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1 Introduction
The well-posedness and dynamics of the partial differential equations defined on the time-
varying domains are interesting questions to study, and they have attracted a lot of atten-
tions recently. There are many papers on this topic, we refer the reader to [–] and the
references therein. The stochastic dynamical systems defined on time-varying domains
are more attractive. Crauel, Kloeden, and Real established the framework for determinis-
tic PDE on time-varying domains, and later, they also developed a new approach to de-
fined noise on time-varying domain, and established the existence and uniqueness of the
solutions for stochastic partial different equations with additive noise on time-varying
domains in []. Recently, Crauel, Kloeden, and Yang developed the theory of ‘partial-
random’ dynamical systems to obtain the existence of random attractors for stochastic
reaction-diffusion equations on time-varying domains in [].

Reaction-diffusion systems are usually used to describe the Turing pattern in a class
of chemical or biological systems, and the Turing pattern was observed in the chlorite-
iodine-malonic acid reaction in . Dufiet and Boissonade in [] were first to introduce
the following reaction-diffusion systems (we called it a Boissonade system):

⎧
⎨

⎩

∂u
∂t = d�u + u – αv + γ uv – u,
∂v
∂t = d�v + u – βv,

(.)

to exhibit the Turing pattern of the model to describe the relation between the genuine
homogeneous D systems and the D monolayers, where d, d, α, γ , and β are positive
constants.
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The Boissonade system (.) is quite different from the Fitzhugh-Nagumo system in []
and [], the square term u in the Fitzhugh-Nagumo system is replaced by the cross term
uv, leading to the nonlinearity of the second equation in the Boissonade system, and it
induces more difficulties to obtain the uniqueness of the solution. Recently, Tu in []
proved the existence of the global attractor for the Boissonade system (.). Due to the
time-varying domain, the stochastic partial differential equation induces the new partial
random dynamical systems, which is very interesting, we refer the reader to [] for more
details.

Motivated by the idea of Crauel, Kloeden, and Real in [] and Crauel, Kloeden, and Yang
in [], we study the stochastic Boissonade system (SBS) on the time-varying domain by us-
ing some tricks derived from the Sobolev embedding theorem to obtain a unique solution
for the SBS, and we establish the existence of a pullback attractor for the ‘partial-random’
dynamical system generated by the weak solution for the stochastic Boissonade system on
the time-varying domain.

The rest of the paper is arranged as follows. In Section , some notations on time-varying
domains are introduced. Sections  and  are devoted to proving the existence and unique-
ness of solutions of random equations defined on fixed domains which are transformed
from time-varying domains. The existence of the pullback attractor for the process gen-
eralized by the weak solution is presented in Section .

2 SBS defined on time-varying domains
In this section, we will introduce some notions and functional spaces on time-varying
domains, following [], and derive the Boissonade system with additive noise on the time-
varying domain.

2.1 Assumption on the time-varying domain
Let O be a nonempty bounded open subset of RN with C boundary ∂O, and r = r(y, t) a
vector function

r ∈ C(Ō ×R;RN)
, (.)

such that

r(·, t) : O →Ot is a C-diffeomorphism for all t ∈R. (.)

r̄(·, t) = r–(·, t) is the inverse of r(·, t) satisfying the property

r̄ ∈ C,(Q̄τ ,T ;RN)
for all τ < T , (.)

i.e., r̄, ∂ r̄
∂t , ∂ r̄

∂xi
and ∂ r̄

∂xi ∂xj
belong to C(Q̄τ ,T ;RN ) for all  ≤ i, j ≤ N and for any τ < T . Then

{Ot}t∈[τ ,T] is a family of nonempty bounded open subsets of RN (N ≤ ).
Define

Qτ ,T :=
⋃

t∈(τ ,T)

Ot × {t} for all T > τ , (.)

Qτ :=
⋃

t∈(τ ,∞)

Ot × {t} for all τ ∈R,
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�τ ,T :=
⋃

t∈(τ ,T)

∂Ot × {t} for all T > τ ,

and

�τ :=
⋃

t∈(τ ,∞)

∂Ot × {t} for all τ ∈ R.

For any T > τ , the set Qτ ,T is an open subset of RN+ with the boundary

∂Qτ ,T := �τ ,T ∪ (
∂Oτ × {τ }) ∪ (

∂OT × {T}).

2.2 Assumption on noise
Assume that (�, F , P) be a probability space, a sequence {wj(t) : t ∈ [,∞)}j≥ of mutually
independent two-sided standard scalar Wiener processes adapted to a common filtration
{Ft : t ∈ [,∞)} in F . Let {φj}j≥ ⊂ H

(O) ⊂ L(O) and {ϕj}j≥ ⊂ H
(O) ⊂ L(O) be two

sequences of functions such that

∞∑

j=

‖φj‖H
(O) ≤ ∞,

∞∑

j=

‖ϕj‖H
(O) ≤ ∞. (.)

Define

�j := φj
(
r̄(x, t)

)
, �j := ϕj

(
r̄(x, t)

)
, x ∈Ot , t ∈ [,∞), j = , , . . . .

It follows from [] that, for all t ∈R,

∞∑

j=

‖�j‖H
(Ot ) ≤ ∞,

∞∑

j=

‖�j‖H
(Ot ) ≤ ∞.

Consider the L(Ot)-valued Ft-adapted stochastic processes. Define

M :=
∞∑

j=

�j(t)wj(t), M :=
∞∑

j=

�j(t)wj(t), t ≥ . (.)

Let E be the expectation with respect the probability P. Due to the pairwise independence
of the wj(t), we have

E

∥
∥
∥
∥
∥

m∑

j=n

�j(t)wj(t)

∥
∥
∥
∥
∥



L(Ot )

= t
m∑

j=n

∥
∥�j(t)

∥
∥

L(Ot )

and

E

∥
∥
∥
∥
∥

m∑

j=n

�j(t)wj(t)

∥
∥
∥
∥
∥



L(Ot )

= t
m∑

j=n

∥
∥�j(t)

∥
∥

L(Ot )
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for any t ≥ , m > n ≥ . Therefore, we get M(t), M(t) ∈ L(Ot × �) which are
Ft-measurable. Then {M(t) : t ≥ } and {M(t) : t ≥ } can be viewed as Ft-adapted
processes with values in L(Ot).

Direct computation implies that EM(t) = EM(t) = ,

E
∥
∥M(t)

∥
∥

L(Ot ) = t
∞∑

j=

∥
∥�(t)

∥
∥

L(Ot ) ≤ tCr,t

∞∑

j=

∥
∥φ(t)

∥
∥

L(O)

and

E
∥
∥M(t)

∥
∥

L(Ot ) = t
∞∑

j=

∥
∥�(t)

∥
∥

L(Ot ) ≤ tCr,t

∞∑

j=

∥
∥ϕ(t)

∥
∥

L(O)

for any t ∈ [,∞), where Cr,t = maxy∈Ō Jac(r, y, t) and Jac(r, y, t) denoted the absolute value
of the determinant of the Jacobi matrix ( ∂ri

∂yj
(y, t))N×N .

2.3 Stochastic Boissonade system on the time-varying domain
Following the arguments in [], we can study the stochastic Boissonade system with ad-
ditive noise and homogeneous Dirichlet boundary condition on the time-varying domain
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du = (d�u + u – αv + γ uv – u) dt + dM, in Q,

dv = (d�v + u – βv) dt + dM, in Q,

u = , v = , on �,

u(, x) = u(x), v(, x) = v(x), x ∈O,

(.)

where dM and dM can be represented by

dM(t) =
∞∑

j=

φj
(
r̄(x, t)

)
dwj(t) +

∞∑

j=

wj(t)∇yφj
(
r̄(x, t)

) · ∂ r̄
∂t

(x, t) dt (.)

and

dM(t) =
∞∑

j=

ϕj
(
r̄(x, t)

)
dwj(t) +

∞∑

j=

wj(t)∇yϕj
(
r̄(x, t)

) · ∂ r̄
∂t

(x, t) dt. (.)

Denote

U(y, t) = u
(
r(y, t), t

)
, V (y, t) = v

(
r(y, t), t

)
for y ∈O, t ≥ , (.)

and

ajk(y, t) =
N∑

i=

∂ r̄k

∂xi

(
r(y, t), t

) ∂ r̄j

∂xi

(
r(y, t), t

)
, j, k = , . . . , N .
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Define b(y, t) = (b(y, t), . . . , bN (y, t)) ∈R
N and c(y, t) = (c(y, t), . . . , cN (y, t)) ∈R

N by

bk(y, t) = dxr̄k
(
r(y, t), t

)
–

∂ r̄k

∂t
(
r(y, t), t

)
– d

N∑

j=

∂ajk

∂yj
(y, t), k = , . . . , N ,

ck(y, t) = dxr̄k
(
r(y, t), t

)
–

∂ r̄k

∂t
(
r(y, t), t

)
– d

N∑

j=

∂ajk

∂yj
(y, t), k = , . . . , N .

Then equations (.) on time-varying domains can be rewritten into the following equa-
tions on O × [,∞):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dU = [d
∑N

j,k=
∂

∂yj
(ajkUyk ) + b · ∇yU

+ U – αV + γ UV – U + R] dt + dW, in O × [,∞),

dV = [d
∑N

j,k=
∂

∂yj
(ajkVyk ) + c · ∇yV

+ U – βV + R] dt + dW, in O × [,∞),

U = , V = , on ∂O × [,∞),

U(y, ) = u(r(y, )), V (y, ) = v(r(y, )), y ∈O,

(.)

where

R(y, t) =
∞∑

j=

wj(t)∇yφj(y) · ∂ r̄
∂t

(
r(y, t), t

)
,

R(y, t) =
∞∑

j=

wj(t)∇yϕj(y) · ∂ r̄
∂t

(
r(y, t), t

)
,

and

W(y, t) =
∞∑

j=

φj(y)wj(t), W(y, t) =
∞∑

j=

ϕj(y)wj(t).

Due to the independence of the wj and the assumption (.), the processes W(t) and W(t)
are two H

(O)-valued Wiener processes, and

E
∥
∥R(t)

∥
∥

L(O) ≤ t max
y∈O

∣
∣
∣
∣
∂ r̄
∂t

(
r(y, t), t

)
∣
∣
∣
∣



RN

∞∑

j=

‖φj‖
H

(O) ∀t ≥ 

and

E
∥
∥R(t)

∥
∥

L(O) ≤ t max
y∈O

∣
∣
∣
∣
∂ r̄
∂t

(
r(y, t), t

)
∣
∣
∣
∣



RN

∞∑

j=

‖ϕj‖
H

(O) ∀t ≥ .

Therefore, R(t) and R(t) are two Ft-adapted processes belonging to L∞(, T ; L(�×O))
for all T ≥ .

Denote

F(y, t) = U(y, t) – W(y, t), G(y, t) = V (y, t) – W(y, t) for y ∈O, t ≥ . (.)
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Then equations (.) can be transformed into the following equations (.):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dF = [d
∑N

j,k=
∂

∂yj
(ajk(F + W)yk ) + b · ∇y(F + W) + (F + W) – α(G + W)

+ γ (F + W)(G + W) – (F + W) + R] dt, in O × [,∞),

dG = [d
∑N

j,k=
∂

∂yj
(ajk(G + W)yk ) + c · ∇y(G + W) + (F + W)

– β(G + W) + R] dt, in O × [,∞),

F = , G = , on ∂O × [,∞),

F(y, ) = u(r(y, )) – W(y, ), V (y, ) = v(r(y, )) – W(y, ), y ∈O.

(.)

In the following, in order to show the existence of strong solution, one is required to
impose the conditions on φj and ψj, j = , , . . . by

∞∑

j=

∥
∥�φj(y)

∥
∥

L(O) < ∞,
∞∑

j=

∥
∥�ϕj(y)

∥
∥

L(O) < ∞, (.)

rather than the assumption in (.).

3 Existence of strong solutions of SBS (2.13)
In this section, we will establish the existence and uniqueness of the strong solution for
equation (.).

For each T > , consider the auxiliary problem for equation (.),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dF = [d
∑N

j,k=
∂

∂yj
(ajk(F + W)yk ) + b · ∇y(F + W) + (F + W) – α(G + W)

+ γ (F + W)(G + W) – (F + W) + R] dt, in O × [, T],

dG = [d
∑N

j,k=
∂

∂yj
(ajk(G + W)yk ) + c · ∇y(G + W) + (F + W)

– β(G + W) + R] dt, in O × [, T],

F = , G = , on ∂O × [, T],

F(y, ) = u(r(y, )) – W(y, ), V (y, ) = v(r(y, )) – W(y, ), y ∈O.

(.)

Definition . (Strong solution) A Ft-adapted process (F , G) = (F(ω, y, t), G(ω, y, t)) de-
fined in � ×O × [, T] is said to be a strong solution for problem (.) if

F ∈ L(�, L(τ , T ; H(O)
)) ∩ L(�, C

(
[τ , T]; H

(O)
))

,

F ′ ∈ L(�, L(τ , T ; L(O)
))

,

G ∈ L(�, L(τ , T ; H(O)
)) ∩ L(�, C

(
[τ , T]; H

(O)
))

,

G′ ∈ L(�, L(τ , T ; L(O)
))

,

and the initial data conditions in (.) are satisfied almost everywhere in their correspond-
ing domains.

Lemma . ([]) For any –∞ < τ ≤ T < +∞, ajk ∈ C(Ō× [τ , T]), bk , ck ∈ C(Ō× [τ , T]).
In particular, ajk , ∂ajk

∂yj
, bk , ck ∈ L∞(O × (τ , T)), j, k = , , . . . , N . Moreover, there exists a
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δ = δ(ν, r, τ , T) >  such that, for any (y, t) ∈O × [τ , T],

N∑

j,k=

ajk(y, t)ξjξk ≥ δ|ξ | for any ξ ∈ R
N . (.)

Lemma . ([]) For any –∞ < τ ≤ T < +∞, there exist two positive constants δ and c

which depend on r, τ , T such that for any u ∈ H(O) ∩ H
(O), the following estimate holds:

δ

∫

O

∣
∣u(y)

∣
∣ dy ≤

∫

O

N∑

k,j=

akj(y, t)uyk yju dy

+ c

∫

O

∣
∣u(y)

∣
∣ dy for any t ∈ [τ , T]. (.)

Define the time-dependent bilinear form by

B[α,β , t] =
∫

O
–d

N∑

j,k=

(
ajk(y, t)αyk (y, t)

)
βyj (y, t) +

N∑

k=

bk(y, t)∇yα(y, t)β(y, t) dy, (.)

D[α,β , t] =
∫

O
–d

N∑

j,k=

(
ajk(y, t)αyk (y, t)

)
βyj (y, t) +

N∑

k=

ck(y, t)∇yα(y, t)β(y, t) dy, (.)

for α,β ∈ H
(O) and  ≤ t ≤ T .

We can apply the Galerkin argument(see[–]) to prove the existence of solution for
SBS. Let �k = �k(y) ∈ H(O) ∩ H

(O) (k = , , . . .) be the eigenfunctions of –� on H
(O),

 < λ < λ < · · · < λn · · · , λn → ∞ as n → ∞ be the corresponding eigenvalues. Then
{�k}∞k= is an orthogonal basis of H

(O) and an orthogonal basis of L(O).
For each fixed positive integer m, denote

Fm(t,ω) :=
m∑

k=

ζ k
m(t,ω)�k , Gm(t,ω) :=

m∑

k=

ηk
m(t,ω)�k . (.)

Then for k = , . . . , m and τ ≤ t ≤ T ,

(A
m)

(
F ′

m(t),�k
)

= B
[
Fm(t) + PmW,�k ; t

]
+

(
Fm(t) + PmW – α

(
Gm(t) + PmW

)
,�k

)

+
(
γ
(
Fm(t) + PmW

)(
Gm(t) + PmW

)
–

(
Fm(t) + PmW

) + R,ωk
)
,

(A
m)

(
G′

m(t),�k
)

= D
[
Gm(t) + PmW,�k ; t

]
+

(
Fm(t) + PmW – β

(
Gm(t) + PmW

)
+ R,�k

)
,

Fm() = PmF, Gm() = PmG,

where F(y) := u(r(y, t)) – W, G(y) := v(r(y, t)) – W. (·, ·) is the inner product in L(O)
with associated norm ‖ · ‖L(O), Pm is the projector from L(O) to span{�,�, . . . ,�m}. It
follows from [] and the assumption (.) that F ∈ H

(O), G ∈ H
(O).
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The assumption (.) yields

PmF → F in H
(O) as m → ∞,

PmG → G in H
(O) as m → ∞.

(.)

Noticing that for each integer m = , , . . . , there exists a unique local Ft-adapted process
(Fm(ω), Gm(ω)) of (.) satisfying (Am) in an interval [, Tm] with  ≤ Tm ≤ T .

Next, we will show some estimates on the sequences (Fm, Gm), m = , , . . . .

Lemma . The following estimates hold.
() {Fm} is bounded in C([, T]; L(�, L(O))) ∩ L(, T ; L(�, H

(O))) ∩ L([, T];
L(O × �)),

() {Gm} is bounded in C([, T]; L(�, L(O))) ∩ L(, T ; L(�, H
(O))).

Proof Multiplying (A
m) by ζ k

m and (A
m) by ηk

m, and taking the sum with respect to k from
 to m, we obtain




d
dt

(‖Fm‖
L(O) + ‖Gm‖

L(O)
)

= B[Fm, Fm; t] + B[PmW, Fm; t] + D[Gm, Gm; t] + D[PmW, Gm; t] +
∥
∥Fm(t)

∥
∥

L(O)

+ (PmW, Fm) – α
(
Gm(t) + PmW, Fm(t)

)
+

(
γ (Fm + PmW)(Gm + PmW), Fm

)

–
(
(Fm + PmW), Fm

)
+

(
(Fm + PmW), Gm

)
– (βPmW, Gm) – β‖Gm‖

L(O)

+ (R, Fm) + (R, Gm), ∀t ∈ [, Tm],P-a.s. ω ∈ �.

Combing Lemma . with (.) and (.) guarantees that there exists a positive constant δ,
which depends only on T such that ∀t ∈ [, Tm], P-a.s. ω ∈ �,




d
dt

(‖Fm‖
L(O) + ‖Gm‖

L(O)
)

+ δ
(
d

∥
∥Fm(t)

∥
∥

H
(O) + d

∥
∥Gm(t)

∥
∥

H
(O)

)

≤ Mb‖Fm‖
L(O)

∥
∥Fm(t)

∥
∥

H
(O) + dMa

∥
∥PmW(t)

∥
∥

H
(O)‖Fm‖

H
(O)

+ Mb
∥
∥PmW(t)

∥
∥

H
(O)‖Fm‖

L(O) + Mc‖Gm‖
L(O)

∥
∥Gm(t)

∥
∥

H
(O)

+ dMa
∥
∥PmW(t)

∥
∥

H
(O)‖Gm‖

H
(O) + Mc

∥
∥PmW(t)

∥
∥

H
(O)‖Gm‖

L(O)

+
∥
∥Fm(t)

∥
∥

L(O) + (PmW, Fm) – α
(
Gm(t) + PmW, Fm(t)

)

+
(
γ (Fm + PmW)(Gm + PmW), Fm

)
–

(
(Fm + PmW), Fm

)

+
(
(Fm + PmW), Gm

)
– (βPmW, Gm) – β‖Gm‖

L(O) + (R, Fm) + (R, Gm),

where

Ma = N max
≤j,k≤N

‖ajk‖L∞(O×[,T]) (.)

and

Mb = N / max
≤k≤N

‖bk‖L∞(O×[,T]), Mc = N / max
≤k≤N

‖ck‖L∞(O×[,T]). (.)
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Here, we just consider the following term:

(
γ (Fm + PmW)(Gm + PmW), Fm

)
–

(
(Fm + PmW), Fm

)

=
(
γ (Fm + PmW)(Gm + PmW), Fm + PmW

)
– ‖Fm‖

L(O)

–
(
γ (Fm + PmW)(Gm + PmW), PmW

)
+

(
(Fm + PmW), PmW

)

≤ –


‖Fm‖

L(O) +


‖PmW‖

L(O) + γ ‖Gm‖
L(O) + +γ ‖PmW‖

L(O).

Then it follows from Cauchy’s inequality that

d
dt

(‖Fm‖
L(O) + ‖Gm‖

L(O)
)

+ δ
(
d

∥
∥Fm(t)

∥
∥

H
(O) + d

∥
∥Gm(t)

∥
∥

H
(O)

)

+



‖Fm + PmW‖
L(O) ≤ M

∥
∥Fm(t)

∥
∥

L(O) + M
∥
∥Gm(t)

∥
∥

L(O) + R(t), (.)

where

M =
M

b
dδ

+ Mb + α + , M =
M

c
dδ

+ Mc + α + γ  – β + ,

and

R(t) =
(

dM
a

δ
+ Mb

)

‖PmW‖
H

(O) +
(

dM
a

δ
+ Mc

)

‖PmW‖
H

(O)

+ ‖PmW‖
L(O) +

(
α + γ  + β

)‖PmW‖
L(O) + ‖PmW‖

L(O)

+ ‖R‖
L(O) + ‖R‖

L(O).

By the fact ‖PmW‖H
(O) ≤ ‖W‖H

(O), ‖PmW‖H
(O) ≤ ‖W‖H

(O), the assumption (.)
and the BDG inequality, we can find that ER(t) < ∞, ∀t ∈ [, Tm]. Then combining (.)
with the Gronwall inequality and the fact ‖PmU‖

L(O) ≤ ‖U‖
L(O), ‖PmV‖

L(O) ≤
‖V‖

L(O), we can find a positive constant M here such that

E
∥
∥Fm(t)

∥
∥

L(O) + E
∥
∥Gm(t)

∥
∥

L(O) +
∫ T


δ
(
dE

∥
∥Fm(s)

∥
∥

H
(O) + dE

∥
∥Gm(s)

∥
∥

H
(O)

)

+


E

∥
∥Fm(s)

∥
∥

L(O) ds ≤ M,

which implies that Lemma . holds. �

Lemma . The following estimates hold:
() the sequence {Fm} is bounded in C([, T]; L(�, H

(O))) ∩ L(, T ; L(�, H(O))),
() the sequence {Gm} is bounded in C([, T]; L(�, H

(O))) ∩ L(, T ; L(�, H(O))).

Proof Multiplying (A
m) by λkη

k
m(t,ω) and summing over k = , , . . . , and recalling the fact

that –yGm(t) =
∑m

k= λkη
k
m(t,ω)�k equals  on ∂O, we obtain from Lemma .




d
dt

∥
∥Gm(t)

∥
∥

H
(O) + dδ

∥
∥�Gm(t)

∥
∥

H
(O)

≤ Mc̄
∥
∥Gm(t)

∥
∥

H
(O)

∥
∥�Gm(t)

∥
∥

L(O) + dMa
∥
∥�PmW(t)

∥
∥

L(O)

∥
∥�Gm(t)

∥
∥

L(O)



Zhang and Huang Advances in Difference Equations  (2016) 2016:141 Page 10 of 24

+ Mc̄
∥
∥PmW(t)

∥
∥

H
(O)

∥
∥�Gm(t)

∥
∥

L(O) + dC
∣
∣Gm(t)

∣
∣

–
∫

O
(Fm + PmW – R)�Gm + β

(
(∇Gm) + ∇Gm∇(PmW)

)
dy,

where Mc̄ = N / max≤k≤N |c̄k|L∞(O×(,T)), and c̄k(y, t) := ck(y, t) + d
∑N

j=
∂ajk
∂yj

(y, t), k =
, , . . . , N .

By Cauchy’s inequality, one derives that

d
dt

∥
∥Gm(t)

∥
∥

H
(O) + dδ

∥
∥�Gm(t)

∥
∥

L(O)

≤
(M

C̄
dδ

– β

)
∥
∥Gm(t)

∥
∥

H
(O) + dc

∥
∥Gm(t)

∥
∥

L(O)

+
dM

a
δ

‖�PmW‖
L(O)

+
(M

C̄
dδ

+ β

)
∥
∥PmW(t)

∥
∥

H
(O)

+


dδ

(‖Fm‖
L(O) + ‖PmW‖

L(O) + ‖R‖
L(O)

)
. (.)

Since PmG is bounded in H
(O), then (.), (.), Lemma . and the Gronwall inequal-

ity imply that there exists a positive constant M that satisfies

E
∥
∥Gm(t)

∥
∥

H
(O) + dδ

∫ T


E

∥
∥�Gm(s)

∥
∥

L(O) ds ≤ M.

Next, we show the second result in Lemma .. Multiplying (A
m) by λkζ

k
m, summing over

k = , , . . . , m, we get




d
dt

∥
∥Fm(t)

∥
∥

H
(O) + dδ

∥
∥�Fm(t)

∥
∥

L(O)

≤ Mb̄
∥
∥Fm(t)

∥
∥

H
(O)

∥
∥�Fm(t)

∥
∥

L(O) + dMa
∥
∥�PmW(t)

∥
∥

L(O)

∥
∥�Fm(t)

∥
∥

L(O)

+ Mb̄
∥
∥PmW(t)

∥
∥

H
(O)

∥
∥�Fm(t)

∥
∥

L(O) + dC
∣
∣Fm(t)

∣
∣ +

∥
∥Fm(t)

∥
∥

H
(O)

– (PmW,�Fm) + α
(
Gm(t) + PmW,�Fm

)

–
(
γ (Fm + PmW)(Gm + PmW),�Fm

)

– (R,�Fm) +
(
(Fm + PmW),�Fm

)
, (.)

where Mb̄ = N / max≤k≤N |b̄k|L∞(O×(τ ,T)), and b̄k(y, t) := bk(y, t) + d
∑N

j=
∂ajk
∂yj

(y, t), k =
, , . . . , N . Here, we just consider the last term in (.),

(
(Fm + PmW),�Fm

)

=
(
(Fm + PmW),�(Fm + PmW)

)
–

(
(Fm + PmW),�(PmW)

)

= –
∫

O
(Fm + PmW)(∇(Fm + PmW)

) dy –
(
(Fm + PmW),�(PmW)

)
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≤ –
(
(Fm + PmW),�(PmW)

)

≤ 


‖Fm + PmW‖
L(O) +




∥
∥�(PmW)

∥
∥

L(O).

The Cauchy inequality implies that

d
dt

‖Fm‖
H(O) + dδ‖�Fm‖

L(O)

≤
(M

b̄
dδ

+ α + 
)

‖Fm‖
H

(O) + dC‖Fm‖
L(O) +

dM
a

δ
‖�PmW‖

L(O)

+
(M

b̄
dδ

+ 
)

‖PmW‖
H

(O) + α‖Gm + PmW‖
H

(O)

+
(

γ 

dδ
+




)

‖Fm + PmW‖
L(O)

+
γ 

dδ
‖Gm + PmW‖

L(O) +


‖�PmW‖

L(O).

Then for N ≤ , the assumptions (.) and (.) imply that the second result of Lemma .
holds. �

Lemma . The sequences {F ′
m}, {G′

m} are bounded in L(, T ; L(�, L(O))).

Proof Multiplying (A
m) by ζ k′

m , summing over k = , , . . . , m, and combining with ak,j = aj,k ,
we have

∥
∥F ′

m(t)
∥
∥

L(O) +
d


d
dt

∫

O

N∑

k,j=

ak,j(y, t)
∂Fm

∂yj
(y, t)

∂Fm

∂yk
(y, t) dy

–
d


d
dt

∫

O

N∑

k,j=

∂ak,j(y, t)
∂t

∂Fm

∂yj
(y, t)

∂Fm

∂yk
(y, t) dy

≤ 

∣
∣F ′

m
∣
∣
L(O) + M

ad
 ‖PmW‖

H
(O) + M

b‖Fm + PmW‖
H

(O)

+ ‖Fm + PmW‖
L(O) + α‖Gm + PmW‖

L(O)

+ γ (‖Fm + PmW‖
L(O) + ‖Gm + PmW‖

L(O)
)

+ ‖Fm + PmW‖
L(O) + ‖R‖

L(O).

Similarly,

∥
∥F ′

m(t)
∥
∥

L(O) +
d


d
dt

∫

O

N∑

k,j=

ak,j(y, t)
∂Gm

∂yj
(y, t)

∂Gm

∂yk
(y, t) dy

–
d


d
dt

∫

O

N∑

k,j=

∂ak,j(y, t)
∂t

∂Gm

∂yj
(y, t)

Gϕm

∂yk
(y, t) dy

≤ 

∣
∣G′

m
∣
∣
L(O) + M

ad
‖PmW‖

H
(O) + M

c ‖Gm + PmW‖
H

(O)

+ ‖Fm + PmW‖
L(O) + β‖Gm + PmW‖

L(O) + ‖R‖
L(O).
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Noticing the fact that ak,j ∈ C(Ō × [τ , T]) (k = , , . . . , N ), PmF, PmG are bounded in
H

(O), N ≤ , we deduce that Lemma . holds. �

Theorem . Assume that r and r̄ satisfy the assumptions (.), (.), (.), and

∂O is Cm where m ≥ . (.)

Then for any (u, v) ∈ H
(O) × H

(O), {φj(y)}j=,,..., {ϕj(y)}j=,,... satisfy the assumption
(.), and for any  ≤ T < +∞, there exists a unique strong solution (F , G) of (.). More-
over, (F , G) satisfies the equality of energy, for P-a.s. ω ∈ �,




d
dt

‖F‖
L(O) +

∫ T



∫

O
d

N∑

j,k=

(
ajk(F + W)yk

)
Fyj + (F + W)b · ∇yF dy dt

=
∫ T



∫

O

[
(F + W) – α(G + W) + γ (F + W)(G + W)

– (F + W) + R
]
F dy dt, (.)

and




d
dt

‖G‖
L(O) +

∫ T



∫

O
d

N∑

j,k=

(
ajk(G + W)yk

)
Gyj + (G + W)c · ∇yG dy dt

=
∫ T



∫

O

[
(F + W) – β(G + W) + R

]
G dy dt, ∀t ∈ [, T]; (.)

and the following estimates, for P-a.s. ω ∈ �:

∥
∥F(t)

∥
∥

L(O) +
∥
∥G(t)

∥
∥

L(O) ≤ eMt(‖F‖
L(O) + ‖G‖

L(O)
)

+
∫ t


eMtR ds, (.)

δ

∫ t



(
d‖F‖

H
(O) + d‖G‖

H
(O)

)
ds

≤ eMt(‖F‖
L(O) + ‖G‖

L(O)
)

+
∫ t


eMtR ds, (.)

where M is a constant and R is a fixed random function which satisfies, for P-a.s. ω ∈ �,
R(t) ∈ L(, T).

Proof We first prove the uniqueness of the solution. Let (ui, vi) ∈ H
(O) × H

(O) and
(Fi(t), Gi(t)), i = ,  be the corresponding strong solutions, then we derive

∂(U – U)
∂t

= d

N∑

j,k=

∂

∂yj

(
ajk(U – U)yk

)
+ b · ∇y(U – U) + (U – U)

– α(V – V) + γ (U – U)(V – V) –
(
(U) – (U)), (.)

∂(V – V)
∂t

= d

N∑

j,k=

∂

∂yj

(
ajk(V – V)yk

)
+ c · ∇y(V – V) + (U – U)

– β(V – V). (.)
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Taking the inner product of (.) with (U – U) and (.) with α(V – V) in L(Ot), we
obtain, P-a.s. ω ∈ �,

d
dt

(∥
∥(U – U)

∥
∥

L(O) + α
∥
∥(V – V)

∥
∥

L(O)

)

+ dδ
∥
∥∇y(U – U)

∥
∥

L(O) + αdδ
∥
∥∇y(V – V)

∥
∥

L(O)

≤
(

 +
M

b
dδ

)

‖U – U‖
L(O) + α

(
M

c
dδ

– β

)

‖V – V‖
t

+ 
∫

O
γ
(
U(V – V) + V(U – U)

)
dy, (.)

where Mb, Mc are defined by (.).
Thanks to the Hölder inequality

∫

O

(
U(V – V) + V(U – U)

)
dy

≤ ‖U‖L(O)‖V – V‖L(O)‖U – U‖L(O)

+ ‖V‖L(O)‖U – U‖L(O)‖V – V‖L(O). (.)

Since (F, G) and (F, G) are strong solutions of (.), U, V ∈ H
(O), ∀t ∈ [τ , T], and

there exists a constant M such that ‖U‖H
(O) ≤ M and ‖V‖H

(O) ≤ M. Applying the
Sobolev embedding theorem, Cauchy’s inequality, and (.), we have

∫

O
γ
(
U(V – V) + V(U – U)

)
dy

≤ dδ


∥
∥(U – U)

∥
∥

H
(O) +

αdδ


∥
∥(V – V)

∥
∥

H
(O)

+ M̃
(‖U – U‖

L(O) + ‖V – V‖
L(O)

)
, (.)

where M̃ is a constant dependent on d, d, M, α, γ , δ, and the Sobolev embedding con-
stant.

Combining (.) with (.) yields

d
dt

(
∥
∥(U – U)

∥
∥

L(O) + α
∥
∥(V – V)

∥
∥

L(O)

)

+
dδ


∥
∥(U – U)

∥
∥

H
(O)

+
αdδ


∥
∥(V – V)

∥
∥

H
(O))

≤ M
(∥
∥(U – U)

∥
∥

L(O) +
∥
∥(V – V)

∥
∥

L(O)

)
, (.)

where M = max{, 
α
} ∗ max{M̃ + ( + M

b
dδ

), M̃ + α( M
c

dδ
– β)}.

Due to the Gronwall lemma and the fact u(x)–u(x) = v(x)–v(x) = , F –F = U –
U, G –G = V –V, we obtain the uniqueness of the strong solution for (.) immediately.
Taking the inner product of (.) with (U , V ), we can obtain the energy equality (.) and
(.) immediately.

Based on the estimates in Lemma ., Lemma ., and Lemma . on Fm and Gm,
there exist a subsequence of {Fm(ω)} and a subsequence of {Gm(ω)} converging weakly in
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L((, T]×; H(O)), weakly star in L∞(, T ; H
(O)), and strongly in L((, T]; H

(O)), for
P-a.s. ω ∈ �. Moreover, the extremities F(ω), G(ω) are F -adapted processes and satisfy

F ∈ L(�, L(τ , T ; H(O)
)) ∩ L(�, C

(
[τ , T]; H

(O)
))

,

F ′ ∈ L(�, L(τ , T ; L(O)
))

,

and

G ∈ L(�, L(τ , T ; H(O)
)) ∩ L(�, C

(
[τ , T]; H

(O)
))

,

G′ ∈ L(�, L(τ , T ; L(O)
))

.

Thus, {(Fm, Gm)} converges to (F , G) in the sense of mean-square.
Therefore, it follows that, for P-a.s. ω ∈ �,

d
dt

(‖F‖
L(O) + ‖G‖

L(O)
)

+ δ
(
d

∥
∥F(t)

∥
∥

H
(O) + d

∥
∥G(t)

∥
∥

H
(O)

)
+



‖F‖

L(O)

≤ M
∥
∥F(t)

∥
∥

L(O) + M
∥
∥G(t)

∥
∥

L(O) + R(t),

where

R(t) =
(
dM

a + Mb
)‖W‖

H
(O) +

(
dM

a + Mc
)‖W‖

H
(O) + ‖W‖

L(O)

+
(
α + γ  + β

)‖W‖
L(O) +

(
γ


+ γ  + 

)

‖W‖
L(O)

+
γ


‖W‖

L(O) + ‖R‖
L(O) + ‖R‖

L(O).

Denote M = max{M, M}; the Gronwall inequality implies Theorem . holds. �

4 Existence of the weak solution
In this section, we will show the existence of the weak solution for SBS.

Denote

Uτ ,T :=
{
ϑ ∈ L(, T ; H

(O)
) ∩ L(, T ; L(O)

)
: ϑ ′ ∈ L(, T ; L(O)

)
,

ϑ() = ϑ(T) = 
}

.

Definition . For any given initial data (u, v) ∈ (L(O)),  ≤ T < +∞, a function
(F , G) is called a weak solution of (.) if the following conditions hold. P-a.s. ω ∈ �,

() F ∈ C([, T]; L(O)) ∩ L([, T]; H
(O)) ∩ L(, T ; L(O)),

G ∈ C([, T]; L(O)) ∩ L([, T]; H
(O)) with

(F(), G()) = (u(r(y, )) + W(), v(r(y, )) + W()).
() There exists a sequence of regular data (F,m, G,m) ∈ H

(O) × H
(O), m = , , . . . ,

such that (F,m, G,m) → (F, G) in L(O) × L(O) and (Fm, Gm) → (F , G) in
C([, T]; L(O × �)) × C([, T]; L(O × �)).



Zhang and Huang Advances in Difference Equations  (2016) 2016:141 Page 15 of 24

() It follows that, for all ϑ ∈ U,T ,

∫ T



∫

O
–Fϑ ′ + d

N∑

j,k=

(
ajk(F + W)yk

)
ϑyj + (F + W)b · ∇yϑ dy dt

=
∫ T



∫

O

[
(F + W) – α(G + W) + γ (F + W)(G + W)

– (F + W) + R
]
ϑ dy dt (.)

and

∫ T



∫

O
–Gϑ ′ + d

N∑

j,k=

(
ajk(G + W)yk

)
ϑyj + (G + W)c · ∇yϑ dy dt

=
∫ T



∫

O

[
(F + W) – β(G + W) + R

]
ϑ dy dt. (.)

It is easy to find that every strong solution is a weak solution of (.) from the definition.

Theorem . Let the function r and r̄ satisfy assumptions (.)-(.). Assume that ∂O
is Cmm ≥ . Then for any (F, G) ∈ L(O) × L(O) and  ≤ T < +∞, there exists a
unique weak solution (F , G) of (.). Moreover, (F , G) satisfies the equality of energy, for
P-a.s. ω ∈ �,




d
d

‖F‖
L(O) +

∫ T



∫

O
d

N∑

j,k=

(
ajk(F + W)yk

)
Fyj + (F + W)b · ∇yF dy dt

=
∫ T



∫

O

[
(F + W) – α(G + W) + γ (F + W)(G + W)

– (F + W) + R
]
F dy dt, ∀t ∈ [, T];




d
d

‖G‖
L(O) +

∫ T



∫

O
d

N∑

j,k=

(
ajk(G + W)yk

)
Gyj + (G + W)c · ∇yG dy dt

=
∫ T



∫

O

[
(F + W) – β(G + W) + R

]
G dy dt, ∀t ∈ [, T],

and the following estimates, for P-a.s. ω ∈ �:

∥
∥F(t)

∥
∥

L(O) +
∥
∥G(t)

∥
∥

L(O) ≤ eMt(‖F‖
L(O) + ‖G‖

L(O)
)

+
∫ t


eMtR ds, (.)

δ

∫ t



(
d‖F‖

H
(O) + d‖G‖

H
(O)

)
ds ≤ eMt(‖F‖

L(O) + ‖G‖
L(O)

)
+

∫ t


eMtR ds, (.)

where M and R are defined in the proof of Theorem ..

Proof We first of all show the uniqueness of weak solutions for (.). Let (F, G) and
(F, G) be weak solutions for (.) with the initial value (u,, v,) and (u,, v,), respec-
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tively, then

(B)
∂(U – U)

∂t
= d

N∑

j,k=

∂

∂yj

(
ajk(U – U)yk

)
+ b · ∇y(U – U) + (U – U)

– α(V – V) + γ (U – U)(V – V) –
(
(U) – (U)),

(B)
∂(V – V)

∂t
= d

N∑

j,k=

∂

∂yj

(
ajk(V – V)yk

)
+ c · ∇y(V – V) + (U – U)

– β(V – V).

Taking the inner product of (B) with V – V in L(O) and using Lemma . and Cauchy’s
inequality, we obtain

d
dt

‖V – V‖
L(O) + dδ

∥
∥(V – V)

∥
∥

H
(O)

≤
(

M
c

dδ
– β + 

)

‖V – V‖
L(O) + ‖U – U‖

L(O), (.)

where Mc is defined in the proof of Theorem ..
Taking the inner product of (B) with U – U in L(O) and using Lemma . and

Cauchy’s inequality again, we can get

d
dt

‖U – U‖
L(O) + dδ

∥
∥(U – U)

∥
∥

H
(O)

≤
(

M
b

dδ
+ 

)

‖U – U‖
L(O)

+ 
∫

O

(
–α(V – V) + γ (UV – UV) –

(
U

 – U

))

(U – U) dy

≤
(

M
b

dδ
+ α + 

)

‖U – U‖
L(O) + α‖V – V‖

L(O)

+ 
∫

O
γ (UV – UV)(U – U) dy. (.)

Notice that U, U ∈ C(, T ; L(O)), then there exists a constant Mu such that |U|t +
|U|t ≤ Mu, ∀t ∈ (, T), and

∫

O

(
γ (UV – UV)

)
(U – U) dy

=
∫

O
γ U(V – V)(U – U) + V(U – U) dy

≤ γ Mu‖V – V‖L(O)‖U – U‖L(O) + γ ‖V‖L(O)‖U – U‖
L(O)‖U – U‖L(O).

Hence, there exists a constant CN such that

∫

O

(
γ (UV – UV)

)
(U – U) dy

≤ γ MuC
N‖V – V‖H

(O)‖U – U‖H
(O)
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+ γ C
N‖V‖H

(O)‖U – U‖L(O)‖U – U‖H
(O)

≤ dδ


‖U – U‖

H
(O) +

M
uC

N
dδ

‖V – V‖
H

(O)

+
γ C

N‖V‖
H

(O)

dδ
‖U – U‖

L(O).

Combining the above inequality with (.) and (.), we obtain

d
dt

(

‖U – U‖
L(O) +

M
uC

N
ddδ ‖V – V‖

L(O)

)

≤ M̄
(‖U – U‖

L(O) + ‖V – V‖
L(O)

)
,

where

M̄(t) =
γ C

N‖V(t)‖
H

(O)

dδ
+

M
b

dδ
+ α +  +

(
M

c
dδ

+ 
)

∗ M
uC

N
ddδ .

Recalling that V, V ∈ L(, T ; H
(O)), so

∫ T
 M̄(s) dt < ∞. Thus we can obtain uniqueness

immediately from the above inequality, the Gronwall inequality, and the fact F – F =
U – U, G – G = V – V, u = u, v = v.

Next, we will show the existence of a weak solution. Let F,m, G,m ∈ H
(O), m = , , . . . ,

such that

F,m → F in L(O), as m → ∞, (.)

G,m → G in L(O), as m → ∞. (.)

Then for each F,m, G,m, m = , , . . . , there exists a unique strong solution (Fm, Gm)
for (.). We deduce from (.) and (.) that, for P-a.s. ω ∈ �,

{Fm} is bounded in C
(
[, T]; L(O)

) ∩ L(, T , H
(O)

) ∩ L(, T ; L(O)
)

(.)

and

{Gm} is bounded in C
(
[, T]; L(O)

) ∩ L(, T , H
(O)

)
, (.)

which implies that

the sequence
{
γ FmGm – F

m
}

is bounded in L/(, T ; L/(O)
)
. (.)

Therefore, we can extract a subsequence (denoted also by {(Fm, Gm)}) such that P-a.s. ω ∈
�

Fm ⇀ F weakly in L(, T ; H
(O)

)
, (.)

Gm ⇀ G weakly in L(, T ; H
(O)

)
, (.)

γ FmGm – F
m ⇀ � weakly in L/(, T ; L/(O)

)
. (.)
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Combining the arguments of the uniqueness and the fact (.), (.), which implies that
{Fm} and {Gm} are Cauchy sequences in C([, T]; L(O × �)), the uniqueness of the limit
and (.)-(.) yield, for P-a.s. ω ∈ �,

Fm → F in C
(
[, T]; L(O)

)
and

Gm → G in C
(
[, T]; L(O)

)
, as m → ∞.

(.)

Therefore, extracting a subsequence if necessary, we can assume that γ FmGm – F
m →

γ FG – F, a.e. in O × [, T] as m → ∞. Then (.) implies that � = γ FG – F. Mean-
while, for any test function ϑ ∈ U,T , (Fm, Gm) satisfies (.) and (.). By using (.),
(.), (.), and (.), and passing to the limit, we see that (F , G) also satisfies (.) and
(.). The estimates (.) and (.) can be obtained from (.), (.), (.), (.), and
(.) directly. Thus, we can see (F , G) is a weak solution of (.) with initial (u, v) by all
arguments above. Then the proof of Theorem . is completed. �

Remark . Since (F , G) ∈ (L(, T ; H
(O))), for any t ∈ (τ , T), P-a.s. ω ∈ �, it follows

that there exists an earlier time t ∈ (, t) satisfying that (F , G) ∈ (H
(O)), which implies

that the weak solutions of (.) turn into the strong solutions after a null measure set (τ , t).
Hence, we obtain (F ′, G′) ∈ L(, T ; L(O)) × L(, T ; L(O)) and (F , G) ∈ C(, T ; L(O)) ×
C(, T ; L(O)).

Definition . A function (F , G) :
⋃

t∈[,∞) O × t →R
 is called a weak solution of (.)

if for any T ≥ , the restriction of (F , G) on
⋃

t∈[,T) O × t is a weak solution of (.).

Repeating arguments similar to Theorem ., we obtain the following result.

Theorem . Under the same assumptions of Theorem ., for any (u, v) ∈ L(O) ×
L(O), (.) has a unique weak solution.

5 The non-autonomous pullback Dσ -attractor for SBS
In this section, we will establish some priori estimates for the solutions of (.), and in-
troduce the ‘partial-random’ dynamical system generated by weak solution. By following
the argument in [], we prove the existence of the non-autonomous pullback Dσ -attractor
for the system.

Assume that (F , G) is a weak solution of (.) with initial value (F, G). Let

M̄a = N max
≤j,k≤N

‖ajk‖L∞(O×R), (.)

M̄b = N / max
≤k≤N

‖bk‖L∞(O×R), M̄c = N / max
≤k≤N

‖ck‖L∞(O×R), (.)

and

M̄b̄ = N / max
≤k≤N

‖b̄k‖L∞(O×R), M̄c̄ = N / max
≤k≤N

‖c̄k‖L∞(O×R), (.)

where b̄, c̄ are defined in the proof of Theorem .. We will also assume that M̄a < ∞,
M̄b < ∞, M̄c < ∞, M̄b̄ < ∞, and M̄c̄ < ∞.
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Lemma . There exist two positive constants M, C, and a random process R such that
for P-a.s. ω ∈ �, t ≥ τ

∥
∥F(t)

∥
∥

L(O) +
∥
∥G(t)

∥
∥

L(O)

≤ Me–C(t–τ )(∥∥F(τ )
∥
∥

L(O) +
∥
∥G(τ )

∥
∥

L(O)

)
+

∫ t

τ

e–C(t–s)R(s,ω) ds. (.)

Proof Taking the inner product of the first formula of (.) with F and the second formula
with G in L(O), then using Cauchy’s inequality, Hölder’s inequality, and Lemma ., we
can obtain

d
dt

∥
∥F(t)

∥
∥

L(O) + dδ
∥
∥F(t)

∥
∥

H
(O) +

∥
∥F(t)

∥
∥

L(O)

≤ M
∥
∥F(t)

∥
∥

L(O) + M
∥
∥G(t)

∥
∥

L(O) + R(t,ω), (.)

where M = M̄
b

dδ
+ M̄b + α + γ + , M = α + γ , and

R(t,ω) =
(

dM̄
a

δ
+ M̄b

)

‖W‖
H

(O) + ‖W‖
L(O) +

(
α + γ )‖W‖

L(O)

+
(

γ


+ 

)

‖W‖
L(O) +

γ


‖W‖

L(O) + ‖R‖
L(O).

Similarly, we have

d
dt

∥
∥G(t)

∥
∥

L(O) + dδ
∥
∥G(t)

∥
∥

H
(O) ≤ ∥

∥F(t)
∥
∥

L(O) + M
∥
∥G(t)

∥
∥

L(O) + R(t,ω), (.)

where M = M̄
c

dδ
+ M̄c +  – β , and

R(t,ω) =
(

dM̄
a

δ
+ M̄c

)

‖W‖
H

(O) + ‖W‖
L(O) + β‖W‖

L(O) + ‖R‖
L(O).

Choosing β > maxδ{ M̄
c

dδ
+ M̄c + } such that M < , and denoting M̃ = –M. We can

derive from (.) and (.) that

d
dt

(∥
∥F(t)

∥
∥

L(O) + C̄
∥
∥G(t)

∥
∥

L(O)

)
+ dδ

∥
∥F(t)

∥
∥

H
(O) + C̄dδ

∥
∥G(t)

∥
∥

H
(O) +

∥
∥F(t)

∥
∥

L(O)

≤ (M + C̄)
∥
∥F(t)

∥
∥

L(O) + (M – C̄M̃)
∥
∥G(t)

∥
∥

L(O) + R(t,ω) + C̄R(t,ω). (.)

Let C̄ = M
M̃

, then

d
dt

(∥
∥F(t)

∥
∥

L(O) + C̄
∥
∥G(t)

∥
∥

L(O)

)
+ dδ

∥
∥F(t)

∥
∥

H
(O) + C̄dδ

∥
∥G(t)

∥
∥

H
(O)

+
M

C̄
∥
∥F(t)

∥
∥

L(O) + M
∥
∥G(t)

∥
∥

L(O) +



∥
∥F(t)

∥
∥

L(O)

≤ d
dt

(∥
∥F(t)

∥
∥

L(O) + C̄
∥
∥G(t)

∥
∥

L(O)

)
+ dδ

∥
∥F(t)

∥
∥

H
(O) + C̄dδ

∥
∥G(t)

∥
∥

H
(O)
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+


∥
∥F(t)

∥
∥

L(O) + M
∥
∥G(t)

∥
∥

L(O) +
M



C̄
|O|

≤
(

(M + C̄)


+

M


C̄

)

|O| + R(t,ω) + C̄R(t,ω). (.)

Denote

R(t,ω) =
(

(M + C̄)


+

M


C̄

)

|O| + R(t,ω) + C̄R(t,ω),

the inequality (.) implies that

d
dt

(∥
∥F(t)

∥
∥

L(O) + C̄
∥
∥G(t)

∥
∥

L(O)

)
+

M

C̄
(∥
∥F(t)

∥
∥

L(O) + C̄
∥
∥G(t)

∥
∥

L(O)

)

+ dδ
∥
∥F(t)

∥
∥

H
(O) + C̄dδ

∥
∥G(t)

∥
∥

H
(O) +




∥
∥F(t)

∥
∥

L(O) ≤ R(t,ω). (.)

From the Gronwall inequality, we see that for P-a.s. ω ∈ �

∥
∥F(t)

∥
∥

L(O) + C̄
∥
∥G(t)

∥
∥

L(O)

≤ e– M
C̄ (t–τ )(∥∥F(τ )

∥
∥

L(O) + C̄
∥
∥G(τ )

∥
∥

L(O)

)
+

∫ t

τ

e– M
C̄ (s–τ )R(s,ω) ds. (.)

Denoting M = max{,C̄}
min{,C̄} , C = M

C̄ and R(t,ω) = 
min{,C̄} R(t,ω), the proof is completed. �

Lemma . For any nonrandom bounded set B ∈ L(O) × L(O), there exists a random
time TB(ω) ≥  such that

∥
∥F(t)

∥
∥

L(O) +
∥
∥G(t)

∥
∥

L(O) ≤ 
∫ t

–∞
e–C(t–s)R(s,ω) ds, (.)

for P-a.s. ω ∈ �, for all t – τ ≥ Tb(ω), for any (F(τ ), G(τ )) ∈ B.

Proof It follows from Lemma . that

∥
∥F(t)

∥
∥

L(O) +
∥
∥G(t)

∥
∥

L(O)

≤ Me–C(t–τ )(∥∥F(τ )
∥
∥

L(O) +
∥
∥G(τ )

∥
∥

L(O)

)
+

∫ t

τ

e–C(t–s)R(s,ω) ds.

We can obtain from the above inequality that

e–C(t–τ )(∥∥F(τ )
∥
∥

L(O) +
∥
∥G(τ )

∥
∥

L(O)

) →  as t – τ → ∞.

Then there exists a random time TB(ω) such that for t – τ ≥ TB(ω)

e–C(t–τ )(∥∥F(τ )
∥
∥

L(O) +
∥
∥G(τ )

∥
∥

L(O)

) ≤
∫ t

–∞
e–C(t–s)R(s,ω) ds.

Thus, the proof is completed. �
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Corollary . For any nonrandom bounded B ∈ L(O)×L(O), there exist a random time
TB(ω) ≥  such that

∫ t+

t

∥
∥F(s)

∥
∥

H
(O) +

∥
∥G(s)

∥
∥

H


+
∥
∥F(t)

∥
∥

L(O) ds ≤ M̂, (.)

for P-a.s. ω ∈ �, for all t – τ ≥ TB(ω), for any (F(τ ), G(τ )) ∈ B.

Lemma . For any nonrandom bounded B ∈ L(O) × L(O), there exists a random time
T̄B(ω) ≥  and a random constant M̃, such that

∥
∥F(s)

∥
∥

H
(O) +

∥
∥G(s)

∥
∥

H
(O) ≤ M̃, (.)

for P-a.s. ω ∈ �, for all t – τ ≥ TB(ω), for any (F(τ ), G(τ )) ∈ B.

Proof Taking the inner product of the second formula in (.) with –�G in L(O), and
using Cauchy’s inequality, Hölder’s inequality, and Lemma ., we obtain

d
dt

∥
∥G(t)

∥
∥

H
(O) + dδ

∥
∥�G(t)

∥
∥

L(O)

≤
(

M̄
c̄

dδ
– β

)
∥
∥G(t)

∥
∥

H
(O) + dc

∥
∥G(t)

∥
∥

L(O) +
dM̄

a
δ

‖�W‖
L(O)

+
(

M̄
c̄

dδ
+ β

)
∥
∥W(t)

∥
∥

H
(O) +


dδ

(‖F‖
L(O) + ‖W‖

L(O) + ‖R‖
L(O)

)
. (.)

Combining the assumptions (.), (.) with Lemmas .-., we have

∫ t+

t
dc

∥
∥G(s)

∥
∥

L(O) +
dM̄

a
δ

‖�W‖
L(O) +

(
M̄

c̄
dδ

+ β

)
∥
∥W(s)

∥
∥

H
(O)

+


dδ

(∥
∥F(s)

∥
∥

L(O) + ‖W‖
L(O) + ‖R‖

L(O)
)

ds < ∞,

for P-a.s. ω ∈ � and for all t – τ > TB(ω). Therefore there exists a constant M̃ such that

‖G‖
H

(O) ≤ M̃, (.)

for P-a.s. ω ∈ � and for all t – τ > TB(ω) + .
Similarly,

d
dt

‖F‖
H(O) + dδ‖�F‖

L(O)

≤
(M̄

b̄
dδ

+ α + 
)

‖F‖
H

(O) + dC‖F‖
L(O) +

dM̄
a

δ
‖�W‖

L(O)

+
(M̄

b̄
dδ

+ 
)

‖W‖
H

(O) + α‖G + W‖
H

(O) +
(

γ 

dδ
+




)

‖F + W‖
L(O)

+
γ 

dδ
‖G + W‖

L(O) +


‖�W‖

L(O). (.)
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Due to (.), (.), we have

∫ t+

t
dC‖F‖

L(O) +
dM̄

a
δ

‖�W‖
L(O)

+
(M̄

b̄
dδ

+ 
)

‖W‖
H

(O) + α‖G + W‖
H

(O)

+
(

γ 

dδ
+




)

‖F + W‖
L(O) +

γ 

dδ
‖G + W‖

L(O)

+


‖�W‖

L(O) ds < ∞,

for P-a.s. ω ∈ � and for all t – τ > TB(ω) + . Thus, applying the uniform Gronwall lemma
to (.), we see that there exists a constant M̃ such that

‖F‖
H

(O) ≤ M̃, (.)

for P-a.s. ω ∈ � and for all t – τ > TB(ω) + . Denoting T̄B(ω) = TB(ω) + , we complete the
proof. �

6 Attractors for partial-random dynamical system
In this section, we introduce the partial-random dynamical system generated by a SPDE
defined on time-varying domains developed by Crauel et al. in [], and prove the existence
of the non-autonomous attractor for partial-random dynamical system.

Assume that the probability space (�,F ,P) with incremental shifts (κt)t∈R is a metric
dynamical system, R is a subset of the topology of space C

b(R; C
b(Ō;RN )) generated by

the domain varying diffeomorphisms r. The transformations πt : R→R defined by πtr(·+
s, ·) = r(· + s + t, ·) for t ∈R, form a one-parameter group (πt)t∈R with

πt+s = πt ◦ πs

for all s, t ∈R. The product flow, given by

(κ × π )t = κt × πt : ω ×R→ ω ×R

for t ∈R, will be denoted by (κ̄t)t∈R.
For each (F, G) ∈ (L(O)), Theorem . implies that equations (.) have a unique

global solution (F , G). Define the operators

ϒ
(
t, (ω, r)

)
: L(O) × L(O) → L(O) × L(O) (.)

by

ϒ
(
t, (ω, r)

)
(F, G) =

(
F
(
t; (ω, r), F, G

)
, G

(
t; (ω, r), F, G

))
=

(
F(t), G(t)

)
. (.)

Here (F(t; (ω, r), F, G), G(t; (ω, r), F, G)) is defined by unique solution process of (.)
with initial value (F, G) and the transform for domains r. From Theorem ., we know
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that the definition makes sense. Then the family of operators {ϒ(t) :  ≤ t < +∞} generates
a non-autonomous dynamic system, i.e.

ϒ
(
, (ω, r)

)
= Id

(
identity on L(O)

) ∀(ω, r) ∈ � ×R, (.)

ϒ
(
t + s, (ω, r)

)

= ϒ
(
t, κ̄sp(ω, r)

) ◦ ϒ
(
s, (ω, r)

)
for all s, t ∈ [,∞) and (ω, r) ∈ � ×R. (.)

Now, we can define the attractor of the non-autonomous dynamic system ϒ .

Definition . ([]) Suppose that D is a set of maps from � × R to the power set of
L(O) × L(O) such that D(ω, r) is nonempty for every (ω, r) ∈ � ×R and D ∈ D. A map
A from � ×R to the power set of L(O) × L(O) is said to be a D-attractor if:

() A(ω, r) is compact for all (ω, r) ∈ � ×R,
() A is invariant in the sense that

ϒ
(
t, (ω, r)

)
A(ω, r) = κ̄tA(ω, r)

for all t ∈ [,∞) and (ω, r) ∈ � ×R,
() A attracts every D ∈D in the sense that

lim
t→∞ dist

(
ϒ

(
t, κ̄–t(ω, r)

)
D

(
κ̄–t(ω, r)

)
, A(ω, r)

)
= 

for every D ∈D.
Here dist(A, D) is for the Hausdorff semi-distance.

Definition . ([]) Suppose that D is a set of maps from � × R to the power set of
L(O) × L(O) such that D(ω, r) is nonempty for every (ω, r) ∈ � ×R and D ∈ D. A map
K from � ×R to the power set of L(O) × L(O) is said to be a D-attracting if

lim
t→∞ dist

(
ϒ

(
t, κ̄–t(ω, r)

)
D

(
κ̄–t(ω, r)

)
, K(ω, r)

)
= 

for every D ∈D.

Theorem . ([]) The existence of a compactD-attracting K is equivalent to the existence
of a D-attractor.

Remark . From Lemmas . and ., we can find that there exists a compact D-
attracting K for the non-autonomous dynamic system ϒ defined above, attracting
bounded subsets of L(O) × L(O). Thus, using Theorem ., we can obtain a unique
non-autonomous pullback attractor in L(O) × L(O).

Theorem . The partial-random system generated by the random-PDE (.) on domain
O has a unique non-autonomous pullback attractor in L(O) × L(O), attracting bounded
subsets of L(O) × L(O).
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