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Abstract
In our previous paper (Tirpáková and Markechová in Adv. Differ. Equ. 2015:171, 2015),
we presented fuzzy analogies of Mesiar’s ergodic theorems. Our aim in this
contribution is to prove analogues of Birkhoff’s individual ergodic theorem and the
maximal ergodic theorem for the case of fuzzy dynamical systems.
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1 Introduction
Ergodic theory is currently rapidly and massively developing area of theoretical and ap-
plied mathematical research. Ergodic theory theorems are studied in many structures, es-
pecially, in structures created on the basis of fuzzy approach. Some ergodic theorems valid
in the classical ergodic theory [] have been proven, among others, for D-posets of fuzzy
sets [], for MV-algebras of fuzzy sets [, ], and recently also for families of IF-events [].
In our previous paper [], we proved fuzzy versions of Mesiar’s ergodic theorems for the
case of fuzzy dynamical systems defined and studied in []. This way, we contributed to the
extension of our study of fuzzy dynamical systems. By a fuzzy dynamical system we mean
a system (�, M, m, U), where (�, M, m) is a fuzzy probability space defined by Piasecki [],
and U : M → M is an m-invariant σ -homomorphism. This structure can serve as an al-
ternative mathematical model of ergodic theory for the case where the observed events
are described vaguely. Fuzzy dynamical systems include the classical dynamical systems;
on the other hand, they enable one to study more general situations. The aim of this pa-
per is to generalize some other assertions valid in the classical ergodic theory to the case
of fuzzy dynamical systems. In Section , after the introductory section (Section ), we
prove fuzzy analogies of Birkhoff’s individual ergodic theorem and the maximal ergodic
theorem. The basic idea of our proofs is based on a factorization of the fuzzy σ -algebra
M and on properties of the σ -homomorphism U . Note that other approaches to a fuzzy
generalization of the notion of a dynamical system are presented in [–]. The authors
of these papers used some other connectives to define the fuzzy set operations.
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2 Basic definitions and facts
Let us recall some definitions and basic facts.

Definition . [] A fuzzy probability space is a triplet (�, M, m) where � is a nonempty
set, M is a fuzzy σ -algebra of fuzzy subsets of � (i.e., M ⊂ [, ]� such that (i) � ∈ M,
(/)� /∈ M; (ii) if fn ∈ M, n = , , . . . , then

∨∞
n= fn ∈ M; (iii) if f ∈ M, then f ′ := � – f ∈ M),

and the mapping m : M → 〈,∞) satisfies the following conditions:
(iv) m(f ∨ f ′) =  for every f ∈ M;
(v) if {fn}∞n= is a sequence of pairwise weakly separated fuzzy subsets from M

(i.e., fi ≤ f ′
j (point wisely) whenever i 
= j), then m(

∨∞
n= fn) =

∑∞
n= m(fn).

The symbols
∨∞

n= fn := supn fn and
∧∞

n= fn =: infn fn denote the fuzzy union and fuzzy
intersection of a sequence {fn}∞n= ⊂ M, respectively, in the sense of Zadeh []. A couple
(�, M), where � is a nonempty set, and M is a fuzzy σ -algebra of fuzzy subsets of �, is
called a fuzzy measurable space. The presented σ -additive fuzzy measure m satisfies all
properties analogous to the properties of classical probability measure in the crisp case.
The described structure (�, M, m) can serve as a mathematical model of random experi-
ments, the results of which are vaguely defined events, the so-called fuzzy events. A proba-
bility interpretation of the above notions is as follows: a set � is the set of elementary
events; a fuzzy set from the system M is a fuzzy event; the value m(f ) is the probability
of a fuzzy event f ; a fuzzy event f ′ is the opposite event to a fuzzy event f ; and weakly
separated fuzzy events are interpreted as mutually exclusive events.

Definition . [] By a fuzzy dynamical system we mean a quadruplet (�, M, m, U),
where (�, M, m) is a fuzzy probability space, and U : M → M is an m-invariant σ -
homomorphism, that is, U(f ′) = (U(f ))′, U(

∨∞
n= fn) =

∨∞
n= U(fn), and m(U(f )) = m(f ) for

every f ∈ M and any sequence {fn}∞n= ⊂ M.

We present some examples of the above notions.
The trivial case of a fuzzy dynamical system is a quadruplet (�, M, m, I), where (�, M, m)

is any fuzzy probability space, and I : M → M is the identity mapping.
Consider any fuzzy probability space (�, M, m). Let T : � → � be a measure m preserv-

ing transformation (i.e., f ∈ M implies f ◦ T ∈ M and m(f ◦ T) = m(f )). Then the mapping
U : M → M defined by

U(f ) = f ◦ T for every f ∈ M (.)

is an m-invariant σ -homomorphism, and the quadruplet (�, M, m, U) is a fuzzy dynamical
system.

Example . Let (�, S, P, T) be a classical dynamical system. Put M = {χA; A ∈ S}, where
χA is the indicator of a set A ∈ S, and define the mapping m : M → 〈, 〉 by m(χA) = P(A).
Then the triplet (�, M, m) is a fuzzy probability space, and the system (�, M, m, U), where
the mapping U : M → M is defined by (.), is a fuzzy dynamical system. By this procedure
a classical model can be imbedded into a fuzzy one.

We can also consider the following extension of a fuzzy dynamical system from the pre-
vious example.
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Example . Let (�, S, P, T) be a classical dynamical system. Denote by M the system of
fuzzy subsets f of � such that f is an S-measurable mapping and P(f ∈ (/; /)) = . If we
define the mapping m : M → 〈, 〉 by the equality m(f ) = P (f > (/)�), then the triplet
(�, M, m) is a fuzzy probability space, and the system (�, M, m, U), where the mapping
U : M → M is defined by (.), is a fuzzy dynamical system.

Example . Let � = 〈, 〉, f : � → �, f (x) = x for every x ∈ �. Put M = {f , f ′,
f ∨ f ′, f ∧ f ′, �, �} and define the mapping m : M → 〈, 〉 by the equalities m(�) =
m(f ∨ f ′) = , m(�) = m(f ∧ f ′) = , and m(f ) = m(f ′) = /. Then the triplet (�, M, m) is a
fuzzy probability space. Moreover, if we define the mapping U : M → M by the equalities
U(f ∨ f ′) = f ∨ f ′, U(�) = �, U(�) = �, U(f ∧ f ′) = f ∧ f ′, U(f ) = f ′, U(f ′) = f , then
(�, M, m, U) is a fuzzy dynamical system.

An analog of a random variable in terms of the classical probability theory is an F-
observable.

Definition . [] An F-observable on a fuzzy measurable space (�, M) is a mapping
x : B(�) → M such that

(i) x(EC) = � – x(E) for every E ∈ B(�);
(ii) x(

⋃∞
n= En) =

∨∞
n= x(En) for any sequence {En}∞n= ⊂ B(�),

where B(�) is the family of all Borel subsets of the real line �, and EC denotes the com-
plement of a set E ⊂ �.

Example . Let (�, S, P) be a classical probability space, and ξ : � → � be a ran-
dom variable in the sense of classical probability theory. Then the mapping x defined by
x(E) = χξ–(E), E ∈ B(�), is an F-observable on the fuzzy measurable space (�, M) from
Example ..

Let x be an F-observable on a fuzzy measurable space (�, M). Then the range of
F-observable x, that is, the set R(x) := {x(E); E ∈ B(�)} is a Boolean σ -algebra of (�, M)
with minimal and maximal elements x(∅) and x(�), respectively. If U : M → M is
a σ -homomorphism, then it is easy to verify that the mapping U ◦ x : B(�) → M,
U ◦ x : E → U(x(E)), E ∈ B(�), is an F-observable on (�, M), too.

Let any fuzzy probability space (�, M, m) be given. If x is an F-observable on (�, M),
then the mapping mx : E �→ m(x(E)), E ∈ B(�), is a probability measure on B(�). The value
m(x(E)) is interpreted as the probability that an F-observable x has a value in E ∈ B(�). By
an integral of x with respect to m we mean the expression

m(x) =
∫

x dm :=
∫

�
t dmx(t)

(if the integral on the right-hand side exists and is finite). The integral m(x) is interpreted
as the mean value of x []. Further, for a Borel-measurable function ψ : � → �, we put

∫

ψ(x) dm :=
∫

�
ψ(t) dmx(t),

where the F-observable ψ(x) : B(�) → M is defined by ψ(x)(E) = x(ψ–(E)), E ∈ B(�) (un-
der the conventional assumptions on the integrability).
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The integral of an F-observable x on (�, M) over a fuzzy set f ∈ M is defined (see [])
via

υ(f ) =
∫

f
x dm :=

∫

x · xf dm,

where xf is the question observable of a fuzzy set f , that is, the mapping defined, for any
E ∈ B(�), by

xf (E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f ∨ f ′ if ,  ∈ E;
f ′ if  ∈ E,  /∈ E;
f if  /∈ E,  ∈ E;
f ∧ f ′ if ,  /∈ E

(if the integral on the right-hand side exists and is finite).

Definition . [] Let (�, M, m) be a given fuzzy probability space, and x, x, x, . . . be F-
observables on (�, M). We say that the sequence {xn}∞n= converges to x almost everywhere
in m (and we write xn → x a.e. in m) if, for every ε > ,

m

( ∞∨

k=

∞∧

n=k

(xn – x)
(〈–ε, ε〉)

)

= .

3 Main results
In this section, we present Birkhoff’s individual ergodic theorem and the maximal ergodic
theorem for fuzzy dynamical systems. In the proofs, we will use the factorization of a
fuzzy σ -algebra M described further and the properties of a σ -homomorphism U . The
presented results can be obtained also using the factorization over the σ -ideal of weakly
empty sets. Details on this approach can be found in [].

Let any fuzzy probability space (�, M, m) be given. In the set M, we define the re-
lation of equivalence ∼ in the following way: for every f , g ∈ M, f ∼ g if and only if
m(f 	g) = , where f 	g = (f ∧ g ′) ∨ (f ′ ∧ g) is the symmetric difference of fuzzy sets f
and g . Put [f ] = {g ∈ M; m(f 	g) = } for f ∈ M. It is easy to verify that if f, f ∈ [f ], then
m(f) = m(f). In the system [M] = {[f ]; f ∈ M}, we can define the relation ≤ as follows:
for every [f ], [g] ∈ [M], [f ] ≤ [g] if and only if m(f ∧ g ′) = . The couple ([M],≤) is a
partially ordered set with a minimal element [�] and a maximal element [�]; more-
over, [M] is a Boolean σ -algebra, where [

∨∞
n= fn] is the least upper bound of a sequence

{[fn]}∞n= ⊂ [M], that is,
∨∞

n=[fn] = [
∨∞

n= fn]. Further, for all f , g ∈ M, [f ] ∧ [g] = [f ∧ g].
For every [f ] ∈ [M], [f ] ∧ [f ′] = [f ∧ f ′] = [�] and [f ] ∨ [f ′] = [f ∨ f ′] = [�]; hence, we
have [f ]′ = [f ′] for every f ∈ M. If we define the mapping μ : [M] → 〈, 〉 by the equality
μ([f ]) := m(f ) for [f ] ∈ [M], then μ is a probability measure on the Boolean σ -algebra [M],
that is, μ([�]) = , μ ≥ , and [fi] ∧ [fj] = [�] (i 
= j) implies μ(

∨∞
n=[fn]) =

∑∞
n= μ([fn]).

Let (�, M, m, U) be any fuzzy dynamical system. Then the mapping Ū : [M] → [M] de-
fined by Ū([f ]) = [U(f )], [f ] ∈ [M], is a σ -homomorphism of the Boolean σ -algebra [M],
that is, for every [f ] ∈ [M], Ū([f ]′) = (Ū([f ]))′, and for every sequence {[fn]}∞n= ⊂ [M],
Ū(

∨∞
n=[fn]) =

∨∞
n= Ū([fn]); moreover, Ū is invariant in μ, that is, μ(Ū[f ]) = μ([f ]) for ev-

ery [f ] ∈ [M].
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Let x be an F-observable on a fuzzy measurable space (�, M). Let us define the mapping
h : M → [M] via

h(f ) = [f ], f ∈ M. (.)

Then it is easy to see that h is a σ -homomorphism from M onto [M] and x̄ := h ◦ x is an
observable on the Boolean σ -algebra [M].

In the following, we will need the notion of an ergodic fuzzy dynamical system. We
introduce this notion analogously as in the classical ergodic theory [].

Definition . A fuzzy dynamical system (�, M, m, U) is said to be ergodic if a σ -
homomorphism U of (�, M) is ergodic in m, that is, for every f ∈ M, the statement
m(f ∧ U(f ′)) =  = m(U(f ) ∧ f ′) implies m(f ) ∈ {, }.

The following theorem is a fuzzy analogue of Birkhoff’s individual ergodic theorem. It
should be noted that the first authors interested in the ergodic theory on fuzzy measurable
spaces were Harman and Riečan []. They proved Birkhoff’s individual ergodic theorem
for the compatible case. Theorem . presents a more general case.

Theorem . Let (�, M, m, U) be an ergodic fuzzy dynamical system, and x be an F-
observable on (�, M). Suppose m(x) = . Then


n

n∑

i=

Ui ◦ x → o almost everywhere in m, (.)

where o is the question observable of the empty fuzzy set �.

Proof At the beginning of the proof, we use arguments similar to those in the proof of
Theorem . in []. Let A be the minimal Boolean sub-σ -algebra of [M] containing all
ranges of Ūn ◦ x̄, n = , , . . . . Then Ū([f ]) ∈ A for any [f ] ∈ A and the Boolean σ -algebra
A has a countable generator. Therefore, in view of Varadarajan [], there exists an ob-
servable z : B(�) → [M] such that {z(E) : E ∈ B(�)} = A. Moreover, there is a sequence of
real-valued Borel functions {ψn}∞n= such that

(
Ūn ◦ x̄

)
(E) = z

(
ψ–

n (E)
)
, E ∈ B(�), n = , , , . . . .

Since Ū is z-measurable, by Dvurečenskij and Riečan [], there exists a Borel-measurable
transformation T : � → � such that

Ū
(
z(E)

)
= z

(
T–(E)

)
for every E ∈ B(�).

Therefore, for every E ∈ B(�), we have

Ūn(z(E)
)

= z
(
T–n(E)

)
,

and consequently,

(
Ūn ◦ x̄

)
(E) = Ūn(x̄(E)

)
= Ūn(z

(
ψ–

 (E)
))

= z
(
T–n(ψ–

 (E)
))

= z
((

ψ ◦ Tn)–(E)
)
.
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Hence, we may assume without loss of generality that ψn = ψ ◦ Tn, n = , , . . . , for some
Borel function ψ . By Definition . xn → o almost everywhere in m if, for every ε > ,
m(

∨∞
k=

∧∞
n=k xn(〈–ε, ε〉)) = . But

m

( ∞∨

k=

∞∧

n=k

xn
(〈–ε, ε〉)

)

=  if and only if μ

( ∞∨

k=

∞∧

n=k

x̄n
(〈–ε, ε〉)

)

= .

Therefore,


n

n∑

i=

Ui ◦ x → o a.e. in m if and only if

n

n∑

i=

Ūi ◦ x̄ → ō a.e. in μ,

where, for every E ∈ B(�), ō(E) = [�] if  /∈ E and ō(E) = [�] if  ∈ E. The previous con-
vergence is true if and only if


n

n∑

i=

(
ψ ◦ Ti)(z) → ō almost everywhere in μ,

which is possible if and only if


n

n∑

i=

ψ
(
Ti(t)

) →  almost everywhere in μz,

where μz : B(�) → 〈, 〉 is the probability measure on B(�) defined by μz(E) = μ(z(E)),
E ∈ B(�). On the other hand,

 = m(x) =
∫

�
t dmx(t) =

∫

�
t dμx̄(t) =

∫

�
ψ(t) dμz(t),

where μx̄ : B(�) → 〈, 〉 is the probability measure on B(�) defined by μx̄(E) = μ(x̄(E)),
E ∈ B(�). Taking into account the classical dynamical system (�, B(�),μz, T), it is easy to
see that T is μz-invariant and ergodic in μz , that is, μz(T–(E)) = μz(E) for every E ∈ B(�),
and T–(E) = E implies μz(E) ∈ {, }. Therefore, by Halmos [], the Birkhoff’s individual
ergodic theorem holds for ψ , and, consequently, (.) is proved. �

The following theorem is a fuzzy generalization of the maximal ergodic theorem.

Theorem . Let (�, M, m, U) be a fuzzy dynamical system, and x be an F-observable
on (�, M) with a finite mean value in m. Let Sk =

∑k–
i= Ui ◦ x, k = , . . . , n, and f =

∨n
i= Si((,∞)). Then

∫
f x dm ≥ .

Proof As in the proof of the previous theorem, we get

[f ] = h(f ) =
n∨

i=

h
(
Si

(
(,∞)

))
=

n∨

i=

z
(
s–

i
(
(,∞)

))
= z

( n∨

i=

s–
i

(
(,∞)

)
)

,
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where h is defined by (.), sk(t) =
∑k–

i= ψ(Ti(t)), t ∈ �, k = , . . . , n, and z, T , and ψ have
the same meanings as before. Hence,

∫

f
x dm =

∫

x · xf dm =
∫

h ◦ (x · xf ) dμ =
∫

(h ◦ x) · (h ◦ xf ) dμ

=
∫

(h ◦ x) · x̄[f ] dμ =
∫

[f ]
h ◦ x dμ =

∫

A
ψ(t) dμz(t),

where x̄[f ] is the question observable of [f ], that is, x̄[f ]({}) = [f ]′, x̄[f ]({}) = [f ], and
A = {t ∈ � : max(, s(t), . . . , sn(t)) > }. Applying the maximal ergodic theorem to the clas-
sical dynamical system (�, B(�),μz, T), we obtain that

∫
A ψ(t) dμz(t) ≥ . The proof is

finished. �

4 Conclusions
In the classical theory, an event is understood as an exactly defined phenomenon, and
from the mathematical point of view, it is a classical set. In practice, however, we often en-
counter events that are described imprecisely, vaguely, so-called fuzzy events. That is why
various proposals for a fuzzy generalization of the dynamical system of classical ergodic
theory have been created (e.g., in [, –]). In this note, we contributed to the extension of
our study concerning fuzzy dynamical systems introduced by Markechová in []. We pre-
sented generalizations of Birkhoff’s individual ergodic theorem and the maximal ergodic
theorem from the classical ergodic theory to the case of fuzzy dynamical systems.
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15. Riečan, B: On mean value in F-quantum spaces. Appl. Math. 35(3), 209-214 (1990)
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