC) – ( – A – D + AD – BC)

= –( – A – D + AD – BC) > .

From the Jury criterion, G(S∗
 , S∗

) is locally stable, and then it is globally asymptotically
stable. This completes the proof. �

Lemma . (i) If μ > 
∗, then the trivial periodic solution (, ) of system () is globally
asymptotically stable.

(ii) If μ < 
∗, then the periodic solution (S̃(t), S̃(t)) of system () is globally asymptoti-
cally stable, where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S̃(t) = S∗
 e–(c+d)(t–nτ ), t ∈ (nτ , (n + )τ ],

S̃(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e–d(t–nτ )[S∗
 + cS∗

 (–e–(c+d–d)(t–nτ ))
c+d–d

], t ∈ (nτ , (n + l)τ ],

e–d(t–(n+l)τ )[( – μ)e–dlτ (S∗
 + cS∗

 (–e–(c+d–d)lτ )
c+d–d

)

+ cS∗
 e–(c+d)lτ (–e–(c+d–d)(t–(n+l)τ ))

c+d–d
], t ∈ ((n + l)τ , (n + )τ ],

()

in which S∗
 , S∗

 are determined as in ().

4 The dynamics
In this section, for system () there obviously exists an infection-free periodic solution
(S̃(t), S̃(t), ). First, we prove that the infection-free periodic solution (S̃(t), S̃(t), ) of
system () is globally asymptotically stable. After that, we prove that system () is perma-
nent.

Theorem . If

μ < 
∗,

τ >


c + d
ln( + a)
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and

μ >
[

S∗
( – e–dτ )

d
+

cS∗
 ( – e–dτ )

d(c + d – d)
–

cS∗
 ( – e–(c+d)τ )

(c + d)(c + d – d)
–

(r + d)τ
β

]

×
[
(
e–dlτ – e–dτ

)
(

S∗


d
+

cS∗
 ( – e–(c+d–d)lτ )
d(c + d – d)

)]–

,

then the infection-free periodic solution (S̃(t), S̃(t), ) of system () is globally asymptoti-
cally stable, where S∗

 , S∗
 are defined by ().

Proof First of all, we prove the local stability. Defining Z(t) = S(t) – S̃(t), Z(t) = S(t) –
S̃(t), I(t) = I(t), we have the following linearly similar system for ():

⎛

⎜
⎜
⎝

dZ(t)
dt

dZ(t)
dt

dI(t)
dt

⎞

⎟
⎟
⎠ =

⎛

⎜
⎝

–(c + d)  
c –d –βS̃(t)
  βS̃(t) – (r + d)

⎞

⎟
⎠

⎛

⎜
⎝

Z(t)
Z(t)
I(t)

⎞

⎟
⎠ .

It is easy to obtain the fundamental matrix

�(t) =

⎛

⎜
⎝

exp[–(c + d)t]  
∗ exp(–dt) †

  exp[
∫ t

 (βS̃(s) – (r + d)) ds]

⎞

⎟
⎠ .

There is no need to calculate the exact forms of ∗, †, as they are not required in the analysis
that follows. The linearization of the fourth, fifth, and sixth equations of system () is

⎛

⎜
⎝

Z((n + )τ+)
Z((n + )τ+)
I((n + )τ+)

⎞

⎟
⎠ =

⎛

⎜
⎝

 + a  
  
  

⎞

⎟
⎠

⎛

⎜
⎝

Z((n + )τ )
Z((n + )τ )
I((n + )τ )

⎞

⎟
⎠ .

The linearization of the seventh, eighth, and ninth equations of system () is

⎛

⎜
⎝

Z((n + l)τ+)
Z((n + l)τ+)
I((n + l)τ+)

⎞

⎟
⎠ =

⎛

⎜
⎝

  
  – μ 
  

⎞

⎟
⎠

⎛

⎜
⎝

Z((n + l)τ )
Z((n + l)τ )
I((n + l)τ )

⎞

⎟
⎠ .

The stability of the infection-free periodic solution (S̃(t), S̃(t), ) is determined by the
eigenvalues of

M =

⎛

⎜
⎝

  
  – μ 
  

⎞

⎟
⎠

⎛

⎜
⎝

 + a  
  
  

⎞

⎟
⎠�(τ ),

which are

λ = ( + a) exp
[
–(c + d)τ

]
,

λ = ( – μ)e–dτ < 
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and

λ = exp

[∫ τ



(
βS̃(s) – (r + d)

)
ds
]

.

According to the conditions of this theorem, we easily know that ( + a) exp[–(c + d)τ ] < ,
and exp[

∫ τ

 (βS̃(s) – (r + d)) ds] < , then λ < , and λ < . From the Floquet theory [],
the infection-free (S̃(t), S̃(t), ) of system () is locally stable.

The following task is to prove the global attractivity; choose ε >  such that

ρ = exp

[∫ τ



(
β
(
S̃(s) + ε

)
– (r + d)

)
ds
]

< .

From the second of system (), we notice that dS(t)
dt ≤ cS(t) – dS(t), so we consider the

following impulsive differential equation:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –cS(t) – dS(t),

dS(t)
dt = cS(t) – dS(t),

⎫
⎬

⎭
t �= nτ , t �= (n + l)τ ,

�S(t) = S(t)(a – bS(t)),

�S(t) = ,

⎫
⎬

⎭
t = nτ , n = , , . . . ,

�S(t) = ,

�S(t) = –μS(t),

⎫
⎬

⎭
t = (n + l)τ , n = , , . . . .

()

From Lemma . and the comparison theorem of impulsive equations (see [], Theo-
rem ..), we have S(t) ≤ S(t), S(t) ≤ S(t), and S(t) → S̃(t), S(t) → S̃(t) as t → ∞;
that is,
⎧
⎨

⎩

S(t) ≤ S(t) ≤ S̃(t) + ε,

S(t) ≤ S(t) ≤ S̃(t) + ε,
()

for t large enough. For convenience, we may assume that () holds for all t ≥ . From ()
and (), we get
⎧
⎨

⎩

dI(t)
dt ≤ [β(S̃(t) + ε) – (r + d)]I(t), t �= nτ , t �= (n + l)τ ,

�I(t) = , t = nτ , t = (n + l)τ .
()

So I(t) ≤ I(+) exp[
∫ t

 (β(S̃(t) + ε) – (r + d)) ds], thus I((n + )τ ) ≤ I(nτ+) ×
exp[
∫ (n+)τ

nτ
(β(S̃(t) + ε) – (r + d)) ds], hence I(nτ ) ≤ I(+)ρn and I(nτ ) →  as n → ∞.

Therefore, I(t) →  as t → ∞.
Next we prove that S(t) → S̃(t), S(t) → S̃(t) as t → ∞. Since ∀ε > , we have  < I(t) <

ε for all t ≥ , then, for system (), we have

cS(t) – (d + βε)S(t) ≤ dS(t)
dt

≤ cS(t) – dS(t), ()

then we have S(t) ≤ S(t) ≤ S(t), S(t) ≤ S(t) ≤ S(t), and S(t) → ˜S(t), S(t) →
˜S(t), S(t) → S̃(t), S(t) → S̃(t), as t → ∞. Meanwhile (S(t), S(t)) and (S(t), S(t))
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are the solutions to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –cS(t) – dS(t),

dS(t)
dt = cS(t) – (d + βε)S(t),

⎫
⎬

⎭
t �= nτ , t �= (n + l)τ ,

�S(t) = S(t)(a – bS(t)),

�S(t) = ,

⎫
⎬

⎭
t = nτ , n = , , . . . ,

�S(t) = ,

�S(t) = –μS(t),

⎫
⎬

⎭
t = (n + l)τ , n = ,  . . . ,

()

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –cS(t) – dS(t),

dS(t)
dt = cS(t) – dS(t),

⎫
⎬

⎭
t �= nτ , t �= (n + l)τ ,

�S(t) = S(t)(a – bS(t)),

�S(t) = ,

⎫
⎬

⎭
t = nτ , n = , , . . . ,

�S(t) = ,

�S(t) = –μS(t),

⎫
⎬

⎭
t = (n + l)τ , n = , , . . . ,

()

respectively. Here (˜S(t), ˜S(t)) can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜S(t) = S∗
e–(c+d)(t–nτ ), t ∈ (nτ , (n + )τ ],

˜S(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e–(d+βε)(t–nτ )[S∗
 + cS∗

(–e–(c+d–d–βε)(t–nτ ))
c+d–d–βε

], t ∈ (nτ , (n + l)τ ],

e–(d+βε)(t–(n+l)τ )[( – μ)e–(d+βε)lτ (S∗
 + cS∗

(–e–(c+d–d–βε)lτ )
c+d–d–βε

)

+ cS∗
e–(c+d)lτ (–e–(c+d–d–βε)(t–(n+l)τ ))

c+d–d–βε
], t ∈ ((n + l)τ , (n + )τ ],

()

where
⎧
⎨

⎩

S∗
 = (–D–A+AD–BC)(–+D)

bC


, μ < 
̃∗,

S∗
 = –(–D–A+AD–BC)

bC
, μ < 
̃∗,

()

and ζ = e–(d+βε)τ [( – μ)( – e–(c+d–d–βε)lτ ) + e–(c+d–d–βε)lτ – e–(c+d–d–βε)τ ] > . A =
e–(c+d)τ + acζ

c+d–d–βε
> , B = a( – μ)e–(d+βε)τ > , C = cζ

c+d–d–βε
, D = ( – μ)e–(d+βε)τ ,

A < ,  < D < , and


̃∗ =
(c + d – d – βε)[ + e–(c+d–d–βε)τ – e–(c+d)τ – e(d+βε)τ ] + ac[ – e–(c+d–d–βε)τ ]

(c + d – d – βε)[ – e–(c+d)τ ] + ac[ – e–(c+d–d–βε)lτ ]
.

Therefore, for any ε > , there exists t, t > t, such that

˜S(t) – ε < S(t) < S̃(t) + ε

and

˜S(t) – ε < S(t) < S̃(t) + ε.
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Letting ε → , we have

S̃(t) – ε < S(t) < S̃(t) + ε

and

S̃(t) – ε < S(t) < S̃(t) + ε

for t large enough, which implies that S(t) → S̃(t), S(t) → S̃(t) as t → ∞. This com-
pletes the proof. �

The next work is to investigate the permanence of system (). Before starting this work,
we should give the following definition.

Definition . System () is said to be permanent if there are constants m, M >  (inde-
pendent of initial value) and a finite time T, such that for all solutions (S(t), S(t), I(t))
with any initial values S(+) > , S(+) > , I(+) > , we have m ≤ S(t) ≤ M, m ≤
S(t) ≤ M, m ≤ I(t) ≤ M for all t ≥ T. Here T may depend on the initial values
(S(+), S(+), I(+)).

Theorem . If

μ < 
∗,

τ <


c + d
ln( + a),

and

μ <
[

S∗
( – e–dτ )

d
+

cS∗
 ( – e–dτ )

d(c + d – d)
–

cS∗
 ( – e–(c+d)τ )

(c + d)(c + d – d)
–

(r + d)τ
β

]

×
[
(
e–dlτ – e–dτ

)
(

S∗


d
+

cS∗
 ( – e–(c+d–d)lτ )
d(c + d – d)

)]–

, ()

then system () is permanent, where S∗
 , S∗

 are defined by ().

Proof Let (S(t), S(t), I(t)) be a solution of () with S() > , S() > , I() > . By
Lemma ., we have proved there exists a constant M > , such that S(t) ≤ M, S(t) ≤ M,
I(t) ≤ M for t large enough.

From the proof of Theorem ., we know that S(t) > S̃(t) – ε, S(t) > S̃(t) – ε for t
large enough, and ε > . So, S(t) ≥ S∗

 e–(c+d)τ – ε = m, and

S(t) ≥ e–dlτ
[

S∗
 +

cS∗
 ( – e–(c+d–d)τ )

c + d – d

]

+ e–d(–l)τ
[

( – μ)e–dτ

(

S∗
 +

cS∗
 ( – e–(c+d–d)lτ )

c + d – d

)

+
cS∗

 e–(c+d)lτ ( – e–(c+d–d)(–l)τ )
c + d – d

]
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≥ e–dlτ
[

S∗
 +

cS∗
 ( – e–(c+d–d)τ )

c + d – d

]

+ e–d(–l)τ

×
[

( – μ)e–dτ S∗
 +

cS∗
 [( – μ)e–dτ + e–(c+d)τ ]( – e–(c+d–d)(–l)τ )

c + d – d

]

– ε

= m′
,

for t large enough, where S∗
 and S∗

 are defined by (). Thus, we only need to find m > 
such that I(t) ≥ m for t large enough. We will do it in the following two steps.

◦ Prove that I(t) ≥ m, for t large enough. Otherwise, we can select m >  small enough,
and prove I(t) < m cannot hold for t ≥ . By condition (), we can obtain

σ =
S∗


d + βm

(
 – e–(d+βm)lτ )

+
cS∗


(d + βm)(c + d – d – βm)

(
 – e–(d+βm)lτ )

–
cS∗


(c + d)(c + d – d – βm)

(
 – e–(c+d)lτ )

+ ( – μ)
(
e–(d+βm)lτ – e–(d+βm)τ )

(
S∗


d + βm

+
cS∗

( – e–(c+d–d–βm)lτ )
(d + βm)(c + d – d – βm)

)

+
cS∗

e–(c+d)lτ

(d + βm)(c + d – d – βm)
(
 – e–(d+βm)(–l)τ )

+
cS∗


(c + d)(c + d – d – βm)

(
e–(c+d)τ – e–(c+d)lτ ) –

(r + d)τ
β

> .

By Lemma ., we have S(t) ≥ S(t), S(t) ≥ S(t), and S(t) → ˜S(t), S(t) → ˜S(t),
t → ∞, where (S(t), S(t)) is the solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –cS(t) – dS(t),

dS(t)
dt = cS(t) – (d + βm)S(t),

⎫
⎬

⎭
t �= nτ , t �= (n + l)τ ,

�S(t) = S(t)(a – bS(t)),

�S(t) = ,

⎫
⎬

⎭
t = nτ , n = , , . . . ,

�S(t) = ,

�S(t) = –μS(t),

⎫
⎬

⎭
t = (n + l)τ , n = , , . . . ,

()

with

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜S(t) = S∗
e–(c+d)(t–nτ ), t ∈ (nτ , (n + )τ ],

˜S(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e–(d+βm)(t–nτ )[S∗
 + cS∗

(–e–(c+d–d–βm)(t–nτ ))
c+d–d–βm

], t ∈ (nτ , (n + l)τ ],

e–(d+βm)(t–(n+l)τ )[( – μ)e–(d+βm)lτ (S∗
 + cS∗

(–e–(c+d–d–βm)lτ )
c+d–d–βm

)

+ cS∗
e–(c+d)lτ (–e–(c+d–d–βm)(t–(n+l)τ ))

c+d–d–βm
], t ∈ ((n + l)τ , (n + )τ ].

()
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Here S∗
 and S∗

 are determined as

⎧
⎨

⎩

S∗
 = (–D–A+AD–BC)(–+D)

bC


, μ < 
∗∗

S∗
 = –(–D–A+AD–BC)

bC
, μ < 
∗∗,

()

and ζ = e–(d+βm)τ [( – μ)( – e–(c+d–d–βm)lτ ) + e–(c+d–d–βm)lτ – e–(c+d–d–βm)τ ] > .
A = e–(c+d)τ + acζ

c+d–d–βm
> , B = a( – μ)e–(d+βm)τ > , C = cζ

c+d–d–βm
, D = ( –

μ)e–(d+βm)τ , A < ,  < D < , and


∗∗ =
(c + d – d – βm)[ + e–(c+d–d–βm)τ – e–(c+d)τ – e(d+βm)τ ] + ac[ – e–(c+d–d–βm)τ ]

(c + d – d – βm)[ – e–(c+d)τ ] + ac[ – e–(c+d–d–βm)lτ ]
.

Therefore, there exist T >  and ε > , such that

S(t) ≥ S(t) ≥ ˜S(t) – ε

and

S(t) ≥ S(t) ≥ ˜S(t) – ε.

Then

dI(t)
dt

≥ [β(˜S(t) – ε
)

– (r + d)
]
I(t), ()

for t ≥ T. Let N ∈ N and Nτ > T. Integrating () on (nτ , (n + )τ ], n ≥ N, we have

I
(
(n + )τ

)≥ I
(
nτ+) exp

(∫ (n+)τ

nτ

[
β
(
˜S(t) – ε

)
– (r + d)

]
dt
)

= I(nτ )eσ ,

then I((N + k)τ ) ≥ I(Nτ
+)ekσ → ∞, as k → ∞, which is a contradiction to the bounded-

ness of I(t). Hence, there exists a t > , such that I(t) ≥ m.
◦ If I(t) ≥ m for all t ≥ t, and let m = m then our aim is obtained. Otherwise, let

t∗ = inft≥t{I(t) < m}, there are two possible cases for t∗. In the following, we will apply
the ideas in Meng and Chen [] to complete the remaining proof.

Case (I): t∗ = nτ , n ∈ N . Then I(t) ≥ m for t ∈ [t, t∗) and x(t∗) = m. Select n, n ∈ N ,
such that

nτ > T, e(n+)στ enσ > ,

where σ = βm′
 – (r + d) < . Let T = nτ + nτ , we claim that there must be a t ∈ (t∗, t∗ +

T], such that I(t) > m. Otherwise, i.e., (∀t ∈ (t∗, t∗ + T], I(t) ≤ m) consider () with
S(nτ

+) = S(nτ
+), S(nτ

+) = S(nτ
+), for t ∈ (nτ , (n + )τ ) and n ≤ n ≤ n + n + n,

we have

S(t) ≥ S(t) ≥ ˜S(t) – ε

and

S(t) ≥ S(t) ≥ ˜S(t) – ε,
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for t∗ + nτ ≤ t ≤ t∗ + T . This implies () holds for t∗ + nτ ≤ t ≤ t∗ + T . As in step , we
have

I
(
t∗ + T

)≥ I
(
t∗ + nτ

)
enσ .

The third equation of () gives

dI(t)
dt

≥ I(t)
[
βm′

 – (r + d)
]

= σI(t), ()

for t ∈ [t∗, t∗ + nτ ].
Integrating on [t∗, t∗ + nτ ], we have

I
(
t∗ + nτ

)≥ meσnτ .

Then

I
(
t∗ + T

) ≥ I
(
t∗ + nτ

)
enσ ≥ meσnτ enσ

≥ meσ(n+)τ enσ > m,

which is a contradiction.
Let t = inft≥t∗{I(t) > m}, thus I(t) ≤ m for t ∈ [t∗, t], I(t) = m, since I(t) is continuous

and I(t) is not affected by the impulsive effect. For t ∈ (t∗, t], suppose t ∈ (t∗ + (p – )τ , t∗ +
pτ ], p ∈ N , and p ≤ n + n, by () we have

I(t) ≥ I
(
t∗ + (p – )τ

)
eσ(t–(t∗+(p–)τ ))

≥ I
(
t∗)e(p–)στ eστ = I

(
t∗)epστ

≥ mepστ ≥ me(n+n)στ = m′

(
clearly, m > m′


)
,

hence, we have I(t) ≥ m′
 for t ∈ (t∗, t). For t > t, the same arguments can be presented,

since I(t) ≥ m.
Case (II): t∗ �= nτ , n ∈ N . Then I(t) ≥ m for t ∈ [t, t∗] and I(t∗) = m, suppose t∗ ∈

(nτ , (n + )τ ), n ∈ N . There are two possible cases for t ∈ (t∗, (n + )τ ).
Case (IIa): I(t) ≤ m for all t ∈ (t∗, (n + )τ ). We claim that there must be a t′

 ∈ [(n +
)τ , (n + )τ + T], such that I(t′

) > m. Otherwise, i.e., ∀t ∈ [(n + )τ , (n + )τ + T], we
have I(t) ≤ m. Consider () with S((n +)τ+) = S((n +)τ+), S((n +)τ+) = S((n +
)τ+), one can get

S(t) ≥ S(t) ≥ S̃(t) – ε, S(t) ≥ S(t) ≥ S̃(t) – ε,

for t ∈ (nτ , (n + )τ ] and n +  ≤ n ≤ n +  + n + n. Similarly, we have

I
(
(n +  + n + n)τ

)≥ I
(
(n +  + n)τ

)
enσ .

Since I(t) ≤ m for t ∈ (t∗, (n + )τ ), () holds on [t∗, (n +  + n)τ ], so we have

I
(
(n +  + n)τ

)≥ me(n+)στ .
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In fact, since t ≤ (n +  + n)τ , nτ ≤ t∗ ≤ (n + )τ , σ < , then nτ ≤ t – t∗ ≤ (n + )τ ,
e(t–t∗)στ ≥ e(n+)στ . Thus,

I
(
(n +  + n)τ

)≥ I
(
t∗)e(t–t∗)στ ≥ me(n+)στ .

Therefore,

I
(
(n +  + n + n)τ

) ≥ I
(
(n +  + n)τ

)
enσ

≥ me(n+)στ enσ > m,

which is a contradiction. Let t = inft>t∗{I(t) > m}, then I(t) ≤ m for t ∈ (t∗, t) and I(t) =
m. For t ∈ (t∗, t), suppose t ∈ (nτ + (p′ – )τ , nτ + p′τ ], p′ ∈ N , p′ ≤  + n + n, we have

I(t) ≥ I
(
t∗)e(t–t∗)σ ≥ I

(
t∗)eστ ≥ I

(
t∗)ep′στ

≥ I
(
t∗)e(+n+n)στ ≥ me(+n+n)στ .

Let m = me(+n+n)στ < me(n+n)στ = m′
 (clearly, m > m), hence, I(t) ≥ m for t ∈

(t∗, t). For t > t, the same arguments can be presented, since I(t) ≥ m.
Case (IIb): Suppose that there exists a t ∈ (t∗, (n + )τ ), such that I(t) > m. Let t∗∗ =

inft>t∗{I(t) > m}, then I(t) ≤ m for t ∈ (t∗, t∗∗) and x(t∗∗) = m. For t ∈ (t∗, t∗∗), () holds
true, integrating () over (t∗, t∗∗), we have

I(t) ≥ I
(
t∗)eσ(t–t∗) ≥ meστ > me(+n+n)στ = m.

Since I(t∗∗) ≥ m, for t > t∗∗, the same arguments can be presented. Hence I(t) ≥ m for
all t ≥ t. This completes the proof. �

5 Discussion
In this work, we consider an SIR epidemic model with state structure and pulse vaccina-
tion at different fixed moments. We prove that all solutions of system () are uniformly
ultimately bounded. The conditions for the global asymptotic stability of the infection-
free periodic solution of system () are given, and the permanence of system () is also
obtained.

From the conditions of Theorems . and ., we know that there exists a threshold
τ. If τ > τ, the infection-free periodic solution (S̃(t), S̃(t), ) of system () is globally
asymptotically stable. If τ < τ, system () is permanent. That is, improving the proportion
of immune vaccination and enlarging the period of birth pulse, the disease will die out. If
the period of pulse vaccinate is suitable, system () will be permanent. This means after
some period of time the disease will come to be endemic. The results obtained provide a
reliable tactic basis for preventing the disease from spreading.
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