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1 Introduction
The first part of this paper gives some basic results on the regularity of solutions of the
abstract semilinear second order initial value problem

⎧
⎨

⎩

dw(t)
dt = Aw(t) + F(t, w) + f (t),  < t ≤ T ,

w() = x, d
dt w() = y,

(.)

in a Banach space X. Here, the nonlinear part is given by

F(t, w) =
∫ t


k(t – s)g

(
s, w(s)

)
ds,

where k belongs to L(, T) and g : [, T] ×X −→ X is a nonlinear mapping such that w �→
g(t, w) satisfies Lipschitz continuity. In (.) A is the infinitesimal generator of a strongly
continuous cosine family C(t), t ∈ R. Let E be a subspace of all x ∈ X for which C(t)x is a
once continuously differentiable function of t.

In [], when f : R → X is continuously differentiable, x ∈ D(A), y ∈ E, and k ∈
W ,(, T), the existence of a solution w ∈ L(, T ; D(A)) ∩ W ,(, T ; E) of (.) for each
T >  is given. Moreover, one established a variation of constant formula for solutions of
the second order nonlinear system (.).

The work presented in this paper, based on the regularity for solution of (.), investi-
gates necessary and sufficient conditions for the approximate controllability for (.) with
the strict range condition on B even though the system (.) contains unbounded prin-
cipal operators and the convolution nonlinear term, which is a more flexible necessary
assumption than the one in [].
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We will make use of some of the basic ideas from cosine family referred to [, ] and the
regular properties for solutions in [, ] for a discussion of the control results. In [, ] a
one-dimensional nonlinear hyperbolic equation of convolution type which is nonlinear in
the partial differential equation part and linear in the hereditary part is treated.

As a second part in this paper, we consider the approximate controllability for the non-
linear second order control system

⎧
⎨

⎩

dw(t)
dt = Aw(t) + F(t, w) + Bu(t),  < t ≤ T ,

w() = x, d
dt w() = y,

(.)

in a Banach space X where the controller B is a bounded linear operator from some Banach
space U to X. In [, , ] the approximate controllability for (.) was studied under the
particular range conditions of the controller B depending on the time T .

In Section  we establish to the approximate controllability for the second order nonlin-
ear system (.) under a condition for the range of the controller B without the inequality
condition independent to the time T , and we see that the necessary assumption is more
flexible than the one in [, ]. Finally, we give a simple example to which our main result
can be applied.

2 Preliminaries
Let X be a Banach space. The norm of X is denoted by ‖ · ‖. We start by introducing a
strongly continuous cosine family and sine family in X.

Definition . [] Let C(t) for each t ∈R be a bounded linear operators in X. C(t) is called
a strongly continuous cosine family if the following conditions are satisfied:

c() C(s + t) + C(s – t) = C(s)C(t), for all s, t ∈R, and C() = I ;
c() C(t)x is continuous in t on R for each fixed x ∈ X .

Let A be the infinitesimal generator of a one parameter cosine family C(t) defined by

Ax =
d

dt C()x.

Then we endow it with the domain D(A) = {x ∈ X : d

dt C(t)x is continuous} endowed with
the norm

‖x‖D(A) = ‖x‖ + sup

{∥
∥
∥
∥

d
dt

C(t)x
∥
∥
∥
∥ : t ∈R

}

+ ‖Ax‖.

We shall also make use of the set

E =
{

x ∈ X :
d
dt

C(t)x is continuous
}

with the norm

‖x‖E = ‖x‖ + sup

{∥
∥
∥
∥

d
dt

C(t)x
∥
∥
∥
∥ : t ∈ R

}

.
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It is well known that D(A) and E with the given norms are Banach spaces.
Let S(t), t ∈R, be the one parameter family of operators in X defined by

S(t)x =
∫ t


C(s)x ds, x ∈ X, t ∈R. (.)

The following basic results on cosine and sine families are from Propositions . and .
of [].

Lemma . Let C(t) (t ∈R) be a strongly continuous cosine family in X. The following are
true:

c() C(–t) = C(t) for all t ∈R;
c() C(s) and S(t) commute for all s, t ∈R;
c() S(t)x is continuous in t on R for each fixed x ∈ X ;
c() there exist constants K ≥  and ω ≥  such that

∥
∥C(t)

∥
∥ ≤ Keω|t| for all t ∈ R,

and

∥
∥S(t) – S(t)

∥
∥ ≤ K

∣
∣
∣
∣

∫ t

t

eω|s| ds
∣
∣
∣
∣ for all t, t ∈R;

c() if x ∈ E, then S(t)x ∈ D(A) and

d
dt

C(t)x = S(t)Ax = AS(t)x =
d

dt S(t)x,

moreover, if x ∈ D(A), then C(t)x ∈ D(A) and

d

dt C(t)x = AC(t)x = C(t)Ax;

c() if x ∈ X and r, s ∈R, then

∫ s

r
S(τ )x dτ ∈ D(A) and A

(∫ s

r
S(τ )x dτ

)

= C(s)x – C(r)x.

First, we consider the following linear equation:

⎧
⎨

⎩

dw(t)
dt = Aw(t) + f (t), t ≥ ,

w() = x, ẇ() = y.
(.)

The following results are crucial in discussing regular problem for the linear case (for a
proof see []).

Proposition . Let f : R → X be continuously differentiable, x ∈ D(A), y ∈ E. Then the
mild solution w(t) of (.) represented by

w(t) = C(t)x + S(t)y +
∫ t


S(t – s)f (s) ds, t ∈R,



Jeong et al. Advances in Difference Equations  (2016) 2016:125 Page 4 of 13

belongs to L(, T ; D(A)) ∩ W ,(, T ; E), and we see that there exists a positive constant C

such that, for any T > ,

‖w‖L(,T ;D(A)) ≤ C
(
 + ‖x‖D(A) + ‖y‖E + ‖f ‖W ,(,T ;X)

)
. (.)

If f is continuously differentiable and (x, y) ∈ D(A) × E, it is easily shown that w is con-
tinuously differentiable and satisfies

ẇ(t) = AS(t)x + C(t)y +
∫ t


C(t – s)f (s) ds, t ∈R.

Here, we note that if w is a solution of (.) in an interval [, t + t] with t, t > . Then
for t ∈ [, t + t], we have

w(t) = C(t – t)w(t) + S(t – t)ẇ(t) +
∫ t

t

S(t – s)f (s) ds

= C(t – t)
{

C(t)x + S(t)y +
∫ t


S(t – τ )f (τ ) dτ

}

+ S(t – t)
{

AS(t)x + C(t)y +
∫ t


C(t – τ )f (τ ) dτ

}

+
∫ t

t

S(t – s)f (s) ds

= C(t)x + S(t)y +
∫ t


S(t – s)f (s) ds;

here, we used the following relations, for all s, t ∈R:

C(s + t) + C(s – t) = C(s)C(t),

S(s + t) = S(s)C(t) + S(t)C(s),

C(s + t) = C(t)C(s) – S(t)S(s),

C(s + t) – C(t – s) = AS(t)S(s),

and

S(t)AS(s) = AS(t)S(s) =



C(t + s) –



C(t – s) = C(t + s) – C(t)C(s).

This means the mapping t �→ w(t + t) is a solution of (.) in [, t + t] with initial data
(w(t), ẇ(t)) ∈ D(A) × E.

From now on, we introduce the regularity of solutions of the abstract semilinear second
order initial value problem (.) in a Banach space X. We make the following assumptions.

The nonlinear mapping g from [, T] × D(A) to X is such that t �→ g(t, w) is measurable
and

⎧
⎨

⎩

‖g(t, w) – g(t, w)‖D(A) ≤ L‖w – w‖,

g(t, ) = ,
(.)

for a positive constant L.
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For w ∈ L(, T ; D(A)), we set

F(t, w) =
∫ t


k(t – s)g

(
s, w(s)

)
ds,

where k belongs to L(, T). We will seek a mild solution of (.), that is, a solution of the
integral equation

w(t) = C(t)x + S(t)y +
∫ t


S(t – s)

{
F(s, w) + f (s)

}
ds.

Lemma . If w ∈ L(, T ; D(A)) for any T > , then F(·, w) ∈ L(, T ; X) and

∥
∥F(·, w)

∥
∥

L(,T ;X) ≤ L‖k‖L(,T)
√

T‖w‖L(,T ;D(A)).

Moreover, let w, w ∈ L(, T ; D(A)). Then we have

∥
∥F(·, w) – F(·, w)

∥
∥

L(,T ;X) ≤ L‖k‖L(,T)
√

T‖w – w‖L(,T ;D(A)).

Proof By using the Hölder inequality and (.), it is easily shown that

∥
∥F(·, w)

∥
∥

L(,T ;X) ≤
∫ T



∥
∥
∥
∥

∫ t


k(t – s)g

(
s, w(s)

)
ds

∥
∥
∥
∥



dt

≤ ‖k‖
L(,T)

∫ T



∫ t


L∥∥w(s)

∥
∥ ds dt

≤ L‖k‖
L(,T)T‖w‖

L(,T ;D(A)).

By a similar argument, the second paragraph is obtained. �

Now, as in Theorem . of [], we give a norm estimation of the solution of (.) and
establish the global existence of solutions with the aid of norm estimations.

Proposition . Suppose that the assumption (.) are satisfied. If f : R −→ X is continu-
ously differentiable, x ∈ D(A), y ∈ E, and k ∈ W ,(, T), then the solution w of (.) exists
and is unique in L(, T ; D(A)) ∩ W ,(, T ; E) for T > , and there exists a constant C

depending on T such that

‖w‖L(,T ;D(A)) ≤ C
(
 + ‖x‖D(A) + ‖y‖E + ‖f ‖W ,(,T ;X)

)
. (.)

3 Approximate controllability
In this section, we deal with the approximate controllability for the semilinear second
order control system

⎧
⎨

⎩

dw(t)
dt = Aw(t) + F(t, w) + Bu(t),  < t ≤ T ,

w() = x, d
dt w() = y,

(.)

in a Banach space X where the controller B is a bounded linear operator from some Banach
space U to X, where U is another Banach space. Assume the following.
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Assumption (G) The nonlinear mapping g : [, T] × X −→ X is such that t �→ g(t, w) is
measurable and

∥
∥g(t, w) – g(t, w)

∥
∥ ≤ L‖w – w‖,

∣
∣k(t)

∣
∣ ≤ M, (.)

for a positive constant L.

Here, we remark that since the Assumption (G) is a more general condition than (.),
the equation of (.), written

w(t) = C(t)x + S(t)y +
∫ t


S(t – s)

{
F(s, w) + Bu(s)

}
ds, (.)

belongs to L(, T ; D(A)) ∩ W ,(, T ; E) for T > .
Given a strongly continuous cosine family C(t) (t ∈ R), we define linear bounded oper-

ators Ĉ and Ŝ mapping L(, T ; X) into X by

Ĉp =
∫ T


C(T – t)p(t) dt, Ŝp =

∫ T


S(T – t)p(t) dt,

for p(·) ∈ L(, T ; X) and S(t) is the associated sine family of C(t).
We define the reachable sets for the system (.) as follows.

Definition . Let w(t; F , u) be a solution of the (.) associated with nonlinear term F
and control u at the time t. Then

RT (F) =
{(

w(T ; F , u), ẇ(T ; F , u)
)

: u ∈ L(, T ; U)
} ⊂ X = X × X,

RT () =
{(

w(T ; , u), ẇ(T ; , u)
)

: u ∈ L(, T ; U)
} ⊂ X.

The nonempty subset RT (F) in X consisting of all terminal states of (.) is called the
reachable sets at the time T of the system (.). The set RT () is one of the linear cases
where F ≡ .

Definition . The system (.) is said to be approximately controllable on the interval
[, T] if

RT (F) = X,

where RT (F) is the closure of RT (F) in X, that is, for any ε > , x̄ ∈ D(A) and ȳ ∈ E there
exists a control u ∈ L(, T ; U) such that

∥
∥x̄ – C(T)x – S(T)y – ŜF(·, w) – ŜBu

∥
∥ < ε,

∥
∥ȳ – AS(T)x – C(T)y – ĈF(·, w) – ĈBu

∥
∥ < ε.

We introduce the following hypothesis.
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Assumption (B) For any ε >  and p ∈ L(, T ; X), there exists a u ∈ L(, T ; U) such that

⎧
⎨

⎩

‖Ĉp – ĈBu‖ < ε,

‖Bu‖L(,t;X) ≤ q‖p‖L(,t;X),  ≤ t ≤ T ,

where q is a constant independent of p.

We remark that from the relations between the cosine and sine families, the operator
Ŝ also satisfies the condition (B), that is, for any ε >  and p ∈ L(, T ; X) there exists a
u ∈ L(, T ; U) such that

⎧
⎨

⎩

‖Ŝp – ŜBu‖ < ε,

‖Bu‖L(,t;X) ≤ q‖p‖L(,t;X),  ≤ t ≤ T .

For the sake of simplicity we assume that the sine family S(t) is bounded as in c():

∥
∥S(t)

∥
∥ ≤ K(t), t ≥ .

Here, we may consider the following inequality:

K(t) ≤ ω–K(eωt – ).

Lemma . Let the Assumption (G) be satisfied. If u and u are in L(, T ; U), then we
have

∥
∥w(t; F , u) – w(t; F , u)

∥
∥ ≤ K(T)eK (T)MLT√

T‖Bu – Bu‖L(,t;X)

for  ≤ t ≤ T .

Proof From the Assumption (G), it follows that, for  ≤ t ≤ T ,

∥
∥w(t; F , u) – w(t; F , u)

∥
∥

≤ K(T)
√

t
∥
∥Bu(s) – Bu(s)

∥
∥

L(,t;X)

+ K(T)MLt
∫ t



∥
∥w(s; F , u) – w(s; F , u)

∥
∥ds,

where L is the constant in the Assumption (G). Therefore, by using Gronwall’s inequality
this lemma follows. �

For the approximate controllability for the linear equation, we recall the following nec-
essary lemma before proving the main theorem.

Lemma . Let the Assumption (G) be satisfied. Then we have RT () = X.

Proof Let x̄ ∈ D(A), ȳ ∈ E. Putting

η = x̄ – C(T)x – S(T)y ∈ D(A), η = ȳ – AS(T)x – C(T)y ∈ E,
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then there exists some p ∈ C([, T] : X) such that

η =
∫ T


S(T – t)p(t) dt, η =

∫ T


C(T – t)p(t) dt,

for instance, take p(t) = {C(t – T) + S(t – T)}η/T . By hypothesis (B) there exists a function
u ∈ L(, T ; U) such that

⎧
⎨

⎩

‖x̄ – C(T)x – S(T)y – ŜBu‖ < ε,

‖ȳ – AS(T)x – C(T)y – ĈBu‖ < ε.

The denseness of the domain D(A) in X implies the approximate controllability of the
corresponding linear system. �

Theorem . Let the Assumptions (G) and (B) be satisfied. Then the system (.) is ap-
proximately controllable on [, T], T > .

Proof We will show that D(A) × E ⊂ RT (F), i.e., for given ε >  and (ξT , ξ̃T ) ∈ D(A) × E
there exists u ∈ L(, T ; U) such that

∥
∥ξT – w(T ; F , u)

∥
∥ < ε, (.)

∥
∥ξ̃T – ẇ(T ; F , u)

∥
∥ < ε. (.)

Since (ξT , ξ̃T ) ∈ D(A) × E, there exists a p ∈ L(, T ; X) such that

Ŝp = ξT – C(T)x – S(T)y, Ĉp = ξ̃T – AS(T)x – C(T)y.

Let u ∈ L(, T ; U) be arbitrary fixed. Then by the Assumption (B), there exists u ∈
L(, T ; U) such that

∥
∥Ŝ

(
p – F

(·, w(·; F , u)
))

– ŜBu
∥
∥ <

ε


,

∥
∥Ĉ

(
p – F

(·, w(·; F , u)
))

– ĈBu
∥
∥ <

ε


.

Hence, we have

∥
∥ξT – C(T)x – S(T)y – ŜF

(·, w(·; F , u)
)

– ŜBu
∥
∥ <

ε


,

∥
∥ξ̃T – AS(T)x – C(T)y – ĈF

(·, w(·; F , u)
)

– ĈBu
∥
∥ <

ε


.

(.)

Moreover, by the Assumption (B), we can also choose v ∈ L(, T ; U) such that

∥
∥Ŝ

(
F
(·, w(·; F , u)

)
– F

(·, w(·; F , u)
))

– ŜBv
∥
∥ <

ε


,

∥
∥Ĉ

(
F
(·, w(·; F , u)

)
– F

(·, w(·; F , u)
))

– ĈBv
∥
∥ <

ε


,

(.)
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and also

‖Bv‖L(,t;X) ≤ q
∥
∥F

(·, w(·; F , u)
)

– F
(·, w(·; F , u)

)∥
∥

L(,t;X)

for  ≤ t ≤ T . From now, we will only prove (.), while the proof of (.) is similar. In
view of Lemma . and the Assumption (B), we have

‖Bv‖L(,t;X) ≤ q

{∫ t



∥
∥F

(
τ , w(τ ; F , u)

)
– F

(
τ , w(τ ; F , u)

)∥
∥ dτ

} 


≤ qML
{∫ t



∫ τ



∥
∥w(τ ; F , u) – w(τ ; F , u)

∥
∥ ds dτ

} 


≤ qMLK(T)eK (T)MLT√
T

{∫ t



∫ τ



∥
∥Bu – Bu

∥
∥

L(,s;X) ds dτ

} 


≤ qMLK(T)eK (T)MLT√
T

(∫ t



∫ τ


 ds dτ

) 
 ‖Bu – Bu‖L(,t;X)

= qMLK(T)eK (T)MLT√
T

(
t



) 
 ‖Bu – Bu‖L(,t;X).

Put u = u – v. We choose v such that

∥
∥Ŝ

(
F
(·, w(·; F , u)

)
– F

(·, w(·; F , u)
))

– ŜBv
∥
∥ <

ε


,

‖Bv‖L(,t;X) ≤ q
∥
∥F

(·, w(·; F , u)
)

– F
(·, w(·; F , u)

)∥
∥

L(,t;X)

for  ≤ t ≤ T . Thus, we have

‖Bv‖L(,t;X)

≤ q

{∫ t



∥
∥F

(
τ , w(τ ; F , u)

)
– F

(
τ , w(τ ; F , u)

)∥
∥ dτ

} 


≤ qML
{∫ t



∫ τ



∥
∥w(s; F , u) – w(s; F , u)

∥
∥ ds dτ

} 


≤ qMLK(T)eK (T)MLT√
T

{∫ t



∫ τ


‖Bu – Bu‖

L(,s:X) ds dτ

} 


≤ qMLK(T)eK (T)MLT√
T

{∫ t



∫ τ


‖Bv‖

L(,s;X) ds dτ

} 


≤ (
qMLK(T)eK (T)MLT√

T
)

{∫ t



∫ τ



s


‖Bu – Bu‖

L(,s;X) ds dτ

} 


≤ (
qMLK(T)eK (T)MLT√

T
)

(∫ t



∫ τ



s


ds dτ

) 
 ‖Bu – Bu‖L(,t;X)

≤ (
qMLK(T)eK (T)MLT√

T
)

(
t

 · 

) 
 ‖Bu – Bu‖L(,t;X).
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By proceeding this process, and from the equality

∥
∥B(un – un+)

∥
∥

L(,t;X)

= ‖Bvn‖L(,t;X)

≤ (
qMLK(T)

√
TeK (T)MLT)n–

(
tn–

 ·  · · · (n – )

) 
 ‖Bu – Bu‖L(,t;X)

=
(

qMLK(T)
√

TeK (T)MLT t√


)n– √
(n – )!

‖Bu – Bu‖L(,t;X),

we obtain

∞∑

n=

‖Bun+ – Bun‖L(,T ;X)

≤
∞∑

n=

(
qMLK(T)

√
TeK (T)MLT t√


)n

× √
n!

‖Bu – Bu‖L(,T ;X) < ∞.

Thus, there exists u∗ ∈ L(, T ; X) such that

lim
n→∞ Bun = u∗ in L(, T ; X). (.)

Combining (.) and (.), we have

∥
∥ξT – C(T)x – S(T)y – ŜF

(·, w(·F , u)
)

– ŜBu
∥
∥

=
∥
∥ξT – C(T)x – S(T)y – ŜF

(·, w(·F , u)
)

– ŜBu + ŜBv

– Ŝ
[
F
(·, w(·; F , u)

)
– F

(·, w(·; F , u)
)]∥

∥

<
(


 +




)

ε.

If we determine vn ∈ L(, T ; U) such that

∥
∥Ŝ

(
F
(·w(·; F , un)

)
– F

(·w(·; F , un–)
))

– ŜBvn
∥
∥ <

ε

n+ ,

then putting un+ = un – vn, we have

∥
∥ξT – S(T)g – ŜF

(·, z(·; g, f , un)
)

– ŜΦun+
∥
∥

<
(


 + · · · +


n+

)

ε, n = , , . . . .

Therefore, for any ε >  there exists an integer N such that

‖ŜBuN+ – ŜBuN‖ <
ε


,
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and hence

∥
∥ξT – C(T)x – S(T)y – ŜF

(·, w(·; F , uN )
)

– ŜBuN
∥
∥

≤ ∥
∥ξT – C(T)x – S(T)y – ŜF

(·, w(·; F , uN )
)

– ŜBuN+
∥
∥

+ ‖ŜBuN+ – ŜBuN‖

<
(


 + · · · +


N+

)

ε +
ε


≤ ε.

By a similar method, we also obtain

∥
∥ξ̃T – AS(T)x – C(T)y – ĈF

(·, w(·; F , uN )
)

– ĈBuN
∥
∥ ≤ ε.

Thus, as N tends to infinity, the system (.) is approximately controllable on [, T].

Example We consider the following partial differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

dw(t,x)
dt = Aw(t, x) + F(t, w) + Bu(t),  < t,  < x < π ,

w(t, ) = w(t,π ) = , t ∈R,

w(, x) = x(x), d
dt w(, x) = y(x),  < x < π .

(.)

Let X = L([,π ];R). If en(x) =
√


π

sin nx, then {en : n = , . . .} is an orthonormal base for X.
The operator A : X → X is defined by

Aw(x) = w′′(x),

where D(A) = {w ∈ X : w, ẇ are absolutely continuous, ẅ ∈ X, w() = w(π ) = }. Then

Aw =
∞∑

n=

–n(w, en)en, w ∈ D(A),

and A is the infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R, in
X given by

C(t)w =
∞∑

n=

cos nt(w, en)en, w ∈ X.

Let us for g(t, x, w, p), p ∈R
m, assume that there is a continuous ρ(t, r) : R×R →R

+ and
a real constant  ≤ γ such that

(g) g(t, x, , ) = ,
(g) |g(t, x, w, p) – g(t, x, w, q)| ≤ ρ(t, |w|)|p – q|,
(g) |g(t, x, w, p) – g(t, x, w, p)| ≤ ρ(t, |w| + |w|)|w – w|.
Let

g(t, w)x = g(t, x, w, Dw).
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Then noting that

∥
∥g(t, w) – g(t, w)

∥
∥

,

≤ 
∫

�

∣
∣g(t, x, w, Dw) – g(t, x, w, Dw)

∣
∣ du

+ 
∫

�

∣
∣g(t, x, w, Dw) – g(t, x, w, Dw)

∣
∣ du,

it follows from (g)-(g) that

∥
∥g(t, w) – g(t, w)

∥
∥

, ≤ L
(‖w‖D(A),‖y‖D(A)

)‖w – w‖D(A),

where L(‖w‖D(A),‖w‖D(A)) is a constant depending on ‖w‖D(A) and ‖w‖D(A). We set

F(t, w) =
∫ t


k(t – s)g

(
s, w(s)

)
ds,

where k belongs to L(, T).
Let U = X,  < α < T , and define the intercept controller operator Bα on L(, T ; X) by

Bαu(t) =

⎧
⎨

⎩

,  ≤ t < α,

u(t), α ≤ t ≤ T ,

for u ∈ L(, T ; X) (see []). For a given p ∈ L(, T ; X) let us choose a control function u
satisfying

u(t) =

⎧
⎨

⎩

,  ≤ t < α,

p(t) + α
T–α

C(t – α
T–α

(t – α))p( α
T–α

(t – α)), α ≤ t ≤ T .

Then u ∈ L(, T ; X) and Ŝp = ŜBαu. From

‖Bαu‖L(,T ;X) = ‖u‖L(α,T ;X)

≤ ‖p‖L(α,T ;X) + KeωT
∥
∥
∥
∥p

(
α

T – α
(· – α)

)∥
∥
∥
∥

L(α,T ;X)

≤
(

 + KeωT

√
T – α

α

)

‖p‖L(,T ;X),

it follows that the controller Bα satisfies Assumption (B). Therefore, from Theorem .,
we see that the nonlinear system given by (.) is approximately controllable on [, T].

�
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