
http://dx.doi.org/10.1186/s13662-016-0861-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-016-0861-z&domain=pdf
mailto:jhhuang32@nudt.edu.cn


Zhang and Huang Advances in Di�erence Equations  (2016) 2016:141 Page 2 of 24

The Boissonade system (�.� ) is quite di�erent from the Fitzhugh-Nagumo system in [�� ]
and [�� ], the square termu� in the Fitzhugh-Nagumo system is replaced by the cross term
uv, leading to the nonlinearity of the second equation in the Boissonade system, and it
induces more di	culties to obtain the uniqueness of the solution. Recently, Tu in [�
 ]
proved the existence of the global attractor for the Boissonade system (�.� ). Due to the
time-varying domain, the stochastic partial di�erential equation induces thenew partial
random dynamical systems, which is very interesting, we refer the reader to [�� ] for more
details.

Motivated by the idea of Crauel, Kloeden, and Real in [� ] and Crauel, Kloeden, and Yang
in [ �� ], we study the stochastic Boissonade system (SBS) on the time-varying domain by us-
ing some tricks derived from the Sobolev embedding theorem to obtain a unique solution
for the SBS, and we establish the existence of a pullback attractor for the •partial-random•
dynamical system generated by the weak solution for the stochastic Boissonade system on
the time-varying domain.

The rest of the paper is arranged as follows. In Section� , some notations on time-varying
domains are introduced. Sections� and� are devoted to proving the existence and unique-
ness of solutions of random equations de“ned on “xed domains which are transformed
from time-varying domains. The existence of the pullback attractor for the process gen-
eralized by the weak solution is presented in Section
 .

2 SBS defined on time-varying domains
In this section, we will introduce some notions and functional spaces on time-varying
domains, following [�� ], and derive the Boissonade system with additive noise on the time-
varying domain.

2.1 Assumption on the time-varying domain
Let O be a nonempty bounded open subset ofRN with C� boundary� O, andr = r(y,t) a
vector function

r � C� � Ō × R;RN �
, (�.�)

such that

r(·, t) :O � Ot is aC� -di�eomorphism for all t � R. (�.�)

r̄(·, t) = r…�(·, t) is the inverse ofr(·, t) satisfying the property

r̄ � C�,� �
Q̄� ,T ;RN �

for all � < T, (�.�)

i.e., r̄ , � r̄
� t , � r̄

� xi
and � � r̄

� xi � xj
belong toC(Q̄� ,T ;RN ) for all � � i , j � N and for any� < T . Then

{Ot }t� [� ,T ] is a family of nonempty bounded open subsets ofRN (N � �).
De“ne

Q� ,T :=
�

t� (� ,T )

Ot × { t} for all T > � , (�.�)

Q� :=
�

t� (� ,� )

Ot × { t} for all � � R,
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� � ,T :=
�

t� (� ,T )

� Ot × { t} for all T > � ,

and

� � :=
�

t� (� ,� )

� Ot × { t} for all � � R.

For anyT > � , the setQ� ,T is an open subset ofRN+� with the boundary

� Q� ,T := � � ,T �
�
� O� × { � }

�
�

�
� OT × { T}

�
.

2.2 Assumption on noise
Assume that (� ,F ,P) be a probability space, a sequence{wj(t) : t � [�, � )}j� � of mutually

independent two-sided standard scalar Wiener processes adapted to a common “ltration

{Ft : t � [�, � )} in F . Let {	 j}j� � 	 H�
� (O) 	 L� (O) and {
 j}j� � 	 H�

� (O) 	 L� (O) be two

sequences of functions such that

��

j=�


 	 j 
 H�
� (O) � � ,

��

j=�


 
 j 
 H�
� (O) � � . (�.
)

De“ne

� j := 	 j
�
r̄(x,t)

�
, � j := 
 j

�
r̄(x,t)

�
, x � Ot , t � [�, � ), j = �, �, . . . .

It follows from [ � ] that, for all t � R,

��

j=�


 � j 
 H�
� (Ot ) � � ,

��

j=�


 � j 
 H�
� (Ot ) � � .

Consider theL� (Ot )-valuedFt -adapted stochastic processes. De“ne

M� :=
��

j=�

� j (t)wj(t), M� :=
��

j=�

� j (t)wj(t), t � �. (�.�)

LetE be the expectation with respect the probabilityP. Due to the pairwise independence

of the wj(t), we have

E

	
	
	
	
	

m�

j=n

� j(t)wj(t)

	
	
	
	
	

�

L� (Ot )

= t
m�

j=n

	
	 � j (t)

	
	 �

L� (Ot )

and

E

	
	
	
	
	

m�

j=n

� j(t)wj(t)

	
	
	
	
	

�

L� (Ot )

= t
m�

j=n

	
	 � j (t)

	
	 �

L� (Ot )
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for any t � �, m > n � �. Therefore, we get M� (t),M� (t) � L� (Ot × � ) which are

Ft -measurable. Then{M� (t) : t � � } and {M� (t) : t � � } can be viewed asFt -adapted

processes with values inL� (Ot ).

Direct computation implies thatEM� (t) = EM� (t) = �,

E
	
	 M� (t)

	
	 �

L� (Ot )
= t

��

j=�

	
	 � (t)

	
	 �

L� (Ot )
� tCr,t

��

j=�

	
	 	 (t)

	
	 �

L� (O)

and

E
	
	 M� (t)

	
	 �

L� (Ot )
= t

��

j=�

	
	 � (t)

	
	 �

L� (Ot )
� tCr,t

��

j=�

	
	 
 (t)

	
	 �

L� (O)

for anyt � [�, � ), whereCr,t = maxy� Ō Jac(r,y,t) andJac(r,y,t) denoted the absolute value

of the determinant of the Jacobi matrix (� ri
� yj

(y,t))N× N .

2.3 Stochastic Boissonade system on the time-varying domain
Following the arguments in [�� ], we can study the stochastic Boissonade system with ad-

ditive noise and homogeneous Dirichlet boundary condition on the time-varying domain

as follows:

�





�






�

du = (d� � u + u …� v + � uv …u� )dt + dM� , in Q� ,

dv = (d� � v + u …� v)dt + dM� , in Q� ,

u = �, v = �, on � � ,

u(�, x) = u� (x), v(�, x) = v� (x), x � O� ,

(�.�)

wheredM� anddM� can be represented by

dM� (t) =
��

j=�

	 j
�
r̄(x,t)

�
dwj(t) +

��

j=�

wj(t)� y	 j
�
r̄(x,t)

�
·

� r̄
� t

(x,t) dt (�.
)

and

dM� (t) =
��

j=�


 j
�
r̄(x,t)

�
dwj(t) +

��

j=�

wj(t)� y
 j
�
r̄(x,t)

�
·

� r̄
� t

(x,t) dt. (�.�)

Denote

U(y,t) = u
�
r(y,t),t

�
, V (y,t) = v

�
r(y,t),t

�
for y � O, t � �, (�.��)

and

ajk(y,t) =
N�

i=�

� r̄k

� xi

�
r(y,t),t

� � r̄j

� xi

�
r(y,t),t

�
, j,k = �, . . . ,N.
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De“ne b(y,t) = (b� (y,t), . . . ,bN (y,t)) � R
N andc(y,t) = (c� (y,t), . . . ,cN (y,t)) � R

N by

bk(y,t) = d� 
 xr̄k
�
r(y,t),t

�
…

� r̄k

� t

�
r(y,t),t

�
…d�

N�

j=�

� ajk

� yj
(y,t), k = �, . . . ,N,

ck(y,t) = d� 
 xr̄k
�
r(y,t),t

�
…

� r̄k

� t

�
r(y,t),t

�
…d�

N�

j=�

� ajk

� yj
(y,t), k = �, . . . ,N.

Then equations (�.� ) on time-varying domains can be rewritten into the following equa-
tions onO × [�, � ):

�











�












�

dU = [d�
� N

j,k=�
�

� yj
(ajkUyk ) + b · � yU

+ U …� V + � UV …U� + R� ] dt + dW� , in O × [�, � ),

dV = [d�
� N

j,k=�
�

� yj
(ajkVyk ) + c· � yV

+ U …� V + R� ] dt + dW� , in O × [�, � ),

U = �, V = �, on � O × [�, � ),

U(y, �) = u(r(y, �)), V (y, �) = v(r(y, �)), y � O,

(�.��)

where

R� (y,t) =
��

j=�

wj(t)� y	 j (y) ·
� r̄
� t

�
r(y,t),t

�
,

R� (y,t) =
��

j=�

wj(t)� y
 j(y) ·
� r̄
� t

�
r(y,t),t

�
,

and

W� (y,t) =
��

j=�

	 j (y)wj(t), W� (y,t) =
��

j=�


 j (y)wj(t).

Due to the independence of thewj and the assumption (�.
 ), the processesW� (t) andW� (t)
are twoH�

� (O)-valued Wiener processes, and

E
	
	 R� (t)

	
	 �

L� (O) � t max
y� O

�
�
�
�
� r̄
� t

�
r(y,t),t

�
�
�
�
�

�

RN

��

j=�


 	 j 
 �
H�

� (O)
� t � �

and

E
	
	 R� (t)

	
	 �

L� (O) � t max
y� O

�
�
�
�
� r̄
� t

�
r(y,t),t

�
�
�
�
�

�

RN

��

j=�


 
 j 
 �
H�

� (O)
� t � �.

Therefore,R� (t) andR� (t) are twoFt -adapted processes belonging toL� (�, T ;L� (� × O))
for all T � �.

Denote

F(y,t) = U(y,t) …W� (y,t), G(y,t) = V(y,t) …W� (y,t) for y � O, t � �. (�.��)
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Then equations (�.�� ) can be transformed into the following equations (�.�� ):

�











�












�

dF = [d�
� N

j,k=�
�

� yj
(ajk(F + W� )yk ) + b · � y(F + W� ) + (F + W� ) …� (G + W� )

+ � (F + W� )(G + W� ) … (F + W� )� + R� ] dt, in O × [�, � ),

dG = [d�
� N

j,k=�
�

� yj
(ajk(G + W� )yk ) + c· � y(G + W� ) + (F + W� )

…� (G + W� ) + R� ] dt, in O × [�, � ),

F = �, G = �, on � O × [�, � ),

F(y, �) = u(r(y, �)) …W� (y, �), V (y, �) = v(r(y, �)) …W� (y, �), y � O.

(�.��)

In the following, in order to show the existence of strong solution, one is required to

impose the conditions on	 j and � j , j = �, �, . . . by

��

j=�

	
	 � 	 j (y)

	
	 �

L� (O) < � ,
��

j=�

	
	 � 
 j (y)

	
	 �

L� (O) < � , (�.��)

rather than the assumption in (�.
 ).

3 Existence of strong solutions of SBS (2.13)
In this section, we will establish the existence and uniqueness of the strong solution for

equation (�.�� ).

For eachT > �, consider the auxiliary problem for equation (�.�� ),

�











�












�

dF = [d�
� N

j,k=�
�

� yj
(ajk(F + W� )yk ) + b · � y(F + W� ) + (F + W� ) …� (G + W� )

+ � (F + W� )(G + W� ) … (F + W� )� + R� ] dt, in O × [�, T ],

dG = [d�
� N

j,k=�
�

� yj
(ajk(G + W� )yk ) + c· � y(G + W� ) + (F + W� )

…� (G + W� ) + R� ] dt, in O × [�, T ],

F = �, G = �, on � O × [�, T ],

F(y, �) = u(r(y, �)) …W� (y, �), V (y, �) = v(r(y, �)) …W� (y, �), y � O.

(�.�)

Definition . (Strong solution) AFt -adapted process (F,G) = (F(� ,y,t),G(� ,y,t)) de-

“ned in � × O × [�, T ] is said to be a strong solution for problem (�.� ) if

F � L� �
� ,L� �

� ,T ;H� (O)
��


 L� �
� ,C

�
[� ,T ];H�

� (O)
��

,

F� � L� �
� ,L� �

� ,T ;L� (O)
��

,

G � L� �
� ,L� �

� ,T ;H� (O)
��


 L� �
� ,C

�
[� ,T ];H�

� (O)
��

,

G� � L� �
� ,L� �

� ,T ;L� (O)
��

,

and the initial data conditions in (�.� ) are satis“ed almost everywhere in their correspond-

ing domains.

Lemma . ([� ]) For any…� < � � T < +� , ajk � C� (Ō × [� ,T ]), bk, ck � C� (Ō × [� ,T ]).

In particular, ajk ,
� ajk
� yj

, bk, ck � L� (O × (� ,T)), j,k = �, �, . . . , N. Moreover, there exists a
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� = � (� ,r, � ,T ) > � such that, for any(y,t) � O × [� ,T ],

N�

j,k=�

ajk(y,t)� j � k � � |� |� for any� � R
N . (�.�)

Lemma . ([� ]) For any…� < � � T < +� , there exist two positive constants� � and c�

which depend on r, � , T such that for any u� H� (O) 
 H�
� (O), the following estimate holds:

� �




O

�
� 
 u(y)

�
� �

dy �



O

N�

k,j=�

akj(y,t)uykyj 
 udy

+ c�




O

�
�u(y)

�
� �

dy for any t � [� ,T ]. (�.�)

De“ne the time-dependent bilinear form by

B[� , � , t ] =



O
…d�

N�

j,k=�

�
ajk(y,t)� yk (y,t)

�
� yj (y,t) +

N�

k=�

bk(y,t)� y� (y,t)� (y,t)dy, (�.�)

D[� , � , t ] =



O
…d�

N�

j,k=�

�
ajk(y,t)� yk (y,t)

�
� yj (y,t) +

N�

k=�

ck(y,t)� y� (y,t)� (y,t)dy, (�.
)

for � , � � H�
� (O) and � � t � T .

We can apply the Galerkin argument(see[�� …�
 ]) to prove the existence of solution for

SBS. Let� k = � k(y) � H� (O) 
 H�
� (O) (k = �, �, . . .) be the eigenfunctions of …� on H�

� (O),

� < � � < � � < · · · < � n · · · , � n � � as n � � be the corresponding eigenvalues. Then

{� k}�
k=� is an orthogonal basis ofH�

� (O) and an orthogonal basis ofL� (O).

For each “xed positive integerm, denote

Fm(t, � ) :=
m�

k=�

� k
m(t, � )� k, Gm(t, � ) :=

m�

k=�

� k
m(t, � )� k. (�.�)

Then for k = �, . . . ,m and � � t � T ,

(A�
m)

�
F�

m(t),� k
�

= B
�
Fm(t) + PmW� ,� k;t

�
+

�
Fm(t) + PmW� …�

�
Gm(t) + PmW�

�
, � k

�

+
�
�

�
Fm(t) + PmW�

��
Gm(t) + PmW�

�
…

�
Fm(t) + PmW�

� �
+ R� , � k

�
,

(A�
m)

�
G�

m(t),� k
�

= D
�
Gm(t) + PmW� ,� k;t

�
+

�
Fm(t) + PmW� …�

�
Gm(t) + PmW�

�
+ R� , � k

�
,

Fm(�) = PmF� , Gm(�) = PmG� ,

whereF� (y) := u� (r(y,t)) …W� , G� (y) := v� (r(y,t)) …W� . (·, ·) is the inner product in L� (O)

with associated norm
 · 
 L� (O), Pm is the projector fromL� (O) to span{� � , � � , . . . ,� m}. It

follows from [� ] and the assumption (�.
 ) that F� � H�
� (O), G� � H�

� (O).
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The assumption (�.�� ) yields

PmF� � F� in H�
� (O) asm � � ,

PmG� � G� in H�
� (O) asm � � .

(�.�)

Noticing that for each integerm = �, �, . . . , there exists a unique localFt -adapted process
(Fm(� ),Gm(� )) of (�.� ) satisfying (Am) in an interval [�, Tm] with � � Tm � T .

Next, we will show some estimates on the sequences (Fm,Gm), m = �, �, . . . .

Lemma . The following estimates hold.
() {Fm} is bounded in C� ([�, T ]; L� (� ,L� (O))) 
 L� (�, T ;L� (� ,H�

� (O))) 
 L� ([�, T ];
L� (O × � )),

() {Gm} is bounded in C� ([�, T ]; L� (� ,L� (O))) 
 L� (�, T ;L� (� ,H�
� (O))).

Proof Multiplying ( A�
m) by � k

m and (A�
m) by � k

m, and taking the sum with respect tok from
� to m, we obtain

�
�

d
dt

�

 Fm
 �

L� (O) + 
 Gm
 �
L� (O)

�

= B[Fm,Fm;t] + B[PmW� ,Fm;t] + D[Gm,Gm;t] + D[PmW� ,Gm;t] +
	
	 Fm(t)

	
	 �

L� (O)

+ (PmW� ,Fm) …�
�
Gm(t) + PmW� ,Fm(t)

�
+

�
� (Fm + PmW� )(Gm + PmW� ),Fm

�

…
�
(Fm + PmW� )� ,Fm

�
+

�
(Fm + PmW� ),Gm

�
… (� PmW� ,Gm) …� 
 Gm
 �

L� (O)

+ (R� ,Fm) + (R� ,Gm), � t � [�, Tm],P-a.s.� � � .

Combing Lemma�.� with (�.� ) and (�.
 ) guarantees that there exists a positive constant� ,
which depends only onT such that� t � [�, Tm], P-a.s.� � � ,

�
�

d
dt

�

 Fm
 �

L� (O) + 
 Gm
 �
L� (O)

�
+ �

�
d�

	
	 Fm(t)

	
	 �

H�
� (O) + d�

	
	 Gm(t)

	
	 �

H�
� (O)

�

� Mb
 Fm
 �
L� (O)

	
	 Fm(t)

	
	 �

H�
� (O) + d� Ma

	
	 PmW� (t)

	
	 �

H�
� (O)
 Fm
 �

H�
� (O)

+ Mb
	
	 PmW� (t)

	
	 �

H�
� (O)
 Fm
 �

L� (O) + Mc
 Gm
 �
L� (O)

	
	 Gm(t)

	
	 �

H�
� (O)

+ d� Ma
	
	 PmW� (t)

	
	 �

H�
� (O)
 Gm
 �

H�
� (O)

+ Mc
	
	 PmW� (t)

	
	 �

H�
� (O)
 Gm
 �

L� (O)

+
	
	 Fm(t)

	
	 �

L� (O) + (PmW� ,Fm) …�
�
Gm(t) + PmW� ,Fm(t)

�

+
�
� (Fm + PmW� )(Gm + PmW� ),Fm

�
…

�
(Fm + PmW� )� ,Fm

�

+
�
(Fm + PmW� ),Gm

�
… (� PmW� ,Gm) …� 
 Gm
 �

L� (O) + (R� ,Fm) + (R� ,Gm),

where

Ma = N max
� � j,k� N


 ajk 
 L� (O× [�, T ]) (�.
)

and

Mb = N�/� max
� � k� N


 bk
 L� (O× [�, T ]), Mc = N�/� max
� � k� N


 ck
 L� (O× [�, T ]). (�.�)
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Here, we just consider the following term:

�
� (Fm + PmW� )(Gm + PmW� ),Fm

�
…

�
(Fm + PmW� )� ,Fm

�

=
�
� (Fm + PmW� )(Gm + PmW� ),Fm + PmW�

�
…
 Fm
 �

L� (O)

…
�
� (Fm + PmW� )(Gm + PmW� ),PmW�

�
+

�
(Fm + PmW� )� ,PmW�

�

� …
�




 Fm
 �
L� (O) +

�
�


 PmW� 
 �
L� (O) + �� � � 
 Gm
 �

L� (O) + +�� � � 
 PmW� 
 �
L� (O).

Then it follows from Cauchy•s inequality that

d
dt

�

 Fm
 �

L� (O) + 
 Gm
 �
L� (O)

�
+ �

�
d�

	
	 Fm(t)

	
	 �

H�
� (O) + d�

	
	 Gm(t)

	
	 �

H�
� (O)

�

+
�
�


 Fm + PmW� 
 �
L� (O) � M�

	
	 Fm(t)

	
	 �

L� (O) + M�
	
	 Gm(t)

	
	 �

L� (O) + R� (t), (�.��)

where

M� =
� M�

b

d� �
+ Mb + � � + 
, M� =

� M�
c

d� �
+ Mc + � + �� � � …� + 
,

and

R� (t) =
�

� d� M�
a

�
+ Mb

�

 PmW� 
 �

H�
� (O)

+
�

� d� M�
a

�
+ Mc

�

 PmW� 
 �

H�
� (O)

+ � 
 PmW� 
 �
L� (O) +

�
� + �� � � + �

�

 PmW� 
 �

L� (O) + 
 PmW� 
 �
L� (O)

+ 
 R� 
 �
L� (O) + 
 R� 
 �

L� (O).

By the fact
 PmW� 
 H�
� (O) � 
 W� 
 H�

� (O), 
 PmW� 
 H�
� (O) � 
 W� 
 H�

� (O), the assumption (�.
 )
and the BDG inequality, we can “nd thatER� (t) < � , � t � [�, Tm]. Then combining (�.�� )
with the Gronwall inequality and the fact 
 PmU� 
 �

L� (O) � 
 U� 
 �
L� (O), 
 PmV� 
 �

L� (O) �

 V� 
 �

L� (O), we can “nd a positive constantM� here such that

E
	
	 Fm(t)

	
	 �

L� (O) + E
	
	 Gm(t)

	
	 �

L� (O) +

 T

�
�
�
d�E

	
	 Fm(s)

	
	 �

H�
� (O) + d� E

	
	 Gm(s)

	
	 �

H�
� (O)

�

+
�
�
E

	
	 Fm(s)

	
	 �

L� (O) ds� M� ,

which implies that Lemma�.� holds. �

Lemma . The following estimates hold:
() the sequence {Fm} is bounded in C� ([�, T ]; L� (� ,H�

� (O))) 
 L� (�, T ;L� (� ,H� (O))),
() the sequence {Gm} is bounded in C� ([�, T ]; L� (� ,H�

� (O))) 
 L� (�, T ;L� (� ,H� (O))).

Proof Multiplying ( A�
m) by � k� k

m(t, � ) and summing overk = �, �, . . . , and recalling the fact
that …
 yGm(t) =

� m
k=� � k� k

m(t, � )� k equals � on � O, we obtain from Lemma�.�

�
�

d
dt

	
	 Gm(t)

	
	 �

H�
� (O) + d� � �

	
	 � Gm(t)

	
	 �

H�
� (O)

� Mc̄
	
	 Gm(t)

	
	

H�
� (O)

	
	 � Gm(t)

	
	

L� (O) + d� Ma
	
	 � PmW� (t)

	
	

L� (O)

	
	 � Gm(t)

	
	

L� (O)
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+ Mc̄
	
	 PmW� (t)

	
	

H�
� (O)

	
	 � Gm(t)

	
	

L� (O) + d� C�
�
�Gm(t)

�
� �

…



O
(Fm + PmW� …R� )� Gm + �

�
(� Gm)� + � Gm� (PmW� )

�
dy,

where Mc̄ = N�/� max� � k� N |c̄k|L� (O× (�, T)), and c̄k(y,t) := ck(y,t) + d�
� N

j=�
� ajk
� yj

(y,t), k =

�, �, . . . , N.

By Cauchy•s inequality, one derives that

d
dt

	
	 Gm(t)

	
	 �

H�
� (O) + d� � �

	
	 � Gm(t)

	
	 �

L� (O)

�
� � M �

C̄

d� � �
…�

� 	
	 Gm(t)

	
	 �

H�
� (O) + � d� c�

	
	 Gm(t)

	
	 �

L� (O)

+
� d� M�

a

� �

� PmW� 
 �

L� (O)

+
� � M �

C̄

d� � �
+ �

� 	
	 PmW� (t)

	
	 �

H�
� (O)

+
�

d� � �

�

 Fm
 �

L� (O) + 
 PmW� 
 �
L� (O) + 
 R� 
 �

L� (O)

�
. (�.��)

SincePmG� is bounded inH�
� (O), then (�.�� ), (�.�� ), Lemma�.� and the Gronwall inequal-

ity imply that there exists a positive constantM
 that satis“es

E
	
	 Gm(t)

	
	 �

H�
� (O) + d� � �


 T

�
E

	
	 � Gm(s)

	
	 �

L� (O) ds� M
 .

Next, we show the second result in Lemma�.� . Multiplying (A�
m) by� k� k

m, summing over

k = �, �, . . . , m, we get

�
�

d
dt

	
	 Fm(t)

	
	 �

H�
� (O) + d� � �

	
	 � Fm(t)

	
	 �

L� (O)

� Mb̄

	
	 Fm(t)

	
	

H�
� (O)

	
	 � Fm(t)

	
	

L� (O) + d� Ma
	
	 � PmW� (t)

	
	

L� (O)

	
	 � Fm(t)

	
	

L� (O)

+ Mb̄

	
	 PmW� (t)

	
	

H�
� (O)

	
	 � Fm(t)

	
	

L� (O) + d� C�
�
�Fm(t)

�
� �

+
	
	 Fm(t)

	
	 �

H�
� (O)

… (PmW� ,� Fm) + �
�
Gm(t) + PmW� ,� Fm

�

…
�
� (Fm + PmW� )(Gm + PmW� ),� Fm

�

… (R� , � Fm) +
�
(Fm + PmW� )� , � Fm

�
, (�.��)

where Mb̄ = N�/� max� � k� N |b̄k|L� (O× (� ,T)), and b̄k(y,t) := bk(y,t) + d�
� N

j=�
� ajk
� yj

(y,t), k =

�, �, . . . , N. Here, we just consider the last term in (�.�� ),

�
(Fm + PmW� )� , � Fm

�

=
�
(Fm + PmW� )� , � (Fm + PmW� )

�
…

�
(Fm + PmW� )� , � (PmW� )

�

= …�



O
(Fm + PmW� )� �

� (Fm + PmW� )
� �

dy…
�
(Fm + PmW� )� , � (PmW� )

�
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� …
�
(Fm + PmW� )� , � (PmW� )

�

�
�
�


 Fm + PmW� 
 �
L� (O) +

�
�

	
	 � (PmW� )

	
	 �

L� (O).

The Cauchy inequality implies that

d
dt


 Fm
 �
H� (O) + d� � � 
� Fm
 �

L� (O)

�
� � M �

b̄

d� � �
+ � + �

�

 Fm
 �

H�
� (O)

+ � d� C� 
 Fm
 �
L� (O) +

� d� M�
a

� �

� PmW� 
 �

L� (O)

+
� � M �

b̄

d� � �
+ �

�

 PmW� 
 �

H�
� (O)

+ � 
 Gm + PmW� 
 �
H�

� (O)

+
�

� � �

d� � �
+

�
�

�

 Fm + PmW� 
 �

L� (O)

+
� � �

d� � �

 Gm + PmW� 
 �

L� (O) +
�
�


� PmW� 
 �
L� (O).

Then for N � �, the assumptions (�.
 ) and (�.�� ) imply that the second result of Lemma�.�
holds. �

Lemma . The sequences{F�
m}, {G�

m} are bounded in L� (�, T ;L� (� ,L� (O))).

Proof Multiplying ( A�
m) by� k�

m , summing overk = �, �, . . . , m, and combining withak,j = aj,k,
we have

	
	 F�

m(t)
	
	 �

L� (O) +
d�

�
d
dt




O

N�

k,j=�

ak,j(y,t)
� Fm

� yj
(y,t)

� Fm

� yk
(y,t)dy

…
d�

�
d
dt




O

N�

k,j=�

� ak,j(y,t)
� t

� Fm

� yj
(y,t)

� Fm

� yk
(y,t)dy

�
�



�
�F�

m

�
� �
L� (O) + � M�

ad�
� 
 PmW� 
 �

H�
� (O)

+ � M�
b
 Fm + PmW� 
 �

H�
� (O)

+ � 
 Fm + PmW� 
 �
L� (O) + � � � 
 Gm + PmW� 
 �

L� (O)

+ � � �

 Fm + PmW� 
 �

L� (O) + 
 Gm + PmW� 
 �
L� (O)

�

+ � 
 Fm + PmW� 
 �
L� (O) + � 
 R� 
 �

L� (O).

Similarly,

	
	 F�

m(t)
	
	 �

L� (O) +
d�

�
d
dt




O

N�

k,j=�

ak,j(y,t)
� Gm

� yj
(y,t)

� Gm

� yk
(y,t)dy

…
d�

�
d
dt




O

N�

k,j=�

� ak,j(y,t)
� t

� Gm

� yj
(y,t)

G
 m

� yk
(y,t)dy

�





�
�G�

m

�
� �
L� (O) + � M�

ad�
� 
 PmW� 
 �

H�
� (O)

+ � M�
c
 Gm + PmW� 
 �

H�
� (O)

+ � 
 Fm + PmW� 
 �
L� (O) + � � � 
 Gm + PmW� 
 �

L� (O) + � 
 R� 
 �
L� (O).
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Noticing the fact that ak,j � C� (Ō × [� ,T ]) (k = �, �, . . . , N), PmF� , PmG� are bounded in
H�

� (O), N � �, we deduce that Lemma�.
 holds. �

Theorem . Assume that r andr̄ satisfy the assumptions(�.� ), (�.� ), (�.� ), and

� O is Cm where m� �. (�.��)

Then for any(u� ,v� ) � H�
� (O� ) × H�

� (O� ), {	 j (y)}j=�,�,... , {
 j (y)}j=�,�,... satisfy the assumption
(�.�� ), and for any� � T < +� , there exists a unique strong solution(F,G) of (�.� ). More-
over, (F,G) satis“es the equality of energy, for P-a.s. � � � ,

�
�

d
dt


 F
 �
L� (O) +


 T

�




O
d�

N�

j,k=�

�
ajk(F + W� )yk

�
Fyj + (F + W� )b · � yF dydt

=

 T

�




O

�
(F + W� ) …� (G + W� ) + � (F + W� )(G + W� )

… (F + W� )� + R�
�
F dydt, (�.��)

and

�
�

d
dt


 G
 �
L� (O) +


 T

�




O
d�

N�

j,k=�

�
ajk(G + W� )yk

�
Gyj + (G + W� )c· � yG dydt

=

 T

�




O

�
(F + W� ) …� (G + W� ) + R�

�
G dydt, � t � [�, T ]; (�.�
)

and the following estimates, for P-a.s. � � � :

	
	 F(t)

	
	 �

L� (O) +
	
	 G(t)

	
	 �

L� (O) � eMt � 
 F� 
 �
L� (O) + 
 G� 
 �

L� (O)

�
+


 t

�
eMt R ds, (�.��)

�

 t

�

�
d� 
 F
 �

H�
� (O)

+ d� 
 G
 �
H�

� (O)

�
ds

� eMt � 
 F� 
 �
L� (O) + 
 G� 
 �

L� (O)

�
+


 t

�
eMt R ds, (�.��)

where M is a constant and R is a “xed random function which satis“es, for P-a.s. � � � ,
R(t) � L� (�, T ).

Proof We “rst prove the uniqueness of the solution. Let (ui� ,vi� ) � H�
� (O� ) × H�

� (O� ) and
(Fi(t),Gi(t)), i = �, � be the corresponding strong solutions, then we derive

� (U� …U� )
� t

= d�

N�

j,k=�

�
� yj

�
ajk(U� …U� )yk

�
+ b · � y(U� …U� ) + (U� …U� )

…� (V� …V� ) + � (U� …U� )(V� …V� ) …
�
(U� )� … (U� )� �

, (�.�
)

� (V� …V� )
� t

= d�

N�

j,k=�

�
� yj

�
ajk(V� …V� )yk

�
+ c· � y(V� …V� ) + (U� …U� )

…� (V� …V� ). (�.��)
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Taking the inner product of (�.�
 ) with (U� …U� ) and (�.�� ) with � (V� …V� ) in L� (Ot ), we
obtain,P-a.s.� � � ,

d
dt

� 		 (U� …U� )
	
	 �

L� (O) + �
	
	 (V� …V� )

	
	 �

L� (O)

�

+ d� �
	
	 � y(U� …U� )

	
	 �

L� (O) + � d� �
	
	 � y(V� …V� )

	
	 �

L� (O)

�
�

� +
M�

b

d� �

�

 U� …U� 
 �

L� (O) + �
�

M �
c

d� �
… ��

�

 V� …V� 
 �

t

+ �



O
�

�
U� (V� …V� ) + V� (U� …U� )

�
dy, (�.��)

whereMb, Mc are de“ned by (�.� ).
Thanks to the Hölder inequality




O

�
U� (V� …V� ) + V� (U� …U� )

�
dy

� 
 U� 
 L� (O)
 V� …V� 
 L� (O)
 U� …U� 
 L� (O)

+ 
 V� 
 L� (O)
 U� …U� 
 L� (O)
 V� …V� 
 L� (O). (�.��)

Since (F� ,G� ) and (F� ,G� ) are strong solutions of (�.� ), U� ,V� � H�
� (O), � t � [� ,T ], and

there exists a constantM such that 
 U� 
 H�
� (O) � M and 
 V� 
 H�

� (O) � M. Applying the
Sobolev embedding theorem, Cauchy•s inequality, and (�.�� ), we have




O
�

�
U� (V� …V� ) + V� (U� …U� )

�
dy

�
d� �
�

	
	 (U� …U� )

	
	 �

H�
� (O) +

� d� �
�

	
	 (V� …V� )

	
	 �

H�
� (O)

+ �M
�

 U� …U� 
 �

L� (O) + 
 V� …V� 
 �
L� (O)

�
, (�.��)

where �M is a constant dependent ond� , d� , M, � , � , � , and the Sobolev embedding con-
stant.

Combining (�.�� ) with (�.�� ) yields

d
dt

� 	
	 (U� …U� )

	
	 �

L� (O) + �
	
	 (V� …V� )

	
	 �

L� (O)

�
+

d� �
�

	
	 (U� …U� )

	
	 �

H�
� (O)

+
� d� �

�

	
	 (V� …V� )

	
	 �

H�
� (O))

� M�
� 		 (U� …U� )

	
	 �

L� (O) +
	
	 (V� …V� )

	
	 �

L� (O)

�
, (�.��)

whereM� = max{�, �
� } � max{� �M + (� +

M�
b

d� � ), � �M + � ( M�
c

d� � … �� )}.
Due to the Gronwall lemma and the factu�� (x)…u�� (x) = v�� (x)…v�� (x) = �, F� …F� = U� …

U� ,G� …G� = V� …V� , we obtain the uniqueness of the strong solution for (�.� ) immediately.
Taking the inner product of (�.� ) with (U,V), we can obtain the energy equality (�.�� ) and
(�.�
 ) immediately.

Based on the estimates in Lemma�.� , Lemma �.� , and Lemma�.
 on Fm and Gm,
there exist a subsequence of{Fm(� )} and a subsequence of{Gm(� )} converging weakly in
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L� ((�, T ]× ;H� (O)), weakly star inL� (�, T ;H�
� (O)), and strongly inL� ((�, T ];H�

� (O)), for

P-a.s.� � � . Moreover, the extremitiesF(� ), G(� ) areF -adapted processes and satisfy

F � L� �
� ,L� �

� ,T ;H� (O)
��


 L� �
� ,C

�
[� ,T ];H�

� (O)
��

,

F� � L� �
� ,L� �

� ,T ;L� (O)
��

,

and

G � L� �
� ,L� �

� ,T ;H� (O)
��


 L� �
� ,C

�
[� ,T ];H�

� (O)
��

,

G� � L� �
� ,L� �

� ,T ;L� (O)
��

.

Thus, {(Fm,Gm)} converges to (F,G) in the sense of mean-square.

Therefore, it follows that, forP-a.s.� � � ,

d
dt

�

 F
 �

L� (O) + 
 G
 �
L� (O)

�
+ �

�
d�

	
	 F(t)

	
	 �

H�
� (O) + d�

	
	 G(t)

	
	 �

H�
� (O)

�
+

�




 F
 �
L� (O)

� M�
	
	 F(t)

	
	 �

L� (O) + M�
	
	 G(t)

	
	 �

L� (O) + R(t),

where

R(t) =
�
� d� M�

a + Mb
�

 W� 
 �

H�
� (O)

+
�
� d� M�

a + Mc
�

 W� 
 �

H�
� (O)

+ � 
 W� 
 �
L� (O)

+
�
� + � � � + �

�

 W� 
 �

L� (O) +
�

�
�

+ � � � + ��

�


 W� 
 �
L� (O)

+
�
�


 W� 
 �
L� (O) + 
 R� 
 �

L� (O) + 
 R� 
 �
L� (O).

DenoteM = max{M� ,M� }; the Gronwall inequality implies Theorem�.� holds. �

4 Existence of the weak solution
In this section, we will show the existence of the weak solution for SBS.

Denote

U� ,T :=
�
� � L� �

�, T ;H�
� (O)

�

 L� �

�, T ;L� (O)
�

: � � � L� �
�, T ;L� (O)

�
,

� (�) = � (T) = �
�
.

Definition . For any given initial data (u� ,v� ) � (L� (O� ))� , � � T < +� , a function

(F,G) is called a weak solution of (�.� ) if the following conditions hold.P-a.s.� � � ,

() F � C([�, T ]; L� (O)) 
 L� ([�, T ];H�
� (O)) 
 L� (�, T ;L� (O)),

G � C([�, T ]; L� (O)) 
 L� ([�, T ];H�
� (O)) with

(F(�), G(�)) = ( u� (r(y, �)) + W� (�), v� (r(y, �)) + W� (�)) .
() There exists a sequence of regular data (F�, m,G�, m) � H�

� (O) × H�
� (O), m = �, �, . . . ,

such that (F�, m,G�, m) � (F� ,G� ) in L� (O) × L� (O) and (Fm,Gm) � (F,G) in
C([�, T ]; L� (O × � )) × C([�, T ]; L� (O × � )).
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() It follows that, for all � � U�, T ,


 T

�




O
…F� � + d�

N�

j,k=�

�
ajk(F + W� )yk

�
� yj + (F + W� )b · � y� dydt

=

 T

�




O

�
(F + W� ) …� (G + W� ) + � (F + W� )(G + W� )

… (F + W� )� + R�
�
� dydt (�.�)

and


 T

�




O
…G� � + d�

N�

j,k=�

�
ajk(G + W� )yk

�
� yj + (G + W� )c· � y� dydt

=

 T

�




O

�
(F + W� ) …� (G + W� ) + R�

�
� dydt. (�.�)

It is easy to “nd that every strong solution is a weak solution of (�.� ) from the de“nition.

Theorem . Let the function r andr̄ satisfy assumptions(�.� )-(�.� ). Assume that� O
is Cmm � �. Then for any (F� ,G� ) � L� (O) × L� (O) and � � T < +� , there exists a

unique weak solution(F,G) of (�.� ). Moreover, (F,G) satis“es the equality of energy, for

P-a.s. � � � ,

�
�

d
d


 F
 �
L� (O) +


 T

�




O
d�

N�

j,k=�

�
ajk(F + W� )yk

�
Fyj + (F + W� )b · � yF dydt

=

 T

�




O

�
(F + W� ) …� (G + W� ) + � (F + W� )(G + W� )

… (F + W� )� + R�
�
F dydt, � t � [�, T ];

�
�

d
d


 G
 �
L� (O) +


 T

�




O
d�

N�

j,k=�

�
ajk(G + W� )yk

�
Gyj + (G + W� )c· � yG dydt

=

 T

�




O

�
(F + W� ) …� (G + W� ) + R�

�
G dydt, � t � [�, T ],

and the following estimates, for P-a.s. � � � :

	
	 F(t)

	
	 �

L� (O) +
	
	 G(t)

	
	 �

L� (O) � eMt � 
 F� 
 �
L� (O) + 
 G� 
 �

L� (O)

�
+


 t

�
eMt R ds, (�.�)

�

 t

�

�
d� 
 F
 �

H�
� (O)

+ d� 
 G
 �
H�

� (O)

�
ds� eMt � 
 F� 
 �

L� (O) + 
 G� 
 �
L� (O)

�
+


 t

�
eMt R ds, (�.�)

where M and R are de“ned in the proof of Theorem�.� .

Proof We “rst of all show the uniqueness of weak solutions for (�.� ). Let (F� ,G� ) and

(F� ,G� ) be weak solutions for (�.� ) with the initial value (u�,� ,v�,� ) and (u�,� ,v�,� ), respec-
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tively, then

(B� )
� (U� …U� )

� t
= d�

N�

j,k=�

�
� yj

�
ajk(U� …U� )yk

�
+ b · � y(U� …U� ) + (U� …U� )

…� (V� …V� ) + � (U� …U� )(V� …V� ) …
�
(U� )� … (U� )� �

,

(B� )
� (V� …V� )

� t
= d�

N�

j,k=�

�
� yj

�
ajk(V� …V� )yk

�
+ c· � y(V� …V� ) + (U� …U� )

…� (V� …V� ).

Taking the inner product of (B� ) with V� …V� in L� (O) and using Lemma�.� and Cauchy•s

inequality, we obtain

d
dt


 V� …V� 
 �
L� (O) + d� �

	
	 (V� …V� )

	
	 �

H�
� (O)

�
�

M �
c

d� �
… �� + �

�

 V� …V� 
 �

L� (O) + 
 U� …U� 
 �
L� (O), (�.
)

whereMc is de“ned in the proof of Theorem�.� .

Taking the inner product of (B� ) with U� …U� in L� (O) and using Lemma�.� and

Cauchy•s inequality again, we can get

d
dt


 U� …U� 
 �
L� (O) + d� �

	
	 (U� …U� )

	
	 �

H�
� (O)

�
�

M �
b

d� �
+ �

�

 U� …U� 
 �

L� (O)

+ �



O

�
…� (V� …V� ) + � (U� V� …U� V� ) …

�
U�

� …U�
�

��
(U� …U� )dy

�
�

M�
b

d� �
+ � + �

�

 U� …U� 
 �

L� (O) + � 
 V� …V� 
 �
L� (O)

+ �



O
� (U� V� …U� V� )(U� …U� )dy. (�.�)

Notice that U� ,U� � C(�, T ;L� (O)), then there exists a constantMu such that |U� |�t +

|U� |�t � Mu, � t � (�, T ), and




O

�
� (U� V� …U� V� )

�
(U� …U� )dy

=



O
� U� (V� …V� )(U� …U� ) + V� (U� …U� )� dy

� � Mu
 V� …V� 
 L� (O)
 U� …U� 
 L� (O) + � 
 V� 
 L� (O)
 U� …U� 
 �
L� (O)
 U� …U� 
 L� (O).

Hence, there exists a constantCN such that




O

�
� (U� V� …U� V� )

�
(U� …U� )dy

� � MuC�
N 
 V� …V� 
 H�

� (O)
 U� …U� 
 H�
� (O)
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+ � C�
N 
 V� 
 H�

� (O)
 U� …U� 
 L� (O)
 U� …U� 
 H�
� (O)

�
d� �
�


 U� …U� 
 �
H�

� (O)
+

� M�
uC�

N

d� �

 V� …V� 
 �

H�
� (O)

+
� � � C�

N 
 V� 
 �
H�

� (O)

d� �

 U� …U� 
 �

L� (O).

Combining the above inequality with (�.
 ) and (�.� ), we obtain

d
dt

�

 U� …U� 
 �

L� (O) +

 M�

uC�
N

d� d� � �

 V� …V� 
 �

L� (O)

�
� M̄

�

 U� …U� 
 �

L� (O) + 
 V� …V� 
 �
L� (O)

�
,

where

M̄(t) =
� � � C�

N 
 V� (t)
 �
H�

� (O)

d� �
+

M�
b

d� �
+ � + � +

�
M�

c

d� �
+ �

�
�


 M �
uC�

N

d� d� � �
.

Recalling thatV� ,V� � L� (�, T ;H�
� (O)), so

� T
� M̄ (s)dt < � . Thus we can obtain uniqueness

immediately from the above inequality, the Gronwall inequality, and the factF� …F� =

U� …U� , G� …G� = V� …V� , u�� = u�� , v�� = v�� .

Next, we will show the existence of a weak solution. LetF�, m,G�, m � H�
� (O), m = �, �, . . . ,

such that

F�, m � F� in L� (O), asm � � , (�.�)

G�, m � G� in L� (O), asm � � . (�.
)

Then for each F�, m, G�, m, m = �, �, . . . , there exists a unique strong solution (Fm,Gm)

for (�.� ). We deduce from (�.�� ) and (�.�� ) that, for P-a.s.� � � ,

{Fm} is bounded inC
�
[�, T ]; L� (O)

�

 L� �

�, T ,H�
� (O)

�

 L� �

�, T ;L� (O)
�

(�.�)

and

{Gm} is bounded inC
�
[�, T ]; L� (O)

�

 L� �

�, T ,H�
� (O)

�
, (�.��)

which implies that

the sequence
�
� FmGm …F�

m

�
is bounded inL�/� �

�, T ;L�/� (O)
�
. (�.��)

Therefore, we can extract a subsequence (denoted also by{(Fm,Gm)}) such thatP-a.s.� �

�

Fm � F weakly inL� �
�, T ;H�

� (O)
�
, (�.��)

Gm � G weakly inL� �
�, T ;H�

� (O)
�
, (�.��)

� FmGm …F�
m � � weakly inL�/� �

�, T ;L�/� (O)
�
. (�.��)
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Combining the arguments of the uniqueness and the fact (�.� ), (�.
 ), which implies that

{Fm} and {Gm} are Cauchy sequences inC([�, T ]; L� (O × � )), the uniqueness of the limit

and (�.�� )-(�.�� ) yield, forP-a.s.� � � ,

Fm � F in C
�
[�, T ]; L� (O)

�
and

Gm � G in C
�
[�, T ]; L� (O)

�
, asm � � .

(�.�
)

Therefore, extracting a subsequence if necessary, we can assume that� FmGm …F�
m �

� FG…F� , a.e. inO × [�, T ] asm � � . Then (�.�� ) implies that � = � FG…F� . Mean-

while, for any test function� � U�, T , (Fm,Gm) satis“es (�.� ) and (�.� ). By using (�.�� ),

(�.�� ), (�.�� ), and (�.�
 ), and passing to the limit, we see that (F,G) also satis“es (�.� ) and

(�.� ). The estimates (�.� ) and (�.� ) can be obtained from (�.�� ), (�.�� ), (�.� ), (�.
 ), and

(�.�
 ) directly. Thus, we can see (F,G) is a weak solution of (�.� ) with initial ( u� ,v� ) by all

arguments above. Then the proof of Theorem�.� is completed. �

Remark . Since (F,G) � (L� (�, T ;H�
� (O)))� , for any t � (� ,T ), P-a.s.� � � , it follows

that there exists an earlier timet� � (�, t) satisfying that (F,G) � (H�
� (O))� , which implies

that the weak solutions of (�.� ) turn into the strong solutions after a null measure set (� , t� ).

Hence, we obtain (F�,G�) � L� (�, T ;L� (O)) × L� (�, T ;L� (O)) and (F,G) � C(�, T ;L� (O)) ×

C(�, T ;L� (O)).

Definition . A function (F,G) :
�

t� [�, � ) O × t � R
� is called a weak solution of (�.�� )

if for any T � �, the restriction of ( F,G) on
�

t� [�, T ) O × t is a weak solution of (�.� ).

Repeating arguments similar to Theorem�.� , we obtain the following result.

Theorem . Under the same assumptions of Theorem�.� , for any (u� ,v� ) � L� (O� ) ×

L� (O� ), (�.�� ) has a unique weak solution.

5 The non-autonomous pullback Dσ -attractor for SBS
In this section, we will establish some priori estimates for the solutions of (�.�� ), and in-

troduce the •partial-random• dynamical system generated by weak solution. By following

the argument in [
 ], we prove the existence of the non-autonomous pullbackD� -attractor

for the system.

Assume that (F,G) is a weak solution of (�.�� ) with initial value (F� ,G� ). Let

M̄a = N max
� � j,k� N


 ajk 
 L� (O× R), (
.�)

M̄b = N�/� max
� � k� N


 bk
 L� (O× R), M̄c = N�/� max
� � k� N


 ck
 L� (O× R), (
.�)

and

M̄b̄ = N�/� max
� � k� N


 b̄k
 L� (O× R), M̄ c̄ = N�/� max
� � k� N


 c̄k
 L� (O× R), (
.�)

where b̄, c̄ are de“ned in the proof of Theorem�.� . We will also assume thatM̄a < � ,

M̄b < � , M̄c < � , M̄ b̄ < � , andM̄c̄ < � .
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Lemma . There exist two positive constants M, C, and a random process R� such that

for P-a.s. � � � , t � �

	
	 F(t)

	
	 �

L� (O) +
	
	 G(t)

	
	 �

L� (O)

� Me…C(t…� )� 		 F(� )
	
	 �

L� (O) +
	
	 G(� )

	
	 �

L� (O)

�
+


 t

�
e…C(t…s)R� (s,� ) ds. (
.�)

Proof Taking the inner product of the “rst formula of (�.�� ) with F and the second formula

with G in L� (O), then using Cauchy•s inequality, Hölder•s inequality, and Lemma�.� , we

can obtain

d
dt

	
	 F(t)

	
	 �

L� (O) + d� �
	
	 F(t)

	
	 �

H�
� (O) +

	
	 F(t)

	
	 �

L� (O)

� M�
	
	 F(t)

	
	 �

L� (O) + M�
	
	 G(t)

	
	 �

L� (O) + R
 (t, � ), (
.
)

whereM� =
� M̄ �

b
d� � + M̄b + � � + � + �, M� = � + 
 � � , and

R
 (t, � ) =
�

� d� M̄ �
a

�
+ M̄b

�

 W� 
 �

H�
� (O)

+ 
 W� 
 �
L� (O) +

�
� + � � � �


 W� 
 �
L� (O)

+
�

�
�

+ ���
�


 W� 
 �
L� (O) +

�
�


 W� 
 �
L� (O) + 
 R� 
 �

L� (O).

Similarly, we have

d
dt

	
	 G(t)

	
	 �

L� (O) + d� �
	
	 G(t)

	
	 �

H�
� (O) �

	
	 F(t)

	
	 �

L� (O) + M�
	
	 G(t)

	
	 �

L� (O) + R� (t, � ), (
.�)

whereM� = � M̄ �
c

d� � + M̄c + � …� , and

R� (t, � ) =
�

� d� M̄ �
a

�
+ M̄c

�

 W� 
 �

H�
� (O)

+ 
 W� 
 �
L� (O) + � 
 W� 
 �

L� (O) + 
 R� 
 �
L� (O).

Choosing� > max� {
� M̄ �

c
d� � + M̄c + � } such that M� < �, and denoting �M� = …M� . We can

derive from (
.
 ) and (
.� ) that

d
dt

� 		 F(t)
	
	 �

L� (O) + C̄
	
	 G(t)

	
	 �

L� (O)

�
+ d� �

	
	 F(t)

	
	 �

H�
� (O) + C̄d� �

	
	 G(t)

	
	 �

H�
� (O) +

	
	 F(t)

	
	 �

L� (O)

� (M� + C̄)
	
	 F(t)

	
	 �

L� (O) + (M� …C̄ �M� )
	
	 G(t)

	
	 �

L� (O) + R
 (t, � ) + C̄R� (t, � ). (
.�)

Let C̄ = � M�
�M�

, then

d
dt

� 		 F(t)
	
	 �

L� (O) + C̄
	
	 G(t)

	
	 �

L� (O)

�
+ d� �

	
	 F(t)

	
	 �

H�
� (O) + C̄d� �

	
	 G(t)

	
	 �

H�
� (O)

+
M�

C̄

	
	 F(t)

	
	 �

L� (O) + M�
	
	 G(t)

	
	 �

L� (O) +
�
�

	
	 F(t)

	
	 �

L� (O)

�
d
dt

� 		 F(t)
	
	 �

L� (O) + C̄
	
	 G(t)

	
	 �

L� (O)

�
+ d� �

	
	 F(t)

	
	 �

H�
� (O) + C̄d� �

	
	 G(t)

	
	 �

H�
� (O)
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+
�
�

	
	 F(t)

	
	 �

L� (O) + M�
	
	 G(t)

	
	 �

L� (O) +
M�

�

C̄�
|O|

�
�

(M� + C̄)�

�
+

M�
�

C̄�

�
|O| + R
 (t, � ) + C̄R� (t, � ). (
.
)

Denote

R� (t, � ) =
�

(M� + C̄)�

�
+

M�
�

C̄�

�
|O| + R
 (t, � ) + C̄R� (t, � ),

the inequality (
.
 ) implies that

d
dt

� 		 F(t)
	
	 �

L� (O) + C̄
	
	 G(t)

	
	 �

L� (O)

�
+

M�

C̄

� 		 F(t)
	
	 �

L� (O) + C̄
	
	 G(t)

	
	 �

L� (O)

�

+ d� �
	
	 F(t)

	
	 �

H�
� (O) + C̄d� �

	
	 G(t)

	
	 �

H�
� (O) +

�
�

	
	 F(t)

	
	 �

L� (O) � R� (t, � ). (
.�)

From the Gronwall inequality, we see that forP-a.s.� � �

	
	 F(t)

	
	 �

L� (O) + C̄
	
	 G(t)

	
	 �

L� (O)

� e…M�
C̄

(t…� )� 		 F(� )
	
	 �

L� (O) + C̄
	
	 G(� )

	
	 �

L� (O)

�
+


 t

�
e…M�

C̄
(s…� )R� (s,� ) ds. (
.��)

Denoting M = max{�, C̄}
min{�, C̄}

, C = M�
C̄

andR� (t, � ) = �
min{�, C̄}

R� (t, � ), the proof is completed. �

Lemma . For any nonrandom bounded set B� L� (O) × L� (O), there exists a random

time TB(� ) � � such that

	
	 F(t)

	
	 �

L� (O) +
	
	 G(t)

	
	 �

L� (O) � �

 t

…�
e…C(t…s)R� (s,� ) ds, (
.��)

for P-a.s. � � � , for all t …� � Tb(� ), for any(F(� ),G(� )) � B.

Proof It follows from Lemma
.� that

	
	 F(t)

	
	 �

L� (O) +
	
	 G(t)

	
	 �

L� (O)

� Me…C(t…� )� 		 F(� )
	
	 �

L� (O) +
	
	 G(� )

	
	 �

L� (O)

�
+


 t

�
e…C(t…s)R� (s,� ) ds.

We can obtain from the above inequality that

e…C(t…� )� 		 F(� )
	
	 �

L� (O) +
	
	 G(� )

	
	 �

L� (O)

�
� � as t …� � � .

Then there exists a random timeTB(� ) such that for t …� � TB(� )

e…C(t…� )� 		 F(� )
	
	 �

L� (O) +
	
	 G(� )

	
	 �

L� (O)

�
�


 t

…�
e…C(t…s)R� (s,� ) ds.

Thus, the proof is completed. �
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Corollary . For any nonrandom bounded B� L� (O)× L� (O), there exist a random time

TB(� ) � � such that


 t+�

t

	
	 F(s)

	
	 �

H�
� (O) +

	
	 G(s)

	
	 �

H�
�

+
	
	 F(t)

	
	 �

L� (O) ds� �M, (
.��)

for P-a.s. � � � , for all t …� � TB(� ), for any(F(� ),G(� )) � B.

Lemma . For any nonrandom bounded B� L� (O) × L� (O), there exists a random time

T̄B(� ) � � and a random constant �M, such that

	
	 F(s)

	
	 �

H�
� (O) +

	
	 G(s)

	
	 �

H�
� (O) � �M, (
.��)

for P-a.s. � � � , for all t …� � TB(� ), for any(F(� ),G(� )) � B.

Proof Taking the inner product of the second formula in (�.�� ) with …� G in L� (O), and

using Cauchy•s inequality, Hölder•s inequality, and Lemma�.� , we obtain

d
dt

	
	 G(t)

	
	 �

H�
� (O) + d� � �

	
	 � G(t)

	
	 �

L� (O)

�
�

� M̄ �
c̄

d� � �
…�

� 	
	 G(t)

	
	 �

H�
� (O) + � d� c�

	
	 G(t)

	
	 �

L� (O) +
� d� M̄ �

a

� �

� W� 
 �

L� (O)

+
�

� M̄ �
c̄

d� � �
+ �

� 	
	 W� (t)

	
	 �

H�
� (O) +

�
d� � �

�

 F
 �

L� (O) + 
 W� 
 �
L� (O) + 
 R� 
 �

L� (O)

�
. (
.��)

Combining the assumptions (�.
 ), (�.�� ) with Lemmas
.� -
.� , we have


 t+�

t
� d� c�

	
	 G(s)

	
	 �

L� (O) +
� d� M̄ �

a

� �

� W� 
 �

L� (O) +
�

� M̄ �
c̄

d� � �
+ �

� 	
	 W� (s)

	
	 �

H�
� (O)

+
�

d� � �

� 		 F(s)
	
	 �

L� (O) + 
 W� 
 �
L� (O) + 
 R� 
 �

L� (O)

�
ds< � ,

for P-a.s.� � � and for all t …� > TB(� ). Therefore there exists a constant�M such that


 G
 �
H�

� (O)
� �M, (
.�
)

for P-a.s.� � � and for all t …� > TB(� ) + �.

Similarly,

d
dt


 F
 �
H� (O) + d� � � 
� F
 �

L� (O)

�
� � M̄ �

b̄

d� � �
+ � + �

�

 F
 �

H�
� (O)

+ � d� C� 
 F
 �
L� (O) +

� d� M̄ �
a

� �

� W� 
 �

L� (O)

+
� � M̄ �

b̄

d� � �
+ �

�

 W� 
 �

H�
� (O)

+ � 
 G + W� 
 �
H�

� (O)
+

�
� � �

d� � �
+

�
�

�

 F + W� 
 �

L� (O)

+
� � �

d� � �

 G + W� 
 �

L� (O) +
�
�


� W� 
 �
L� (O). (
.��)
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Due to (�.
 ), (�.�� ), we have


 t+�

t
� d� C� 
 F
 �

L� (O) +
� d� M̄ �

a

� �

� W� 
 �

L� (O)

+
� � M̄ �

b̄

d� � �
+ �

�

 W� 
 �

H�
� (O)

+ � 
 G + W� 
 �
H�

� (O)

+
�

� � �

d� � �
+

�
�

�

 F + W� 
 �

L� (O) +
� � �

d� � �

 G + W� 
 �

L� (O)

+
�
�


� W� 
 �
L� (O) ds< � ,

for P-a.s.� � � and for all t …� > TB(� ) + �. Thus, applying the uniform Gronwall lemma

to (
.�� ), we see that there exists a constant�M such that


 F
 �
H�

� (O)
� �M, (
.��)

for P-a.s.� � � and for all t …� > TB(� ) + �. Denoting T̄B(� ) = TB(� ) + �, we complete the

proof. �

6 Attractors for partial-random dynamical system
In this section, we introduce the partial-random dynamical system generated by a SPDE

de“ned on time-varying domains developed by Crauelet al.in [ � ], and prove the existence

of the non-autonomous attractor for partial-random dynamical system.

Assume that the probability space (� ,F ,P) with incremental shifts (� t )t� R is a metric

dynamical system,R is a subset of the topology of spaceC�
b(R;C�

b(Ō;RN )) generated by

the domain varying di�eomorphismsr. The transformations� t :R � R de“ned by� t r(·+

s,·) = r(· + s+ t,·) for t � R, form a one-parameter group (� t )t� R with

� t+s = � t � � s

for all s,t � R. The product ”ow, given by

(� × � )t = � t × � t : � × R � � × R

for t � R, will be denoted by (̄� t )t� R.

For each (F� ,G� ) � (L� (O))� , Theorem�.� implies that equations (�.�� ) have a unique

global solution (F,G). De“ne the operators

�
�
t , (� ,r)

�
: L� (O) × L� (O) � L� (O) × L� (O) (�.�)

by

�
�
t, (� ,r)

�
(F� ,G� ) =

�
F

�
t; (� ,r),F� ,G�

�
,G

�
t; (� ,r),F� ,G�

��
=

�
F(t),G(t)

�
. (�.�)

Here (F(t; (� ,r),F� ,G� ),G(t; (� ,r),F� ,G� )) is de“ned by unique solution process of (
.� )

with initial value (F� ,G� ) and the transform for domainsr. From Theorem�.� , we know
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that the de“nition makes sense. Then the family of operators{� (t) : � � t < +�} generates
a non-autonomous dynamic system,i.e.

�
�
�, ( � ,r)

�
= Id

�
identity on L� (O)

�
� (� ,r) � � × R, (�.�)

�
�
t + s, (� ,r)

�

= �
�
t , �̄ sp(� ,r)

�
� �

�
s, (� ,r)

�
for all s,t � [�, � ) and (� ,r) � � × R. (�.�)

Now, we can de“ne the attractor of the non-autonomous dynamic system� .

Definition . ([� ]) Suppose thatD is a set of maps from� × R to the power set of
L� (O) × L� (O) such thatD(� ,r) is nonempty for every (� ,r) � � × R and D � D. A map
A from � × R to the power set ofL� (O) × L� (O) is said to be aD-attractor if:

() A(� ,r) is compact for all (� ,r) � � × R,
() A is invariant in the sense that

�
�
t , (� ,r)

�
A(� ,r) = �̄ tA(� ,r)

for all t � [�, � ) and (� ,r) � � × R,
() A attracts every D � D in the sense that

lim
t ��

dist
�
�

�
t , �̄ …t (� ,r)

�
D

�
�̄ …t (� ,r)

�
,A(� ,r)

�
= �

for every D � D.
Here dist(A,D) is for the Hausdor� semi-distance.

Definition . ([� ]) Suppose thatD is a set of maps from� × R to the power set of
L� (O) × L� (O) such thatD(� ,r) is nonempty for every (� ,r) � � × R and D � D. A map
K from � × R to the power set ofL� (O) × L� (O) is said to be aD-attracting if

lim
t ��

dist
�
�

�
t , �̄ …t (� ,r)

�
D

�
�̄ …t (� ,r)

�
,K(� ,r)

�
= �

for everyD � D.

Theorem . ([� ]) The existence of a compactD-attracting K is equivalent to the existence
of aD-attractor.

Remark . From Lemmas
.� and 
.� , we can “nd that there exists a compactD-
attracting K for the non-autonomous dynamic system� de“ned above, attracting
bounded subsets ofL� (O) × L� (O). Thus, using Theorem�.� , we can obtain a unique
non-autonomous pullback attractor inL� (O) × L� (O).

Theorem . The partial-random system generated by the random-PDE(�.�� ) on domain
O has a unique non-autonomous pullback attractor in L� (O) × L� (O), attracting bounded
subsets of L� (O) × L� (O).
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