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1 Introduction
The purpose of this paper is to establish the uniqueness of a positive solution to the fol-
lowing higher order fractional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ x(t) + q(t)f (t, x(t), Dμ

+ x(t), . . . , Dμn–
+ x(t)) = ,  < t < , n –  < α ≤ n,

x() = Dμ
+ x() = Dμ

+ x() = · · · = Dμn–
+ x() = ,

Dμ

+ x() =
∑p–

j= ajDμ

+ x(ξj),

(.)

where n ≥ , n ∈ N , n – i –  < α – μi < n – i for i = , , . . . , n – , and μ – μn– > ,
α – μ > , aj ∈ [, +∞),  < ξ < ξ < · · · < ξp– < ,  <

∑p–
j= ajξ

α–μ–
j < , Dα

+ is the
standard Riemann-Liouville derivative, f : [, ] × (, +∞)n– → [, +∞) is continuous,
q : (, ) → [, +∞) is continuous, f (t, x, x, . . . , xn–) may be singular at x = , x = , . . . ,
xn– = , and q(t) may be singular at t =  and/or t = .

Recently, one has found numerous applications of fractional differential equations in
viscoelasticity, electrochemistry, control, porous media, and electromagnetics; see [–]
and the references therein. Particularly, the theory of boundary value problems (BVPs) for
nonlinear fractional differential equations has received great attention, but many aspects
of the theory still need to be explored.

In [], Rehman and Khan studied the following multi-point boundary value problems
for fractional differential equations:

⎧
⎨

⎩

Dα
t x(t) = f (t, x(t), Dβ

t x(t)),  < t < ,

x() = , Dβ
t x() –

∑m–
i= ζiDβ

t x(ξi) = x,
(.)
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where  < α ≤ ,  < β < ,  < ξi <  (i = , , . . . , m – ), ζi ≥ , with
∑m–

i= ζiξ
α–β–
i < , Dα

t
represents the standard Riemann-Liouville fractional derivative. The nonlinear function
f : [, ] × R × R → R is continuous and satisfies certain growth conditions. The existence
and uniqueness of nontrivial solutions for BVP (.) are established by using the Schauder
fixed point theorem and the Banach contraction mapping principle. In [], Zhang investi-
gated the existence of positive solutions of the following equation by a fixed point theorem
for the mixed monotone operator:

⎧
⎨

⎩

Dα
+ x(t) + q(t)f (x, x′, . . . , x(n–)) = ,  < t < , n –  < α ≤ n,

x() = x′() = · · · = x(n–)() = x(n–)() = ,

where f (u, u, . . . , un–) may be singular at u = , u = , . . . , un– = , q(t) may be singu-
lar at t = , Dα

+ is the Riemann-Liouville fractional derivative of order α. Xu and Fei []
considered the properties of the Green’s function for the nonlinear fractional differential
equation three-point boundary value problem

⎧
⎨

⎩

Dα
+ x(t) + f (t, x(t)) + e(t) = ,  < t < ,

x() = , Dβ

+ x() = aDβ

+ x(ξ ),

where  < α ≤ ,  < β ≤ ,  ≤ a ≤ ,  < ξ < , α –β –  ≥ , Dα
+ is the standard Riemann-

Liouville derivative, f : (, ) × (, +∞) → (, +∞) satisfies the Caratheodory conditions.
The authors obtained some multiple positive solutions by means of the Schauder fixed
point theorem.

In [], Zhang, Liu and Wu investigated the following singular eigenvalue problem for a
higher order fractional differential equation:

⎧
⎨

⎩

–Dαx(t) = λf (x(t), Dμ x(t), . . . , Dμn– x(t)),  < t < ,

x() = , Dμi x() = , Dμx() =
∑p–

j= ajDμx(ξj),  ≤ i ≤ n – ,

where Dα is the standard Riemann-Liouville derivative. The eigenvalue interval for the
existence of positive solutions is obtained by the Schauder fixed point theorem and the
upper and lower solutions method.

Motivated by the work mentioned above, we consider the fractional order singular non-
local BVP (.). In this paper, we establish the existence of a unique positive solution for
BVP (.). The main tool used in the proofs of the existence results is a fixed point theorem
for the mixed monotone operator. The present paper has the following features. First of all,
the nonlinear f involves fractional derivatives of an unknown function. Second, BVP (.)
possesses a singularity, that is, f (t, x, . . . , xn–) may be singular at x = , x = , . . . , xn– = ,
q(t) may be singular at t =  and/or t = . Third, the nonlocal boundary conditions involv-
ing fractional derivatives of the unknown function are more general cases, which include
two-point, three-point, multi-point, and some nonlocal problems as special cases.

The rest of the paper is organized as follows. In Section , we present some preliminaries
and lemmas on fractional calculus theory, and then give the associated Green’s function
and develop some properties of the Green’s function. In Section , we establish an exis-
tence result of a unique positive solution of BVP (.) under certain assumptions for the
functions f and q. An example is given to illustrate the main result in Section .
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2 Preliminaries and lemmas
Definition . ([, ]) The Riemann-Liouville fractional integral of order α >  of a func-
tion u : (, +∞) → R is given by

Iα
+ u(t) =


�(α)

∫ t


(t – s)α–u(s) ds

provided the right-hand side is pointwise defined on (, +∞).

Definition . ([, ]) The Riemann-Liouville fractional derivative of order α >  of a
continuous function u : (, +∞) → R is given by

Dα
+ u(t) =


�(n – α)

(
d
dt

)n ∫ t



u(s)
(t – s)α–n+ ds,

where n is the smallest integer not less than α, provided the right-hand side is pointwise
defined on (, +∞).

Lemma . ([, ])
() If x ∈ L(, ), ρ > σ > , and n ∈ N , then

Iρ

+ Iσ
+ x(t) = Iρ+σ

+ x(t), Dσ
+ Iρ

+ x(t) = Iρ–σ

+ x(t),

Dσ
+ Iσ

+ x(t) = x(t),
(

d
dt

)n(
Dσ

+ x(t)
)

= Dn+σ
+ x(t).

() If ν > , σ > , then

Dν
+ tσ– =

�(σ )
�(σ – ν)

tσ–ν–.

Lemma . ([]) Let α > . Then the following equality holds for u ∈ L(, ) and Dα
+ u ∈

L(, ):

Iα
+ Dα

+ u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

where ci ∈ R, i = , , , . . . , n, here n –  < α ≤ n.

Let

k(t, s) =

⎧
⎨

⎩

tα–μn––(–s)α–μ––(t–s)α–μn––

�(α–μn–) ,  ≤ s ≤ t ≤ ,
tα–μn––(–s)α–μ–

�(α–μn–) ,  ≤ t ≤ s ≤ ,

k(t, s) =

⎧
⎨

⎩

(t(–s))α–μ––(t–s)α–μ–

�(α–μn–) ,  ≤ s ≤ t ≤ ,
(t(–s))α–μ–

�(α–μn–) ,  ≤ t ≤ s ≤ .

Obviously, for t, s ∈ [, ], we have

k(t, s) ≤ tα–μn––

�(α – μn–)
, k(t, s) ≤ 

�(α – μn–)
. (.)
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Proceeding as for the proof of Lemma . in [], we have the following lemma.

Lemma . If h(t) ∈ L[, ], then the boundary value problem

⎧
⎨

⎩

–Dα–μn–
+ w(t) = h(t),

w() = , Dμ–μn–
+ w() =

∑p–
j= ajDμ–μn–

+ w(ξj),
(.)

has a unique solution

w(t) =
∫ 


K(t, s)h(s) ds,

where

K(t, s) = k(t, s) +
tα–μn––

 –
∑p–

j= ajξ
α–μ–
j

p–∑

j=

ajk(ξj, s) (.)

is the Green’s function of the boundary value problem (.).

Lemma . The function K (t, s) has the following properties:
() K(t, s) > , for t, s ∈ (, );
() tα–μn––G(s) ≤ K(t, s) ≤ Btα–μn––, for t, s ∈ (, ), where

G(s) =
∑p–

j= ajk(ξj, s)

 –
∑p–

j= ajξ
α–μ–
j

, B =
 +

∑p–
j= aj( – ξ

α–μ–
j )

�(α – μn–)( –
∑p–

j= ajξ
α–μ–
j )

.

Proof It is obvious that () holds. In the following, we will prove (). First, from (.) we
have

K(t, s) ≥ tα–μn––

 –
∑p–

j= ajξ
α–μ–
j

p–∑

j=

ajk(ξj, s) = tα–μn––G(s).

On the other hand, it follows from (.) that

K(t, s) = k(t, s) +
tα–μn––

 –
∑p–

j= ajξ
α–μ–
j

p–∑

j=

ajk(ξj, s)

≤ tα–μn––

�(α – μn–)
+

tα–μn–– ∑p–
j= aj

�(α – μn–)( –
∑p–

j= ajξ
α–μ–
j )

=
(

 +
∑p–

j= aj

 –
∑p–

j= ajξ
α–μ–
j

)
tα–μn––

�(α – μn–)
.

This completes the proof. �
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For the convenience of expression in the rest of the paper, we let μ = . Now let us
consider the following modified problems of BVP (.):

⎧
⎨

⎩

Dα–μn–
+ u(t) + q(t)f (t, Iμn––μ

+ u(t), Iμn––μ
+ u(t), . . . , Iμn––μn–

+ u(t), u(t)) = ,

u() = , Dμ–μn–
+ u() =

∑p–
j= ajDμ–μn–

+ u(ξj).
(.)

By similar arguments to [], we obtain the following lemma.

Lemma . Let x(t) = Iμn––μ
+ u(t), u(t) ∈ C[, ]. Then we can transform (.) into (.).

Moreover, if u ∈ C([, ], (, +∞)) is a positive solution of problem (.), then the function
x(t) = Iμn––μ

+ u(t) is a positive solution of BVP (.).

In order to obtain the uniqueness of a positive solution to BVP (.), we will consider the
uniqueness of a positive solution to the following modified problem:

⎧
⎨

⎩

Dα–μn–
+ u(t) + q(t)f (t, Iμn––μ

+ u(t) + 
m , Iμn––μ

+ u(t) + 
m , . . . , u(t) + 

m ) = ,

u() = , Dμ–μn–
+ u() =

∑p–
j= ajDμ–μn–

+ u(ξj),
(.)

where t ∈ (, ), m ∈ {, , . . .}. Assume that f : [, ]× (, +∞)n– → [, +∞) is continuous,
then u is a solution of system (.) if and only if u is a solution of the following nonlinear
integral equation:

u(t) =
∫ 


K(t, s)q(s)f

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

ds. (.)

Let P be a normal cone of a Banach space E, and e ∈ P with ‖e‖ ≤ , e 	= θ (θ is a zero
element of E). Define Qe = {x ∈ P|there exist constants m, M >  such that me ≤ x ≤ Me}.
Now we give the following definition and theorem (see []).

Definition . Let D be a subset of Banach space E. Let operator A : D × D → E. A is
said to be mixed monotone if A(x, y) is nondecreasing in x and nonincreasing in y, i.e.,
x ≤ x (x, x ∈ D) implies A(x, y) ≤ A(x, y) for any y ∈ D, and y ≤ y (y, y ∈ D) im-
plies A(x, y) ≥ A(x, y) for any x ∈ D. The element x∗ ∈ D is called a fixed point of A if
A(x∗, x∗) = x∗.

Lemma . Suppose that A : Qe ×Qe → Qe is a mixed monotone operator and there exists
a constant σ ,  < σ < , such that

A
(
cx, c–y

) ≥ cσ A(x, y), x, y ∈ Qe,  < c < .

Then A has a unique fixed point x∗ ∈ Qe.

3 Main results
For convenience in the presentation, we now present some assumptions to be used in the
rest of the paper.
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(H) f (t, x, . . . , xn–) = φ(t, x, . . . , xn–) + ψ(t, x, . . . , xn–), where φ : [, ] × [, +∞)n– →
[, +∞) and ψ : [, ] × (, +∞)n– → [, +∞) are continuous, and for any fixed t ∈
[, ], φ(t, x, . . . , xn–) is nondecreasing and ψ(t, x, . . . , xn–) is nonincreasing in xi > 
(i = , , . . . , n – ), respectively.

(H) There exists σ ∈ (, ) such that, for xi > , i = , , . . . , n – , and for any t ∈ [, ] and
c ∈ (, ),

φ(t, cx, . . . , cxn–) ≥ cσ φ(t, x, . . . , xn–),

ψ
(
t, c–x, . . . , c–xn–

) ≥ cσ ψ(t, x, . . . , xn–).

(H) φ(t, , , . . . , ) 	≡ , ψ(t, , , . . . , ) 	≡ ,

 <
∫ 


q(s)φ(s, , , . . . , ) ds < +∞,

∫ 


s–σ (α–)q(s)ψ(s, , , . . . , ) ds < +∞.

Remark . By (H), for c ≥ , we have

φ(t, cx, . . . , cxn–) ≤ cσ φ(t, x, . . . , xn–),

ψ
(
t, c–x, . . . , c–xn–

) ≤ cσ ψ(t, x, . . . , xn–).

Let e(t) = tα–μn––, t ∈ [, ], it is clear that e 	= θ , ‖e‖ = . We here define a normal cone
of C[, ] by

P =
{

x ∈ C[, ] : x(t) ≥ ,  ≤ t ≤ 
}

,

and we also define

Qe =
{

x ∈ P :


M
e(t) ≤ x(t) ≤ Me(t),  ≤ t ≤ 

}

,

where

M > max

{[

σ B
∫ 


q(s)φ(s, , , . . . , ) ds + Bη–σ

∫ 


s–σ (α–)q(s)ψ(s, , , . . . , ) ds

] 
–σ

, ,

η,
[

ησ

∫ 


q(s)G(s)sσ (α–)φ(s, , , . . . , ) ds

+ –σ

∫ 


q(s)G(s)ψ(s, , , . . . , ) ds

]– 
–σ

}

,

 < η < min

{

,
�(α – μn–)
�(α – μ)

,
�(α – μn–)
�(α – μ)

, . . . ,
�(α – μn–)
�(α – μn–)

}

.

Remark . By Definition ., for t ∈ (, ), i = , , , . . . , n – , we have

 < Iμn––μi e(t) =


�(μn– – μi)

∫ t


(t – s)μn––μi–sα–μn–– ds

=
B(μn– – μi,α – μn–)

�(μn– – μi)
tα–μi– =

�(α – μn–)
�(α – μi)

tα–μi– < .
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Theorem . Assume that conditions (H)-(H) hold. Then BVP (.) has a unique positive
solution x(t), which satisfies

�(α – μn–)
M�(α)

tα– ≤ x(t) ≤ M�(α – μn–)
�(α)

tα–, t ∈ [, ].

Proof We first consider the existence of a positive solution to problem (.). From the
discussion in Section , we only need to consider the existence of a positive solution to
the integral equation (.). For this purpose, we define the operator T : Qe × Qe → P by

T(u, v)(t)

=
∫ 


K(t, s)q(s)

[

φ

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

+ ψ

(

s, Iμn––μ
+ v(s) +


m

, Iμn––μ
+ v(s) +


m

, . . . , v(s) +

m

)]

ds, t ∈ [, ]. (.)

Now we prove that T : Qe × Qe → Qe. First, we will prove T : Qe × Qe → P is well
defined. For any u ∈ Qe, v ∈ Qe, we have Iiu(t) + 

m > , Iiv(t) + 
m >  (i = μn– – μ,

μn– – μ, . . . ,μn– – μn–), u(t) + 
m >  and v(t) + 

m >  for all t ∈ [, ]. By (H), (H),
and Remark ., for t ∈ [, ] we have

φ

(

t, Iμn––μ
+ u(t) +


m

, Iμn––μ
+ u(t) +


m

, . . . , u(t) +

m

)

≤ φ

(

t, Iμn––μ
+ Me(t) +


m

, Iμn––μ
+ Me(t) +


m

, . . . , Me(t) +

m

)

≤ φ
(
t, Iμn––μ

+ Me(t) + , Iμn––μ
+ Me(t) + , . . . , Me(t) + 

)

≤ φ(t, M + , M + , . . . , M + )

≤ (M + )σφ(t, , , . . . , )

≤ σ Mσ φ(t, , , . . . , ) (.)

and

ψ

(

t, Iμn––μ
+ v(t) +


m

, Iμn––μ
+ v(t) +


m

, . . . , v(t) +

m

)

≤ ψ

(

t, Iμn––μ
+


M

e(t) +

m

, Iμn––μ
+


M

e(t) +

m

, . . . ,


M
e(t) +


m

)

= ψ

(

t,
�(α – μn–)
M�(α – μ)

tα–μ– +

m

,
�(α – μn–)
M�(α – μ)

tα–μ– +

m

, . . . ,


M
tα–μn–– +


m

)

≤ ψ

(

t,
η

M
tα–μ– +


m

,
η

M
tα–μ– +


m

, . . . ,
η

M
tα–μn–– +


m

)

≤ ψ

(

t,
η

M
tα– +


m

,
η

M
tα– +


m

, . . . ,
η

M
tα– +


m

)

≤
(

ηM–tα– +

m

)–σ

ψ(t, , , . . . , )

≤ η–σ Mσ t–σ (α–)ψ(t, , , . . . , ). (.)
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Since ηM–tα– + 
m ∈ (, ), we also have

φ

(

t, Iμn––μ
+ u(t) +


m

, Iμn––μ
+ u(t) +


m

, . . . , u(t) +

m

)

≥ φ

(

t, Iμn––μ
+


M

e(t) +

m

, Iμn––μ
+


M

e(t) +

m

, . . . ,


M
e(t) +


m

)

= φ

(

t,


M
Iμn––μ

+ e(t) +

m

,


M
Iμn––μ

+ e(t) +

m

, . . . ,


M
e(t) +


m

)

≥ φ

(

t,
η

M
tα– +


m

,
η

M
tα– +


m

, . . . ,
η

M
tα– +


m

)

≥
(

ηM–tα– +

m

)σ

φ(t, , , . . . , )

≥ ησ M–σ tσ (α–)φ(t, , , . . . , ) (.)

and

ψ

(

t, Iμn––μ
+ v(t) +


m

, Iμn––μ
+ v(t) +


m

, . . . , v(t) +

m

)

≥ ψ

(

t, Iμn––μ
+ Me(t) +


m

, Iμn––μ
+ Me(t) +


m

, . . . , Me(t) +

m

)

≥ ψ
(
t, Iμn––μ

+ Me(t) + , Iμn––μ
+ Me(t) + , . . . , M + 

)

≥ ψ(t, M + , M + , . . . , M + )

≥ (M + )–σψ(t, , , . . . , )

≥ –σ M–σ ψ(t, , , . . . , ). (.)

It follows from (.), (.), (H), and Lemma . that

∫ 


K(t, s)q(s)φ

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

ds

≤ Btα–μn––
∫ 


q(s)φ

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

ds

≤ Bσ Mσ tα–μn––
∫ 


q(s)φ(s, , , . . . , ) ds (.)

and

∫ 


K(t, s)q(s)ψ

(

s, Iμn––μ
+ v(s) +


m

, Iμn––μ
+ v(s) +


m

, . . . , v(s) +

m

)

ds

≤ Btα–μn––
∫ 


q(s)ψ

(

s, Iμn––μ
+ v(s) +


m

, Iμn––μ
+ v(s) +


m

, . . . , v(s) +

m

)

ds

≤ Bη–σ Mσ tα–μn––
∫ 


s–σ (α–)q(s)ψ(s, , , . . . , ) ds, (.)
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which imply that

T(u, v)(t) ≤ Bσ Mσ tα–μn––
∫ 


q(s)φ(s, , , . . . , ) ds

+ Bη–σ Mσ tα–μn––
∫ 


s–σ (α–)q(s)ψ(s, , , . . . , ) ds

< +∞.

Hence, T : Qe × Qe → P is well defined.
By (.) and (.), we see that

T(u, v)(t) ≤ Mtα–μn–– = Me(t), t ∈ [, ]. (.)

From (.), (.), (H), and Lemma ., it follows that

∫ 


q(s)K(t, s)φ

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

ds

≥ tα–μn––
∫ 


q(s)G(s)φ

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

ds

≥ tα–μn––ησ M–σ

∫ 


sσ (α–)q(s)G(s)φ(s, , , . . . , ) ds (.)

and

∫ 


q(s)K(t, s)ψ

(

s, Iμn––μ
+ v(s) +


m

, Iμn––μ
+ v(s) +


m

, . . . , v(s) +

m

)

ds

≥ tα–μn––
∫ 


q(s)G(s)ψ

(

s, Iμn––μ
+ v(s) +


m

, Iμn––μ
+ v(s) +


m

, . . . , v(s) +

m

)

ds

≥ tα–μn–––σ M–σ

∫ 


q(s)G(s)ψ(s, , , . . . , ) ds, (.)

which imply that

T(u, v)(t) ≥ 
M

tα–μn–– =


M
e(t), t ∈ [, ]. (.)

Hence, by (.) and (.), T(u, v) ∈ Qe. Therefore, T : Qe × Qe → Qe.
Next, we shall show that T : Qe × Qe → Qe is a mixed monotone operator. In fact, if

u ≤ u (u, u ∈ Qe), from the monotonicity of I(i) (i > ) and φ, we obtain

∫ 


K(t, s)q(s)φ

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

ds

≤
∫ 


K(t, s)q(s)φ

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

ds,

which implies that

T(u, v)(t) ≤ T(u, v)(t), v ∈ Qe, t ∈ [, ].
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That is, T(u, v) is nondecreasing in u for any v ∈ Qe. Similarly, if v ≥ v (v, v ∈ Qe), from
the monotonicity of I(i) (i > ) and ψ , we deduce that

∫ 


K(t, s)q(s)ψ

(

s, Iμn––μ
+ v(s) +


m

, Iμn––μ
+ v(s) +


m

, . . . , v(s) +

m

)

ds

≤
∫ 


K(t, s)q(s)ψ

(

s, Iμn––μ
+ v(s) +


m

, Iμn––μ
+ v(s) +


m

, . . . , v(s) +

m

)

ds,

which implies that

T(u, v)(t) ≤ T(u, v)(t), u ∈ Qe, t ∈ [, ].

That is, T(u, v) is nonincreasing in v for any u ∈ Qe. Hence, T : Qe × Qe → Qe is a mixed
monotone operator.

Finally, we prove that T(cu, c–v)(t) ≥ cσ T(u, v)(t) for c ∈ (, ), t ∈ [, ]. In fact, for
u, v ∈ Qe, c ∈ (, ), from (H), we have

∫ 


K(t, s)q(s)φ

(

s, Iμn––μ
+ cu(s) +


m

, Iμn––μ
+ cu(s) +


m

, . . . , cu(s) +

m

)

ds

≥
∫ 


K(t, s)q(s)φ

(

s, Iμn––μ
+ cu(s) +

c
m

, Iμn––μ
+ cu(s) +

c
m

, . . . , cu(s) +
c
m

)

ds

=
∫ 


K(t, s)q(s)

× φ

(

s, c
(

Iμn––μ
+ u(s) +


m

)

, c
(

Iμn––μ
+ u(s) +


m

)

, . . . , c
(

u(s) +

m

))

ds

≥ cσ

∫ 


K(t, s)q(s)φ

(

s, Iμn––μ
+ u(s) +


m

, Iμn––μ
+ u(s) +


m

, . . . , u(s) +

m

)

ds

and

∫ 


K(t, s)q(s)ψ

(

s, Iμn––μ
+ c–v(s) +


m

, Iμn––μ
+ c–v(s) +


m

, . . . , c–v(s) +

m

)

ds

≥
∫ 


K(t, s)q(s)

× ψ

(

s, Iμn––μ
+ c–v(s) +


cm

, Iμn––μ
+ c–v(s) +


cm

, . . . , c–v(s) +


cm

)

ds

=
∫ 


K(t, s)q(s)

× ψ

(

s, c–
(

Iμn––μ
+ v(s) +


m

)

, c–
(

Iμn––μ
+ v(s) +


m

)

, . . . , c–
(

v(s) +

m

))

ds

≥ cσ

∫ 


K(t, s)q(s)ψ

(

s, Iμn––μ
+ v(s) +


m

, Iμn––μ
+ v(s) +


m

, . . . , v(s) +

m

)

ds,

which imply that

T
(
cu, c–v

)
(t) ≥ cσ T(u, v)(t), t ∈ [, ].
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Thus, Lemma . ensures that there exists a unique positive solution u∗
m ∈ Qe such that

T(u∗
m, u∗

m) = u∗
m. Consequently, problem (.) has a unique positive solution for every

m ∈ {, , . . .}.
Since u∗

m ∈ C([, ], [, +∞)), it implies that φ(s, Iμn––μ u∗
m + 

m , . . . , u∗
m + 

m ) and
ψ(s, Iμn––μ u∗

m + 
m , Iμn––μ u∗

m + 
m , . . . , u∗

m + 
m ) are continuous. Also, u∗

m has uniform
lower and upper bounds from u∗

m ∈ Qe. Hence, in order to pass the solution u∗
m of (.) to

that of (.), we need the fact that {u∗
m}m≥ is an equicontinuous family on [, ]. In fact,

by the Arzela-Ascoli theorem and the Lebesgue dominated convergence theorem, we can
complete the proof. Since this process is easy and standard, here we omit the details. Let
u∗ = limm→+∞ u∗

m, then, by Lemma ., x(t) = Iμn––μ u∗(t) is the unique positive solution
of BVP (.), and

�(α – μn–)
M�(α)

tα– ≤ x(t) ≤ M�(α – μn–)
�(α)

tα–, t ∈ [, ]. �

4 An example
Example . Consider the following singular boundary value problem:

⎧
⎨

⎩

D 
 x(t) + t– 

 [tx

 + t 

 x– 
 + t(D 

 x(t)) 
 + (D 

 x(t))– 
 ] = ,  < t < ,

x() = D 
 x() = , D 

 x() =
√


 D 

 x( 
 ),

(.)

where

q(t) = t– 
 , f (t, x, x) = tx



 + t


 x– 


 + tx



 + x– 


 .

Then the singular BVP (.) has a unique positive solution.

Proof Let α = 
 , μ = 

 , μ = 
 , p = , then

∑p–
j= ajξ

α–μ–
j =

√


 ( 
 ) 

 ≈ . < . Let
f (t, x, x) = φ(t, x, x) + ψ(t, x, x), where

φ(t, x, x) = tx


 + tx



 , ψ(t, x, x) = t


 x– 


 + x– 


 .

Then, for any (t, x, x) ∈ [, ] × (,∞) and  < c < ,

φ(t, cx, cx) = c

 tx



 + tc


 x



 ≥ c


 φ(t, x, x)

and

ψ
(
t, c–x, c–x

)
= c


 t


 x– 


 + c


 x– 


 ≥ c


 ψ(t, x, x).

Noting σ = 
 , φ(t, , ) = t + t, ψ(t, , ) = t 

 + , we have

∫ 


q(s)φ(s, , ) ds =

∫ 


s– 


(
s + s

)
ds =




and
∫ 


s–σ (α–)q(s)ψ(s, , ) ds =

∫ 


s– 


(
s


 + 

)
ds = .
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Hence, the assumptions (H)-(H) of Theorem . hold. Then Theorem . implies that
BVP (.) has a unique positive solution. �
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