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Abstract
In this paper, a discrete-time analog of a viral infection model with nonlinear
incidence and CTL immune response is established by using the Micken
non-standard finite difference scheme. The two basic reproduction numbers R0 and
R1 are defined. The basic properties on the positivity and boundedness of solutions
and the existence of the virus-free, the no-immune, and the infected equilibria are
established. By using the Lyapunov functions and linearization methods, the global
stability of the equilibria for the model is established. That is, when R0 ≤ 1 then the
virus-free equilibrium is globally asymptotically stable, and under the additional
assumption (A4) when R0 > 1 and R1 ≤ 1 then the no-immune equilibrium is globally
asymptotically stable and when R0 > 1 and R1 > 1 then the infected equilibrium is
globally asymptotically stable. Furthermore, the numerical simulations show that
even if assumption (A4) does not hold, the no-immune equilibrium and the infected
equilibrium also may be globally asymptotically stable.
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1 Introduction
As is well known, viruses have caused the abundant types of epidemics and are alive al-
most everywhere on Earth, infecting people, animals, plants, and so on. There are a large
number of diseases, which are caused by viruses for example: influenza, hepatitis, HIV,
AIDS, SARS, Ebola, MERS. Therefore, it is important to study viral infection, which can
supply theoretical evidence for controlling a disease to break out. In the past years, many
authors have studied continuous time viral infection models which are described by the
differential equations. See, for example, [–] and the references cited therein.

In [], Hattaf et al. proposed the following continuous time viral infection model:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = λ – dx – f (x, y, v)v,

dy(t)
dt = f (x, y, v)v – ay,

dv(t)
dt = ky – uv,

()
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where x, y, and v denote the densities of uninfected cells, infected cells and virus cells,
respectively, λ is the rate of production of uninfected cells, d is the death rate of uninfected
cells, f (x, y, v) is the rate of uninfected cells to become infected by virus, a is the rate of
disappearance of infected cells, k is the rate that virus produces by infected cells, and u is
the rate of virus died. The dynamic behaviors of the model are studied. Although model
() is simple, model () is very important in viral epidemiology, which can show ample
viral behaviors. Then, based on continuous model (), Shi and Dong in [] proposed
a discrete-time analog for the special case f (x, y, v) = βx of model () by using Micken’s
non-standard finite difference (NSFD) scheme. The authors studied the local and global
stability of the equilibria and the permanence of the model. In [], Hattaf and Yousfi
proposed the following discrete-time analog directly for model () by using the NSFD
scheme:

⎧
⎪⎪⎨

⎪⎪⎩

xn+ = xn + h(λ – dxn+ – f (xn+, yn, vn)vn),

yn+ = yn + h(f (xn+, yn, vn)vn – ayn+),

vn+ = vn + h(kyn+ – uvn+),

()

where n ∈ N , and N denotes the set of all non-negative integers. The global asymptotic sta-
bility of the disease-free equilibrium and the chronic infection equilibrium is established
by constructing the suitable Lyapunov functions. In [], the authors extended model ()
to the delayed case. By using the method of Lyapunov functions, the authors established
the global asymptotic stability of the disease-free equilibrium and the chronic infection
equilibrium with no restriction on the time-step size.

In general, our target is to eliminate and control the virus and infected cells. For all
this, many authors have noted that the immune response takes great effect to eliminate
and control the virus and infected cells because CTL (cytotoxic T lymphocyte) cells affect
the virus load. Therefore, a four dimension continuous time virus dynamical model with
Beddington-DeAngelis incidence rate and CTL immune response was studied by Wang,
Tao and Song in []. The model proposed is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t)
dt = λ – dx – βxv

+mx+nv ,
dy(t)

dt = βxv
+mx+nv – ay – pyz,

dv(t)
dt = ky – uv,

dz(t)
dt = cyz – bz.

()

The authors established the global stability of the disease-free equilibrium, the immune-
free equilibrium, and the endemic equilibrium.

Motivated by the above works, in this paper we consider a discrete-time analog of a
class of continuous time virus dynamical models with nonlinear incidence and CTL im-
mune response which is established by using NSFD scheme. The model is proposed in the
following form:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+–xn
φ

= λ – dxn+ – f (xn+, yn, vn)vn,
yn+–yn

φ
= f (xn+, yn, vn)vn – ayn+ – pyn+zn+,

vn+–vn
φ

= kyn+ – uvn+,
zn+–zn

φ
= cyn+zn+ – bzn+,

()

where xn, yn, vn and zn denote the densities of uninfected cells, infected cells, virus cells,
and CTL cells at time n, respectively. The parameters λ, d, a, k, and u have the same
biological meanings as in model (), p is the removed rate for the infected cells by the CTL
immune response, c is the proliferated rate for the CTL cells by contact with infected cells,
b is the disappearance rate for the CTL cells, and the function φ is a denominator function
(see [, ]), which is defined by

φ = φ(h) =
edh – 

d
.

It is well known that the non-standard scheme satisfies the following important rules:
the standard denominator h in standard discrete derivative is replaced by a denominator
function  < φ(h) < , where φ(h) = h + o(h) and h is the time-step size of numerical inte-
gration, and the nonlinear terms are approximated in a nonlocal way using more than one
mesh point (see [, ]).

Particularly, when f (x, y, v) = βx
+mx+nv , we can get the corresponding discrete-time analog

of continuous model () as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+–xn
φ

= λ – dxn+ – βxn+
+mxn++nvn

vn,
yn+–yn

φ
= βxn+

+mxn++nvn
vn – ayn+ – pyn+zn+,

vn+–vn
φ

= kyn+ – uvn+,
zn+–zn

φ
= cyn+zn+ – bzn+.

()

In this paper, our main purpose is to study the threshold dynamics of model (). The
two basic reproduction numbers R and R are defined. The basic properties on the pos-
itivity and boundedness of solutions and the existence of the virus-free equilibrium, the
no-immune equilibrium and the infected equilibrium are established. By using the Lya-
punov functions and linearization methods, we will establish a series of criteria to ensure
the stability of the equilibria for model (). That is, we will prove that when R ≤  then
model () only has the virus-free equilibrium and it is globally asymptotically stable, when
R >  and R ≤  then model () has only the virus-free and the no-immune equilibria,
the virus-free equilibrium is unstable and under the additional assumption (A) (see Sec-
tion ) the no-immune equilibrium is globally asymptotically stable, and lastly when R > 
and R >  then model () has three equilibria: the virus-free equilibrium, the no-immune
equilibrium, and the infected equilibrium; the virus-free and the no-immune equilibria
are unstable and under the additional assumption (A) the infected equilibrium is globally
asymptotically stable. Furthermore, numerical simulations are given. It is shown that even
if assumption (A) does not hold, the no-immune equilibrium may be globally asymptot-
ically stable only when R >  and R < , and the infected equilibrium may be globally
asymptotically stable only when R >  and R > .
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This paper is organized as follows. In Section , we will first introduce some assump-
tions for nonlinear incidence function f (x, y, v). Next, we will state and prove some ba-
sic results on the existence, uniqueness, positivity and ultimate boundedness of solutions
with positive initial conditions for model (). Furthermore, the existence of the virus-free,
the no-immune, and the infected equilibria also is obtained. The stability of the virus-
free, the no-immune, and the infected equilibria is presented in Section . The numerical
simulations are presented in Section . Lastly, some concluding remarks are presented in
Section .

2 Preliminaries
As the epidemiological background of model (), we assume that any solution (xn, yn, vn, zn)
of model () satisfies the following initial condition:

x > , y > , v > , z > . ()

We also require that the function f (x, y, z) satisfies the following assumptions:

(A) f (, y, v) =  for all y ≥  and v ≥ ,
(A) ∂f (x,y,v)

∂x >  for all x > , y ≥  and v ≥ ,
(A) ∂f (x,y,v)

∂y ≤  and ∂f (x,y,v)
∂v ≤  for all x ≥ , y ≥  and v ≥ .

Specially, when f (x, y, v) = βx
+mx+nv and f (x, y, v) = βx

+nvq , where β > , m ≥ , q ≥ , and
n ≥  are constants, by simple calculation we know that such f (x, y, v) satisfies the above
assumptions (A)-(A).

Lemma  Let (A) and (A) hold. Then the solution (xn, yn, vn, zn) of model () with initial
value () exists uniquely and is positive for all n ∈ N . In addition,  < yn < +bφ

cφ for n =
, , . . . .

Proof We know that model () is equivalent to the following form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xn+ = 
+φd (xn + φ(λ – f (xn+, yn, vn)vn)),

yn+ = yn+φf (xn+,yn ,vn)vn
+φ(a+pzn+) ,

vn+ = vn+φkyn+
+φu ,

zn+ = zn
+φ(b–cyn+) .

()

When n = , we prove that (x, y, v, z) exists uniquely and is positive.
We first consider x. According to the first equation of model (), we have

ϕ(x) � x + φ
[
dx + f (x, y, v)v – λ

]
– x = .

Owing to ϕ() = –x – φλ < , limx→∞ ϕ(x) = ∞ and from (A),

ϕ′(x) =  + φ

[

d +
∂f
∂x

(x, y, v)v

]

> .

Hence, there is a unique x >  such that x = x + φ[λ – dx – f (x, y, v)v].
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Next, we consider z. According to the second and fourth equations of model (), we
have

z = z + φ

[

c
y + φf (x, y, v)v

 + φ(a + pz)
z – bz

]

. ()

Let

ϕ(z) � φp( + φb)z
 +

(
 + φ

[
a – pz – cy

– φcvf (x, y, v) + b( + φa)
])

z – z( + φa).

This is a quadratic function. Since ϕ() = –z( + φa) <  and limz→∞ ϕ(z) = ∞, there is
a unique z >  such that ϕ(z) = . That is, () holds.

In the following, we consider y. According to the second and last equations of model
(), we have

y = y + φ

[

f (x, y, v)v – ay – py
z

 + φ(b – cy)

]

. ()

Let

ϕ(y) � φ
[
c( + φa)y

 –
(
b + cy + φcf (x, y, v)v + a

+ φab + pz
)
y + yb + ( + φb)f (x, y, v)v

]
+ y – y.

Owing to z > , from the last equation of model () we have y < +φb
φc . Then we have

ϕ() = y + φ
[
yb + ( + φb)f (x, y, v)v

]
> ,

ϕ

(
 + φb

φc

)

= –
pz + φpbz

c
< .

Since ϕ(y) is a quadratic function, there is a unique y ∈ (, +φb
φc ) such that ϕ(y) = . That

is, () holds.
Finally, we consider v. According to the third equation of model (), we have v = v+φky

+φu .
Hence, we know that v uniquely exists and is positive. Therefore, (x, y, v, z) exists
uniquely and is positive.

When n = , by a similar argument to the above, we can prove that (x, y, v, z) exists
uniquely and is positive. Owing to z > , we also have y < +φb

φc . Using the mathemati-
cal induction, for any n ≥ , we know that (xn, yn, vn, zn) exists uniquely and is positive.
Furthermore, we also have yn < +φb

φc . This completes the proof. �

Let us consider the region

� =
{

(x, y, v, z) :  < x, y, v, z ≤ λ

ξ

}

,

where ξ = min{d, a
 , u, b}. We have the following result.

Lemma  Any solution (xn, yn, vn, zn) of model () with initial condition () converges on
� as n → ∞, and � is positive invariable for model ().
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Proof Define a sequence Mn as follows:

Mn = xn + yn +
a

k
vn +

p
c

zn.

We have

Mn+ = xn+ + yn+ +
a

k
vn+ +

p
c

zn+

= xn + yn +
a

k
vn +

p
c

zn + φ[λ – dxn+ – ayn+ – pyn+zn+]

+ φ

[
a


yn+ –
au
k

vn+ + pyn+zn+ –
pb
c

zn+

]

= Mn + φ

[

λ – dxn+ –
a


yn+ –
au
k

vn+ –
pb
c

zn+

]

≤ Mn + φ[λ – ξMn+].

Hence,

Mn+ ≤ 
 + φξ

Mn +
φλ

 + φξ
. ()

By using the induction, we have

Mn ≤
(


 + φξ

)n

M +
λ

ξ

[

 –
(


 + φξ

)n]

.

Consequently, lim supn→∞ Mn ≤ λ
ξ

. Owing to the positivity of solution (xn, yn, vn, zn), we
see that (xn, yn, vn, zn) converges on � as n → ∞. Furthermore, from Lemma  and (),
we easily see that � is positive invariable for model (). This completes the proof. �

The basic reproductive numbers for model () are given by

R =
kf ( λ

d , , )
au

, R =
c
b

y∗
 ,

where y∗
 is given in the following conclusion (ii) of Lemma . R is defined as the average

number of secondary infected cells generated by a single infected cell put in an uninfected
cell (or free virus) population, R is defined as the average number of killed infected cells by
a single CTL cell contacting the infected cells. Based on these basic reproductive numbers,
we give the following lemma.

Lemma  Let (A)-(A) hold.
(i) Model () always has a virus-free equilibrium E( λ

d , , , ).
(ii) If R ≤ , then model () has only a virus-free equilibrium E, and if R > , then

model () has a no-immune equilibrium E(x∗
 , y∗

 , v∗
 , ), except for equilibrium E.

(iii) If R >  and R ≤ , then model () has only the virus-free equilibrium E and the
no-immune equilibrium E, and if R >  and R > , then model () has an infected
equilibrium E(x∗

, y∗
, v∗

, z∗
), except for equilibria E and E.
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Proof It is clear that the equilibrium of model () satisfies the following equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ – dx – f (x, y, v)v = ,

f (x, y, v)v – ay – pyz = ,

ky – uv = ,

cyz – bz = .

()

Obviously, () has a solution ( λ
d , , , ). Hence, model () always has a virus-free equilib-

rium E( λ
d , , , ). This shows conclusion (i).

Let z = , from () we have y = λ–dx
a , v = k(λ–dx)

au , and f (x, y, v)v = ay. Hence,

g(x) � f
(

x,
λ – dx

a
,

k(λ – dx)
au

)

–
au
k

= .

We have g() = – au
k <  and g( λ

d ) = au
k (R – ). Based on (A) and (A), we know that g(x)

is monotonously increasing for all x ∈ (, λ
d ). When R > , then g( λ

d ) > . Hence, g(x) = 
has a unique solution x∗

 ∈ (, λ
d ). This shows that model () has a unique no-immune

equilibrium E(x∗
 , y∗

 , v∗
 , ) with y∗

 = λ–dx∗


a and v∗
 = k(λ–dx∗

 )
au . When R ≤ , then g( λ

d ) ≤ .
Hence, g(x) =  has no solution in (, λ

d ). This shows that model () has only equilibrium
E. Therefore, conclusion (ii) is true.

Let z 	= , from () we have y = b
c , v = kb

uc , and the following equation:

g(x) � f
(

x,
b
c

,
kb
uc

)

–
uc
kb

(λ – dx) = .

We have g() = – ucλ
kb < . When R >  and R > , we know y∗

 > b
c . Owing to y∗

 = λ–dx∗


a ,
by simply calculating we can obtain x∗

 < λ
d – ab

dc . Hence,

g

(
λ

d
–

ab
dc

)

= f
(

λ

d
–

ab
dc

,
b
c

,
kb
uc

)

–
ua
k

> f
(
x∗

 , y∗
 , v∗


)

–
ua
k

= .

From (A), we know that g(x) is monotonously increasing for x > . Hence, there is a
unique x∗

 ∈ (, λ
d – ab

dc ) such that g(x∗
) = . This shows that model () has a unique infected

equilibrium E(x∗
, y∗

, v∗
, z∗

) with y∗
 = b

c , v∗
 = kb

uc and

z∗
 =


py∗



(
λ – dx∗

 – ay∗

)

>


py∗


[

λ – d
(

λ

d
–

ab
dc

)

–
ab
c

]

= .

When R >  and R ≤ , similarly to above discussion we can see that if g(x) =  has
a positive solution x∗

, then x∗
 > λ

d – ab
dc . But, if model () has a positive equilibrium

E(x∗
, y∗

, v∗
, z∗

), then z∗
 = 

py∗


(λ – dx∗
 – ay∗

) > . Hence, we must have x∗
 < λ

d – ab
dc , which

leads to a contradiction. Therefore, conclusion (iii) is true. This completes the proof. �

3 Stability of equilibria
First of all, we introduce the following assumption:

(

 –
f (x, y, v)

f (x, y∗
i , v∗

i )

)(
f (x, y∗

i , v∗
i )

f (x, y, v)
–

v
v∗

i

)

≤ , i = , , (A)
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for all (x, y, v, z) ∈ �, and (x∗
i , y∗

i , v∗
i ) is the coordinate of equilibrium Ei for i = , , respec-

tively.
Specially, when f (x, y, v) = βx

+mx+nv , by simple calculation we know that f (x, y, v) satisfies
assumption (A).

However, when f (x, y, v) = βx
+nv , in Section , we will give the numerical examples to

indicate that assumption (A) may not be satisfied.

Theorem  Suppose that (A)-(A) hold. If R ≤ , then the virus-free equilibrium
E( λ

d , , , ) of model () is globally asymptotically stable.

Proof Let x∗ = λ
d and (xn, yn, vn, zn) be any solution of model () with initial condition ().

Choosing a Lyapunov function as follows:

Wn = xn – x∗ –
∫ xn

x∗

f (x∗, , )
f (s, , )

ds + yn +
a( + φu)

k
vn +

p
c

zn,

we let

m(x) � x – x∗ –
∫ x

x∗

f (x∗, , )
f (s, , )

ds.

According to (A), we easily obtain m(x) ≥ m(x∗) =  for all x ≥ . Therefore, Wn ≥  for
all xn ≥ , yn ≥ , vn ≥ , and zn ≥ . In addition, Wn =  if and only if xn = x∗, yn = ,
vn =  and zn = . Computing 	Wn, we have

	Wn = xn+ – xn –
∫ xn+

xn

f (x∗, , )
f (s, , )

ds + yn+ – yn

+
a( + φu)

k
(vn+ – vn) +

p
c

(zn+ – zn)

≤
(

 –
f (x∗, , )

f (xn+, , )

)

(xn+ – xn) + yn+ – yn

+
a( + φu)

k
(vn+ – vn) +

p
c

(zn+ – zn).

Substituting model (), we have

	Wn ≤ φ

[(

 –
f (x∗, , )

f (xn+, , )

)
(
λ – dxn+ – f (xn+, yn, vn)vn

)
+ f (xn+, yn, vn)vn

– ayn+ – pyn+zn+ +
a( + φu)

k
(kyn+ – uvn+) +

p
c

(cyn+zn+ – bzn+)
]

= φ

[(

 –
f (x∗, , )

f (xn+, , )

)

(λ – dxn+) – f (xn+, yn, vn)vn

+
f (xn+, yn, vn)
f (xn+, , )

f
(
x∗, , 

)
vn + f (xn+, yn, vn)vn – ayn+ – pyn+zn+

+ ayn+ + φauyn+ –
au( + φu)

k
vn+ + pyn+zn+ –

pb
c

zn+

]

.
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Substituting λ = dx∗ and vn+ = vn+φkyn+
+φu from model (), we further obtain

	Wn ≤ φ

[

dx∗
(

 –
xn+

x∗

)(

 –
f (x∗, , )

f (xn+, , )

)

+
f (xn+, yn, vn)
f (xn+, , )

f
(
x∗, , 

)
vn

+ φauyn+ –
au( + φu)

k
vn + φkyn+

 + φu
–

pb
c

zn+

]

= φ

[

dx∗
(

 –
xn+

x∗

)(

 –
f (x∗, , )

f (xn+, , )

)

+
au
k

(
f (xn+, yn, vn)
f (xn+, , )

R – 
)

vn –
pb
c

zn+

]

.

Based on (A), we have

	Wn ≤ φ

[

dx∗
(

 –
xn+

x∗

)(

 –
f (x∗, , )

f (xn+, , )

)

+
au
k

(R – )vn –
pb
c

zn+

]

.

According to (A), we know
(

 –
xn+

x∗

)(

 –
f (x∗, , )

f (xn+, , )

)

≤ .

Therefore, when R ≤  and zn > , vn > , we get 	Wn ≤ . It is obvious that 	Wn =  if
and only if xn = x∗, yn = , vn =  and zn = . Based on LaSalle’s invariance principle (see
[]), we finally see that the virus-free equilibrium E(x∗, , , ) is globally asymptotically
stable. This completes the proof. �

Theorem  Suppose that (A)-(A) hold. If R > , then the virus-free equilibrium
E( λ

d , , , ) of model () is unstable.

Proof By calculating, we can see that the linearization system of model () at equilibrium
E is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xn+ = 
+φd Xn – φf ( λ

d ,,)
+φd Vn,

Yn+ = 
+φa Yn + φf ( λ

d ,,)
+φa Vn,

Vn+ = φk
(+φa)(+φu) Yn + +φ[a+f ( λ

d ,,)]
(+φa)(+φu) Vn,

Zn+ = 
+φb Zn.

()

By calculating we can obtain the characteristic equation of system (),

f (λ) �
(

λ –


 + φd

)(

λ –


 + φb

)[

( + φa)( + φu)λ

–
(

 + φ

[

a + u + φkf
(

λ

d
, , 

)])

λ + 
]

= .

Solving this equation, we get λ = 
+φd , λ = 

+φb , λ and λ are determined by the follow-
ing equation:

g(λ) � ( + φa)( + φu)λ –
(

 + φ

[

a + u + φkf
(

λ

d
, , 

)])

λ +  = .
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Since when R > , we have g() = φau( – R) <  and limλ→∞ g(λ) = ∞, there exists an
η ∈ (, +∞) such that g(η) = . This shows that λ or λ is greater than . Therefore, the
virus-free equilibrium E( λ

d , , , ) is unstable. This completes the proof. �

For model (), by calculating, we see that the basic reproductive numbers R and R are
given by

R =
kβλ

au(d + mλ)
, R =

λβkc + aumb
aduc + adbkn + aβbk + auλmc

.

As a consequence of Theorem  and Theorem  we have the following result for model ().

Corollary  If R ≤ , then the virus-free equilibrium E( λ
d , , , ) of model () is globally

asymptotically stable. Otherwise, if R > , then equilibrium E is unstable.

Theorem  Suppose that (A)-(A) and (A) for i =  hold. If R >  and R ≤ , then the
no-immune equilibrium E(x∗

 , y∗
 , v∗

 , ) of model () is globally asymptotically stable.

Proof Let (xn, yn, vn, zn) be any solution of model () with initial condition (). From
Lemma , we can assume (xn, yn, vn, zn) ∈ � for all n ≥ . Define a Lyapunov function as
follows:

Ln = xn – x∗
 –

∫ xn

x∗


f (x∗
 , y∗

 , v∗
 )

f (s, y∗
 , v∗

 )
ds + yn – y∗

 – y∗
 ln

yn

y∗


+
a( + φu)

k

(

vn – v∗
 – v∗

 ln
vn

v∗


)

+
p
c

zn+.

According to (A), we easily obtain

m(x) � x – x∗
 –

∫ x

x∗


f (x∗
 , , )

f (s, , )
ds > 

for all x ≥  and x 	= x∗. Hence, Ln ≥  for all xn ≥ , yn ≥ , vn ≥  and zn ≥ . Obviously,
Ln =  if and only if xn = x∗

 , yn = y∗
 , vn = v∗

 , and zn = . Computing 	Ln, we have

	Ln = xn+ – xn –
∫ xn+

xn

f (x∗
 , y∗

 , v∗
 )

f (s, y∗
 , v∗

 )
ds + yn+ – yn – y∗

 ln
yn+

yn

+
a( + φu)

k
(vn+ – vn) –

a( + φu)
k

v∗
 ln

vn+

vn
+

p
c

(zn+ – zn)

≤
(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

)

(xn+ – xn) + yn+ – yn – y∗
 ln

yn+

yn

–
a( + φu)

k
v∗

 ln
vn+

vn
+

p
c

(zn+ – zn) +
a( + φu)

k
(vn+ – vn).

From ln x ≤ x –  for x > , we further have

	Ln ≤
(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

)

(xn+ – xn) +
(

 –
y∗


yn+

)

(yn+ – yn)

+
a
k

(

 –
v∗


vn+

)

(vn+ – vn) +
φau

k

(

vn+ – vn + v∗
 ln

vn

vn+

)

+
p
c

(zn+ – zn).
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Substituting model (), owing to x∗
 , y∗

 , and v∗
 satisfying the equations

⎧
⎪⎪⎨

⎪⎪⎩

 = λ – dx∗
 – f (x∗

 , y∗
 , v∗

 )v∗
 ,

 = f (x∗
 , y∗

 , v∗
 )v∗

 – ay∗
 ,

 = ky∗
 – uv∗

 ,

we obtain

	Ln ≤
(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

)

(xn+ – xn) +
(

 –
y∗


yn+

)
(
f (xn+, yn, vn)vn

– ayn+ – pyn+zn+
)
φ +

a
k

(

 –
v∗


vn+

)

(kyn+ – uvn+)φ

+
φau

k
(vn+ – vn) +

φau
k

v∗
 ln

vn

vn+
+

p
c

(cyn+zn+ – bzn+)φ

=
(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

)

(xn+ – xn) + ay∗


(

 –
y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

 , y∗
 , v∗

 )

)

φ

+ ay∗


(

 –
yn+

vn+

v∗


y∗


–
vn

v∗


)

φ + f (xn+, yn, vn)vnφ

+
φpb

c
(R – )zn+ +

φau
k

v∗
 ln

vn

vn+
.

Since λ = dx∗
 + ay∗

 , the first equation model () becomes

xn+ = xn + φ
[
dx∗

 + ay∗
 – dxn+ – f (xn+, yn, vn)vn

]
.

We have

	Ln ≤
(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

)
(
dx∗

 + ay∗
 – dxn+ – f (xn+, yn, vn)vn

)
φ

+ ay∗


(

 –
y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

 , y∗
 , v∗

 )

)

φ + ay∗


(

 –
yn+

vn+

v∗


y∗


–
vn

v∗


)

φ

+ φf (xn+, yn, vn)vn +
φpb

c
(R – )zn+ +

φau
k

v∗
 ln

vn

vn+

=
(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

)
(
dx∗

 – dxn+
)
φ + ay∗



(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

+
f (xn+, yn, vn)
f (xn+, y∗

 , v∗
 )

vn

v∗


)

φ + ay∗


(

 –
y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

 , y∗
 , v∗

 )

)

φ

+ ay∗


(

 –
yn+

vn+

v∗


y∗


–
vn

v∗


)

φ +
φpb

c
(R – )zn+ +

φau
k

v∗
 ln

vn

vn+

= φdx∗


(

 –
xn+

x∗


)(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

)

+ φay∗


(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

–
y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

 , y∗
 , v∗

 )
–

yn+

y∗


v∗


vn+
–

f (xn+, y∗
 , v∗

 )
f (xn+, yn, vn)

– ln
vn+

vn

)

+ φay∗


(

– –
vn

v∗


+
f (xn+, y∗

 , v∗
 )

f (xn+, yn, vn)
+

vn

v∗


f (xn+, yn, vn)
f (xn+, y∗

 , v∗
 )

)

+
φpb

c
(R – )zn+.
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Let g(x) = x –  – ln x, then g(x) ≥  for all x > . Hence, we can get

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

–
y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

 , y∗
 , v∗

 )

–
yn+

y∗


v∗


vn+
–

f (xn+, y∗
 , v∗

 )
f (xn+, yn, vn)

– ln
vn+

vn

= –g
(

f (x∗
 , y∗

 , v∗
 )

f (xn+, y∗
 , v∗

 )

)

– g
(

y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

 , y∗
 , v∗

 )

)

– g
(

yn+

y∗


v∗


vn+

)

– g
(

f (xn+, y∗
 , v∗

 )
f (xn+, yn, vn)

)

≤ . ()

According to (A), we know

(

 –
xn+

x∗


)(

 –
f (x∗

 , y∗
 , v∗

 )
f (xn+, y∗

 , v∗
 )

)

≤ . ()

Since (A) holds for i = , we further have

– –
vn

v∗


+
f (xn+, y∗

 , v∗
 )

f (xn+, yn, vn)
+

vn

v∗


f (xn+, yn, vn)
f (xn+, y∗

 , v∗
 )

≤ . ()

Therefore, when R ≤ , from (), (), and () we finally obtain 	Ln ≤  and 	Ln =  if
and only if xn = x∗

 , yn = y∗
 , vn = v∗

 and zn = . Based on LaSalle’s invariance principle, we
see that the no-immune equilibrium E(x∗

 , y∗
 , v∗

 , ) is globally asymptotically stable. This
completes the proof. �

Theorem  Suppose that (A)-(A) hold. If R >  and R > , then the no-immune equi-
librium E(x∗

 , y∗
 , v∗

 , ) of model () is unstable.

Proof By calculating, we easily see that the linearization system of model () at equilibrium
E(x∗

 , y∗
 , v∗

 , ) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xn+ = 
+φ(d+ ∂f

∂x v∗
 )

Xn –
φ

∂f
∂y v∗



+φ(d+ ∂f
∂x v∗

 )
Yn – φ( ∂f

∂v v∗
 +f (x∗

 ,y∗
 ,v∗

 ))

+φ(d+ ∂f
∂x v∗

 )
Vn,

Yn+ = φ
∂f
∂x v∗


(+φ(d+ ∂f

∂x v∗
 ))(+φa)

Xn + ( – φ
∂f
∂x v∗


∂f
∂y v∗



+φ(d+ ∂f
∂x v∗

 )
+ φ

∂f
∂y v∗

 )

× 
+φa Yn + 

+φa [–φ
∂f
∂x v∗


φ( ∂f

∂v v∗
 +f (x∗

 ,y∗
 ,v∗

 ))

+φ(d+ ∂f
∂x v∗

 )

+ φ
∂f
∂v v∗

 + φf (x∗
 , y∗

 , v∗
 )]Vn – φpy∗


+φ(b–cy∗

 )


+φa Zn,

Vn+ = φ
∂f
∂x v∗


(+φ(d+ ∂f

∂x v∗
 ))(+φa)

φk
+φu Xn + ( – φ

∂f
∂x v∗


∂f
∂y v∗



+φ(d+ ∂f
∂x v∗

 )

+ φ
∂f
∂y v∗

 ) 
+φa

φk
+φu Yn + [ 

+φa
φk

+φu (–φ
∂f
∂x v∗



× φ( ∂f
∂v v∗

 +f (x∗
 ,y∗

 ,v∗
 ))

+φ(d+ ∂f
∂x v∗

 )
+ φ

∂f
∂v v∗

 + φf (x∗
 , y∗

 , v∗
 )) + 

+φu ]Vn

– φpy∗


+φ(b–cy∗
 )


+φa

φk
+φu Zn,

Zn+ = 
+φ(b–cy∗

 ) Zn,

()
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where

∂f
∂x

=
∂f
∂x

(
x∗

 , y∗
 , v∗


)
,

∂f
∂y

=
∂f
∂y

(
x∗

 , y∗
 , v∗


)
,

∂f
∂v

=
∂f
∂v

(
x∗

 , y∗
 , v∗


)
.

By calculating we obtain the characteristic equation of equation (),

f (λ) �
(

λ –


 + φ(b – cy∗
 )

)
(
λ + mλ + nλ + l

)
= ,

where

m = –( + φd)
φk( ∂f

∂v v∗
 + f (x∗

 , y∗
 , v∗

 ))
( + φ(d + ∂f

∂x v∗
 ))( + φu)( + φa)

–


 + φu

–
φ

∂f
∂y v∗

 + 
 + φa

+
φ ∂f

∂x v∗


∂f
∂y v∗



( + φ(d + ∂f
∂x v∗

 ))( + φa)
–


 + φ(d + ∂f

∂x v∗
 )

,

n =
φk( ∂f

∂v v∗
 + f (x∗

 , y∗
 , v∗

 ))
( + φ(d + ∂f

∂x v∗
 ))( + φu)( + φa)

+


( + φ(d + ∂f
∂x v∗

 ))( + φu)

+
(


 + φ(d + ∂f

∂x v∗
 )

+


 + φu

)
φ

∂f
∂y v∗

 + 
 + φa

–
φk ∂f

∂x v∗


( + φ(d + ∂f
∂x v∗

 ))( + φu)( + φa)
,

l = –
φ

∂f
∂y v∗

 + 
( + φ(d + m))( + φu)( + φa)

.

Let λi (i = , , , ) be the roots of f (λ) = , then λ = 
+φ(b–cy∗

 ) and λ, λ and λ satisfy
the equation λ + mλ + nλ + l = . From Zn > , we know 

+φ(b–cy∗
 ) > . By R > , we

have b
c < y∗

 . Hence, we get 
+φ(b–cy∗

 ) > . This shows that when R > , the no-immune
equilibrium E(x∗

 , y∗
 , v∗

 , ) is unstable. This completes the proof. �

As a consequence of Theorems  and  we have the following result for model ().

Corollary  If R >  and R ≤ , then the no-immune equilibrium E(x∗
 , y∗

 , v∗
 , ) of model

() is globally asymptotically stable. Otherwise, if R >  and R > , then equilibrium E is
unstable.

Theorem  Suppose that (A)-(A) and (A) for i =  hold. If R >  and R > , then the
infected equilibrium E(x∗

, y∗
, v∗

, z∗
) of model () is globally asymptotically stable.

Proof Let (xn, yn, vn, zn) be any solution of model () with initial condition (). We can
assume by Lemma  (xn, yn, vn, zn) ∈ � for all n ≥ . Define a Lyapunov function as follows:

Ln = xn – x∗
 –

∫ xn

x∗


f (x∗
, y∗

, v∗
)

f (s, y∗
, v∗

)
ds + yn – y∗

 – y∗
 ln

yn

y∗


+
(a + pz∗

)( + φu)
k

(

vn – v∗
 – v∗

 ln
vn

v∗


)

+
p
c

(

zn – z∗
 – z∗

 ln
zn

z∗


)

.
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Obviously, we know Ln ≥  for all xn ≥ , yn ≥ , vn ≥  and zn ≥ , and Ln =  if and only
if xn = x∗

, yn = y∗
, vn = v∗

, and zn = z∗
. Computing 	Ln, we have

	Ln = xn+ – xn –
∫ xn+

xn

f (x∗
, y∗

, v∗
)

f (s, y∗
, v∗

)
ds + yn+ – yn – y∗

 ln
yn+

yn

+
(a + pz∗

)( + φu)
k

(

vn+ – vn – v∗
 ln

vn+

vn

)

+
p
c

(

zn+ – zn – z∗
 ln

zn+

zn

)

≤
(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

)

(xn+ – xn) + yn+ – yn + y∗
 ln

yn

yn+

+
(a + pz∗

)( + φu)
k

(

vn+ – vn – v∗
 ln

vn+

vn

)

+
p
c

(

zn+ – zn – z∗
 ln

zn+

zn

)

.

Using ln x ≤ x –  for x > , we further have

	Ln ≤
(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

)

(xn+ – xn) +
(

 –
y∗


yn+

)

(yn+ – yn)

+
(a + pz∗

)( + φu)
k

(vn+ – vn) –
(a + pz∗

)( + φu)
k

v∗
 ln

vn+

vn

+
p
c

(

 –
z∗


zn+

)

(zn+ – zn).

Since equilibrium E(x∗
, y∗

, v∗
, z∗

) satisfies the equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ – dx∗
 – f (x∗

, y∗
, v∗

)v∗
 = ,

f (x∗
, y∗

, v∗
)v∗

 – ay∗
 – py∗

z∗
 = ,

ky∗
 – uv∗

 = ,

cy∗
z∗

 – bz∗
 = ,

we have

	Ln ≤
(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

)

(xn+ – xn) +
(

 –
y∗


yn+

)

(yn+ – yn)

+
(a + pz∗

)( + φu)
k

(vn+ – vn) –
(a + pz∗

)
k

v∗
 ln

vn+

vn

– φ
(
ay∗

 + py∗
z∗


)

ln
vn+

vn
+

p
c

(

 –
z∗


zn+

)

(zn+ – zn)

=
(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

)

(xn+ – xn) +
(

 –
y∗


yn+

)

(yn+ – yn)

+
(a + pz∗

)
k

(

vn+ – vn – v∗
 ln

vn+

vn

)

+
ay∗

 + py∗
v∗


v∗


(vn+ – vn)φ

– φ
(
ay∗

 + py∗
z∗


)

ln
vn+

vn
+

p
c

(

 –
z∗


zn+

)

(zn+ – zn).

Substituting model () and λ = dx∗
 + ay∗

 + py∗
z∗

, we have
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	Ln ≤ φ

[(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

)
(
dx∗

 + ay∗
 + py∗

z∗
 – dxn+ – f (xn+, yn, vn)vn

)

+
(

 –
y∗


yn+

)
(
f (xn+, yn, vn)vn – ayn+ – pyn+zn+

)

+
(a + pz∗

)
k

(

 –
v∗


vn+

)

(kyn+ – uvn+) +
ay∗

 + py∗
v∗


v∗


(vn+ – vn)

–
(
ay∗

 + py∗
z∗


)

ln
vn+

vn
+

p
c

(

 –
z∗


zn+

)

(cyn+zn+ – bzn+)
]

= φ

[

dx∗


(

 –
xn+

x∗


)(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

)

+
(
ay∗

 + py∗
z∗


)
(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

+
vn

v∗


f (xn+, yn, vn)
f (xn+, y∗

, v∗
)

)

+
(
ay∗

 + py∗
z∗


)
(

 –
vn

v∗


–
yn+

y∗


v∗


vn+

)

–
(
ay∗

 + py∗
z∗


) y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

, y∗
, v∗

)
–

(
ay∗

 + py∗
z∗


)

ln
vn+

vn

]

= φ

[

dx∗


(

 –
xn+

x∗


)(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

)

+
(
ay∗

 + py∗
z∗


)
(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

–
y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

, y∗
, v∗

)
–

yn+

y∗


v∗


vn+
–

f (xn+, y∗
, v∗

)
f (xn+, yn, vn)

– ln
vn+

vn

)

+
(
ay∗

 + py∗
z∗


)
(

– –
vn

v∗


+
f (xn+, y∗

, v∗
)

f (xn+, yn, vn)
+

vn

v∗


f (xn+, yn, vn)
f (xn+, y∗

, v∗
)

)]

.

Let g(x) = x –  – ln x, we have

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

–
y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

, y∗
, v∗

)

–
yn+

y∗


v∗


vn+
–

f (xn+, y∗
, v∗

)
f (xn+, yn, vn)

– ln
vn+

vn

= –g
(

f (x∗
, y∗

, v∗
)

f (xn+, y∗
, v∗

)

)

– g
(

y∗


yn+

vn

v∗


f (xn+, yn, vn)
f (x∗

, y∗
, v∗

)

)

– g
(

yn+

y∗


v∗


vn+

)

– g
(

f (xn+, y∗
, v∗

)
f (xn+, yn, vn)

)

≤ . ()

According to (A), we know

(

 –
xn+

x∗


)(

 –
f (x∗

, y∗
, v∗

)
f (xn+, y∗

, v∗
)

)

≤ . ()

Since (A) holds for i = , we further obtain

– –
vn

v∗


+
f (xn+, y∗

, v∗
)

f (xn+, yn, vn)
+

vn

v∗


f (xn+, yn, vn)
f (xn+, y∗

, v∗
)

≤ . ()

Therefore, when R > , from (), (), and () we finally have 	Ln ≤ . Obviously,
	Ln =  if and only if xn = x∗

, yn = y∗
, vn = v∗

, and zn = z∗
. Based on LaSalle’s invariance

principle, we finally see that the infected equilibrium E(x∗
, y∗

, v∗
, z∗

) is globally asymptot-
ically stable. This completes the proof. �
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As a consequence of Theorem  we have the following result for model ().

Corollary  Let R > . Then the infected equilibrium E(x∗
, y∗

, v∗
, z∗

) of model () is glob-
ally asymptotically stable.

4 Numerical examples
In this section, we give the numerical examples to discuss assumption (A). In model (),
we choose a nonlinear incidence f (x, y, v) = βx

+nv . Furthermore, h =  in the denominator
function φ. The mortality rate of the CTL response b in model () is chosen as a free
parameter. All remaining parameters in model () are chosen as in Table .

We first take the mortality rate of CTL response b = .. By calculating, we see that
the basic reproduction numbers R

.=  >  and R
.= . < . Furthermore, we also

have λ
ξ

= . Hence, model () has only the virus-free equilibrium E(, , , , ) and
the no-immune equilibrium E(., ., ., ).

Consider assumption (A). By calculating we obtain

(

 –
f (x, y, v)

f (x, y∗
i , v∗

i )

)(
f (x, y∗

i , v∗
i )

f (x, y, v)
–

v
v∗

i

)

=
(

 –
 + nv∗

i
 + nv

)

(v – v∗
i )(nvv∗

i – ). ()

For i = , since n λ
ξ

v∗
 –  .= . > , where v∗


.= ., from () we see that assumption

(A) for i =  is not satisfied.
However, the numerical simulations given in Figure  show that equilibrium E is glob-

ally asymptotically stable.
We next take the mortality rate of CTL response b = .. By calculating, we see that the

basic reproduction numbers R
.=  >  and R

.= . > . Furthermore, we also have λ
ξ

=
. Hence, model () has the virus-free equilibrium E(, , , ), the no-immune equi-
librium E(., ., ., ), and the infected equilibrium E(., , , .).

Consider assumption (A). Since n λ
ξ

v∗
 –  .=  > , where v∗


.= , from () we see that

assumption (A) for i =  is not satisfied.
However, the numerical simulations given in Figure  show that equilibrium E is glob-

ally asymptotically stable.
The above numerical examples show that even if assumption (A) does not hold, the no-

immune equilibrium may be globally asymptotically stable only when R >  and R < ,
and the infected equilibrium may be globally asymptotically stable only when R >  and
R > .

Table 1 List of parameters

Parameter Definition Value Source

λ Production rate of uninfected cells 10 References [31, 32]
d Death rate of uninfected cells 0.1 References [31, 32]
β Infection rate 0.15 References [31, 32]
a Death rate of infected cells 0.2 References [19, 31]
p CTL effectiveness 1 References [19, 31]
n Saturation coefficient 0.01 Reference [7]
k Production rate of free virus 0.1 References [19, 31]
u Clearance rate of free virus 0.1 References [19, 30]
c Proliferation rate of CTL response 0.01 References [19, 30]
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Figure 1 The trajectories of solutions (xn, yn, vn, zn) with initial values (x0, y0, v0, z0) = (10, 30, 20, 7),
(25, 40, 35, 2), and (30, 50, 50, 5).

Figure 2 The trajectories of solutions (xn, yn, vn, zn) with initial values (x0, y0, v0, z0) = (20, 15, 15, 0.1),
(30, 10, 10, 1.5), and (5, 20, 20, 1).

5 Discussions
In this paper, we studied a four dimensional discrete-time virus infected model ()
with general nonlinear incidence function f (x, y, v)v and CTL immune response obey-
ing Micken’s non-standard finite difference (NSFD) scheme. Assumptions (A)-(A) for
nonlinear function f (x, y, v) are introduced and two basic reproduction numbers R and
R also are defined. The basic properties of model () on the existence of the virus-free
equilibrium E, the no-immune equilibrium E, and the infected equilibrium E, and the
positivity and ultimate boundedness of the solutions are established. Under (A)-(A), the
global stability and instability of the equilibria are completely determined by the basic re-
production numbers R and R. That is, if R ≤  then E is globally asymptotically stable,
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if R >  and R ≤  then E is unstable and E is globally asymptotically stable and if R > 
and R >  then E and E are unstable and E is globally asymptotically stable.

We see that (A)-(A) are basic for model (). Particularly, when f (x, y, v) = βx
+mx+nv and

f (x, y, v) = βx
+nvq then (A)-(A) naturally hold. But (A) is a mathematical assumption. It is

only used in the proofs of theorems on the global stability of the no-immune equilibrium
E and the infected equilibrium E to obtain 	Ln ≤  for the Lyapunov function Ln (see the
proofs of Theorem  and Theorem ). However, we also see that when f (x, y, v) = βx

+mx+nv ,
(A) naturally hold. Furthermore, the numerical simulations given in Section  show that
even if (A) does not hold, the no-immune equilibrium E may be globally asymptotically
stable only when R >  and R < , and the infected equilibrium E may be globally asymp-
totically stable only when R >  and R > .

Generally, we expect that the global stability of the equilibria for model () can be com-
pletely determined only by the basic reproduction numbers R and R. Therefore, an open
problem is whether (A) can be thrown off in Theorem  and Theorem . Furthermore, we
also do not obtain the local asymptotic stability of the infected equilibrium E only under
(A)-(A). The cause is that the characteristic equation of linearized system of model ()
at equilibrium E is very complicated.

When the incidence function f (x, y, v) = βx
+mx+nv , we know that (A)-(A) are satisfied.

The global stability of the equilibria of the discrete model () only depends on the basic
reproduction numbers R and R. This shows that the global stability of the equilibria for
the discrete model () is equal to the corresponding continuous model (). This implies
that the NSFD scheme preserves the stability of the continuous model.

As is well known, in our body the immune response is made up of both a cellular re-
sponse and a humoral response. The cellular response is that T cells kill the infected cells,
the humoral response is that B cells produce an antibody to neutralize the virus. In this
paper, we only consider the cellular response. In the future, our work will focus on the idea
that the two kinds of immune response simultaneously play a role.
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