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Abstract
In this paper, we introduce the general modified degenerate Euler numbers and
study ordinary differential equations arising from the generating function of these
numbers. In addition, we give some new explicit identities for the general modified
degenerate Euler numbers arising from our differential equations.

MSC: 05A19; 11B37; 11B83; 34A34

Keywords: general modified degenerate Euler numbers; differential equations

1 Introduction
As is known, the Euler numbers are defined by the generating function
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=
∞∑

n=

En
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n!
(see [–]). (.)

Carlitz [] considered the degenerate Euler numbers defined by the generating function


( + λt)
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=
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En,λ
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. (.)

In [], the modified degenerate Euler numbers, which are slightly different from Carlitz’s
degenerate Euler numbers, are defined by


( + λ)
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. (.)

Note that limλ→ Ẽn,λ = limλ→ En,λ = En (n ≥ ). Recently, Kim and Kim [] studied non-
linear differential equations given by
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Let α, a, b be nonzero real numbers. Then we consider the general modified degenerate
Euler numbers as follows:
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at
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=
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Ẽn,λ(α | a, b)
tn

n!
. (.)

From (.) we note that

lim
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α( + λ)

at
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=
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b
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where En,q (n ≥ ) are the Apostol-Euler numbers given by the generating function


qet + 

=
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n=

En,q
tn

n!
(see [, ]). (.)

Thus, by (.) and (.) we get

an

b
En, αb

= lim
λ→

Ẽn,λ(α | a, b) (n ≥ ).

Bayad and Kim [] studied the following nonlinear differential equations related to
Apostol-Euler numbers:

FN
q =


(N – )!

N∑

k=

ak(N)F (k–)
q (N ∈ N), (.)

where F (k)
q = ( d

dt )kFq(t), Fq(t) = 
qet+ .

In this paper, we study the ordinary differential equations associated with the gener-
ating function of general modified degenerate Euler numbers. In addition, we give some
new and explicit formulas and identities for those numbers arising from our differential
equations.

2 Generalized modified degenerate Euler numbers
For nonzero real numbers α, a, b, let

F = F(t) =
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. (.)

Then by (.) we get
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Thus, from (.) we have
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From (.) we derive the following equation:
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Continuing this process, we set
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By taking the derivative of (.) with respect to t we have
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Replacing N by N +  in (.), we get
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Comparing the coefficients on both sides of (.) and (.), we obtain

a(N + ) = –a(N). (.)
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Thus, by (.) we get

a(N + ) = –a(N) = (–)a(N – ) = · · · = (–)N a(). (.)

From (.) we have
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Thus, from (.) and (.) we have
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By (.) and (.) we see that
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Thus, by (.) we have
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For  ≤ k ≤ N + , by comparing the coefficients on both sides of (.) and (.) we have
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Now we give an explicit expression for aj(N + ) in (.). From (.) and (.) we can

derive the following equation:
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Continuing this process, we deduce that, for  ≤ j ≤ N + ,
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Therefore, by (.) and (.) we obtain the following theorem.

Theorem  Let α, a, b be nonzero real numbers. The family of nonlinear differential equa-
tions
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Now we define the general modified degenerate Euler numbers given by the generating
function
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Ẽn+N ,λ(α; a, b)
tn

n!
. (.)



Kim et al. Advances in Difference Equations  (2016) 2016:129 Page 7 of 7

For r ∈ N, the higher-order general modified degenerate Euler numbers are defined by
the generating function

(
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Therefore, by Theorem , (.), and (.) we obtain the following theorem.

Theorem  Let α, a, b be nonzero real numbers. For n ≥ , we have
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