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Abstract
Experiments show that the liquid mixture of helium-3 and helium-4 has either a
superfluid phase or phase separation when the temperature decreases or the mole
fraction of helium-3 changes. In this paper, we investigate the equations which
govern these phase transitions and derive the criteria for these phase changes; we
also give an approximate solution of each phase.
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1 Introduction
Liquid helium- and helium- can be dissolved into each other. Experiments show that
this mixture has either a superfluid phase or phase separation when the temperature de-
creases or the mole fraction of helium- changes. In one of these experiments, the liquid
mixture of He and He is put into a certain container, and the temperature T is lowered.
Then the critical temperature of superfluidity or phase separation is recorded. After a se-
ries of experiments, the critical temperature is found to be relevant to the blending ratio
of the liquid helium mixture. Assume that total mole density of the mixture is , and let X
( ≤ X ≤ ) be the mole fraction of helium- (i.e.  – X is the mole fraction of helium-),
then the blending ratio of the mixture can be determined by X. Thus we have a phase
diagram as below; see Figure  [].

In this diagram (Figure ), the parameter set {(X, T)|T > ,  < X < } is divided into three
disjoint regions. When the control parameter (X, T) is in a certain region, the correspond-
ing phase described in the diagram can be observed in the experiment. In this paper, we
intend to give this conclusion from the mathematical point of view.

The behaviour of the He-He liquid mixture is governed by the following equations
(see []):

⎧
⎪⎪⎨

⎪⎪⎩

∂ψ

∂t = μ�ψ – λψ – γ|ψ |ψ – νuψ in �,
∂u
∂t = –μ�u + λ�u + �[(–ν + νX)u + νu + ν|ψ |] in �,
∫

�
u dx = .

()

In these equations, ψ = ψ  + iψ describes the superfluidity of helium-; u is the
mole density of helium-; μ,μ,γ,ν,ν,ν >  are parameters irrelevant to (X, T). We
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Figure 1 Experiment result.

have

λ = –σ + θT + σX,

λ = θ(T + σ) –
aθ

R
( – X)X,

()

where R is the molar gas constant; a, θ, θ >  are constants; σ,σ >  are small correction
terms.

� describes the occupied area of the container. For simplicity, we assume L > l, and let
� = (, L) × (, l) × (, l) ⊂R

. So L, the longest edge of the container, determines its size.
The boundary condition is given by

∂u
∂n

= ,
∂�u
∂n

= ,
∂ψ

∂n
=  on ∂�.

Equations () admit a solution ψ = , u = , which refers to the normal phase. Mean-
while, ψ �= , u =  refers to superfluidity of helium-; ψ = , u �=  refers to phase separa-
tion; and ψ �= , u �=  refers to superfluidity and phase separation. So we are focussed on
nonzero solutions for ().

Two critical curves in the XT-plane were given by Ma and Wang in []. They also derived
corresponding phase diagrams and an expression of one bifurcation.

In this paper, we discuss the steady state equations of () with (X, L, T) as the control
parameter, where X is the mole fraction of helium-, L is the longest edge of the container,
and T is the temperature. And here is our task:

. give a different critical curve;
. provide phase diagrams in the LT-plane and a different phase diagram in the

XT-plane;
. derive the expression of other bifurcating solutions.

See [–] for more studies on bifurcation problems or the behaviour of liquid helium.
The remainder of this paper is organised as follows. In Section  we give preliminaries.

In Section  we give the critical curves and phase diagram. In Section  we give solutions
corresponding to each phases. In Section  we give the proofs.

2 Preliminaries
In this section, we give a brief review of Ma and Wang’s dynamic transition theory. We
rewrite () as a two operator equation.
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2.1 Dynamic transition theory
Consider the following operator equation:

dw
dt

= L
w + G(w). ()

Here w is the unknown; L
 is a family of linear operators, with {βi(
)} as eigenvalues
(listed by algebraic multiplicities); 
 is the control parameter; and G(w) = o(|w|). Assume
that there is 
 such that {βi(
)} satisfies the following. For j ≥ m + , Reβj(
) < , and
for  ≤ i ≤ m,

Reβi(
) <  if 
 < 
,

Reβi(
) =  if 
 = 
,

Reβi(
) >  if 
 > 
.

Then equation () will undergo a transition at 
 = 
. In other words, the solution w = 
is stable when 
 < 
; and when 
 > 
, it is not stable.

To illustrate, let 
 = (X, T) and β(X, T) be first eigenvalue of L
. Then {(X, T)|β = }
defines a curve in the XT-plane. This curve is called critical curve, it divides the XT-plane
into two disjoint regions {(X, T)|β < } and {(X, T)|β > }. And each region refers to a
different phase state. In other words, as the control parameters (X, T) cross the critical
curve {(X, T)|β = } (i.e. from {(X, T)|β < } to {(X, T)|β > }), a transition takes place.

2.2 Operator equations
Following this idea, let 
 = (X, L, T), and we will rewrite equation () as two operator
equations. Note that λ, = λ,(X, T); see ().

Denote w = (ψ ,ψ, u)T , and

H =
{

w ∈ H(
�,R)∣

∣
∣

∫

�

u = ,
∂u
∂n

∣
∣
∣
∣
∂�

= ,
∂�u
∂n

∣
∣
∣
∣
∂�

= ,
∂ψ ,

∂n

∣
∣
∣
∣
∂�

= 
}

.

Consider the operators L

 : H → L(�,R) and G : H → L(�,R), where

L

 =

⎛

⎜
⎝

μ� – λ  
 μ� – λ 
  –μ� + λ�

⎞

⎟
⎠ ,

G(w) =

⎛

⎜
⎝

G(w)
G(w)
G(w)

⎞

⎟
⎠ =

⎛

⎜
⎝

–γ|ψ |ψ  – νuψ 

–γ|ψ |ψ – νuψ

�[(–ν + νX)u + νu + ν|ψ |]

⎞

⎟
⎠ .

Then the steady state equations of () can be rewritten as

L

w + G(w) = . ()

If λ < , then steady state equations of () admit a solution (see []),

ψ =
√

–λ/γeiφ , u = , φ ∈ [, π ).
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Equation () is invariant when we apply an orthogonal transformation, so φ =  in a prop-
erly chosen coordinate system of C. Note that we always assume this coordinate system
in this paper.

Consequently, this solution can be rewritten as

ψ =
√

–λ/γ, u = . ()

Denote w̃ = (ψ  –
√

–λ/γ,ψ, u)T , we rewrite equations () as

L

w̃ + J (w̃) = . ()

Here operators L

 : H → L(�,R) and J : H → L(�,R) can be expressed as follows:

L

 =

⎛

⎜
⎝

μ� + λ  –ν
√

–λ/γ

 μ� 
–ν

√
–λ/γ  –μ� + λ�

⎞

⎟
⎠ , J = (J,J,J)T ,

where

J(w̃) = –γ
√

–λ/γψ

 – γ

√
–λ/γψ


 – νuψ – γψ


 – γψ


 ψ,

J(w̃) = –γ
√

–λ/γψψ – νuψ – γψ

 – γψ


 ψ,

J(w̃) = �[
(–ν + νX)u + νu + νψ


 + νψ



]
.

3 Critical curves and phase diagram
In this section we will introduce three critical curves; and give theoretical phase diagrams.

Let β and β be the first two eigenvalues of L

, then

β = –λ = σ – θT – σX,

β = –
π

L

[
π

L μ + θT + θσ +
aθ

R
X(X – )

]

.

Let β be the first eigenvalue of L

, and we have

β =



(
D +

√
D – B

)
, ()

where

D = –
π

L μ + λ – μ
π

L –
π

L λ,

B = –
π

L

(

–
π

L μ + λ

)(
π

L μ + λ

)

–
π

L

(
ν

/γ
)
λ.

Following the idea mentioned in Section , we derive three functions as follows:

β =  ⇔ T = TC,

β =  ⇔ T = TC,

β =  ⇔ T = TC.
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The formulae of T = TC and T = TC were given by (see [])

T = TC =
σ

θ
( – X),

T = TC =
a
R

X( – X) –
μπ



θL – σ.
()

T = TC can be expressed by the following lemma.

Lemma . The formula of T = TC can be written as

T = TC

=



( – X)
(

a
R

X +
σ

θ

)

+
π

θL (μ – μ) –
σ


+

ν


θγ

–


θθ

{[

θθ( – X)
(

a
R

X –
σ

θ

)

– θθσ –
θν




γ
–

π

L (θμ + θμ)
]

+
θθ


 ν


γ

[

( – X)
(

a
R

X –
σ

θ

)

–
μπ



θL – σ

]}/

. ()

Moreover, if TC < TC, then TC < TC < TC; if T = TC and T = TC intersect in a point
(X, L, T), then T = TC(X, L). See Figures ,  and .

Proof If TC < TC, then D < . Consequently, β =  if and only if B = . And we can
rewrite B =  as either of the following:

θθ(T – TC) +
[
θθ(TC – TC) – θ

(
ν

/γ
)

–
(
μπ

/L)
θ

]
(T – TC)

– θ
(
ν

/γ
)
(TC – TC) = ,

θθ(T – TC) +
[
θθ(TC – TC) – θ

(
ν

/γ
)

–
(
μπ

/L)
θ

]
(T – TC)

– θ
(
μπ

/L)
(TC – TC) = .

()

Assume TC < TC. According to the Viète theorem and (), we derive Lemma . nat-
urally. �

The following lemma gives more information as regards the eigenvalues and the critical
curves.

Figure 2 4-phase.



Yuan Advances in Difference Equations  (2016) 2016:142 Page 6 of 13

Figure 3 3-phase.

Figure 4 2-phase.

Lemma .

βi <  ⇔ T > TCi, βi >  ⇔ T < TCi, i = , .

Meanwhile, if TC < T < TC, then

β <  ⇔ T > TC, β >  ⇔ T < TC.

Proof The first conclusion is trivial. We have D = – π

L μ – β + β. If TC < T < TC, then
β > , β < , which means D < . Then we derive the second conclusion naturally. �

We have to decide which one of β and β is the first eigenvalue ofL

. In other words, we

should distinguish whether TC < TC or TC > TC. Meanwhile the greatest value of TC

may be less than zero or not. According to these possibilities, we have several different
phase diagrams.

First we consider (L, T) as the control parameter, where L is the longest edge of the
container and T is the temperature, as in Section . Then we derive three different phase
diagrams in the LT-plane.

. If T = TC and T = TC intersect, then we have the -phase diagram; see Figure .
. If T = TC and T = TC do not intersect and max TC > , then we have a -phase

diagram; see Figure .
. If max TC ≤ , then we have a -phase diagram; see Figure .
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Figure 5 Two intersections.

Likewise, consider phase diagrams in the XT-plane, where X is the mole fraction of
helium-. We only introduce the phase diagram in the case that the critical curves T = TC

and T = TC intersect in two points. See Figure . The other cases are similar. Note that
this diagram agrees with the physical phase diagram; see Figure .

In all these four phase diagrams, E is the normal phase region; E is the superfluid
phase region; E is the phase separation region; and in region E superfluidity and phase
separation both take place. The formulae of solutions in each regions will be given in the
next section. It is worth to mention that there is a different critical curve T = TC, but we
failed to give its formula.

4 Bifurcating solutions of phase transition
4.1 Eigenvalues and eigenvectors
The first phase transition is governed by the operator equation (), and the second phase
transition is governed by the operator equation (). For our further argument, we need all
the eigenvalues and eigenvectors of L


 and L

.

Assume

ηα = –
(

απ

L

)

–
(

απ

l

)

–
(

απ

l

)

,

ϕα = cos
απx

L
cos

απx

l
cos

απx

l
.

Here α = (α,α,α) is a multi-index and |α| = α + α + α.
Then the eigenvalues of L


 are given by

β,
α = μηα – λ, |α| = , , , . . . , β

α = –μ(ηα) + ληα , |α| = , , . . . . ()

The eigenvectors of L

 corresponding to β,,

α can be expressed as

�
α = (ϕα , , )T , |α| = , , , . . . ,

�
α = (,ϕα , )T , |α| = , , , . . . ,

�
α = (, ,ϕα)T , |α| = , , . . . .
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Meanwhile, the eigenvalues of L

 are given by

ξ = λ,

ξ 
α = μηα , |α| ≥ ,

ξ 
α =




(
Dα +

√

D
α – Bα

)
, |α| ≥ ,

ξ 
α =




(
Dα –

√

D
α – Bα

)
, |α| ≥ ,

()

where

Dα = μηα + λ – μη

α + ληα ,

Bα = (μηα + λ)
(
–μη


α + ληα

)
–

(
ν

/γ
)
ληα .

Note that we only consider eigenvalues that are real numbers here, for no bifurcation will
happen if they are imaginary numbers.

The eigenvectors of L

 and eigenvectors of its conjugation operator L


 can be ex-
pressed as

� = (, , )T , (�)∗ =
(

, ,
ν



√


βγ

)T

,

�
α = (,ϕα , )T ,

(
�

α

)∗ = (,ϕα , )T , |α| ≥ ,

�
α =

(
ϕα , , y

αϕα

)T ,
(
�

α

)∗ =
(
ϕα , ,

(
y
α

)∗
ϕα

)T , |α| ≥ ,

�
α =

(
ϕα , , y

αϕα

)T ,
(
�

α

)∗ =
(
ϕα , ,

(
y
α

)∗
ϕα

)T , |α| ≥ .

Here

y,
α =

μηα + λ – ξ ,
α

ν
√

–λ/γ
,

(
y,
α

)∗ = –
μηα + λ – ξ ,

α

νηα

√
–λ/γ

.

4.2 Solutions
First we introduce the following parameters:

A =
π

Lβ
(,,)

(–ν + νX) +
π

L
ν,

N =
Ll

λ
(

√
–λγ + ν),

Ni =

 (

√
–λγ + ν) + π

L yi
(,,)(–ν + νX + ν)

( + yi
(,,)(y

i
(,,))∗)ξ i

(,,)
, i = , ,

M =


 + y
(,,)(y


(,,))∗

{[

(
√

–λγ + ν)N + (
√

–λγ + ν)(N + N)

+ ν
(
y

(,,)N + y
(,,)N

)
+



γ

]

+
π

L

[
νN + ν(N + N)

+ (–ν + νX)
(
y

(,,)N + y
(,,)N

)
– 

]
}

.

()
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Then we have two theorems for equations (), which give solutions corresponding to each
phase of the He-He mixture. Note that we always assume a properly chosen coordinate
system of C; see ().

The first transition takes place at T = TC or T = TC. The formula of the bifurcation
from T = TC (i.e., the solution in region E; see Figures , ,  and ) is given by

ψ =
√

–λ/γ, u = .

The transition at T = TC is described by the following theorem (i.e., E to E; see Fig-
ures  and ).

Theorem . For each (X, L, T) ∈ {(X, L, T)|T = TC, TC < TC,  ≤ X ≤ , L > ,
T ≥ }, there is some ε such that, for all  < (X – X) + (L – L) + (T – T) < ε, the steady
state equations of () have a bifurcation from (ψ , u, X, L, T) = (, , X, L, T), which can
be expressed as

ψ = , u = ±
(

L
A

β

) 


cos
πx

L
+ o

(
β





)
. ()

Here β = β
(,,) is the eigenvalue of L


; see ().

The second transition takes place at T = TC(X) (i.e., E to E; see Figures ,  and ).
Before that, the first transition at T = TC already happened. From the physical point of
view, superfluidity is observed before phase separation.

Theorem . For each (X, L, T) ∈ {(X, L, T)|T = TC, TC < TC,  ≤ X ≤ , L > ,
T ≥ }, there is some ε such that for all  < (X – X) + (L – L) + (T – T) < ε, the
steady state equations of () have a bifurcation from ((–λ/γ) 

 , , X, L, T), which can
be expressed as

ψ± =
(

–λ

γ

) 
 ±

(
β

M

) 


cos
πx

L
+ o

(
β





)
,

u± = ±y
(,,)

(
β

M

) 


cos
πx

L
+ o

(
β





)
.

()

Here β = ξ 
(,,) is the first eigenvalue of L


; see ().

Thus, we have a solution corresponding to each phase as follows:
. In the normal phase region E, we have (ψ , u) = (, ).
. In the superfluid phase region E, we have (ψ , u) = (

√
–λ/γ, ).

. When A > , we have (ψ , u) = (,±( L
Aβ) 

 cos πx
L + o(β




 )) in region E, which
means that phase separation takes place.

. When M > , we have (ψ , u) = (ψ±, u±) in region E, which means superfluidity
and phase separation both can be observed.
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5 Proofs
By the Lyapunov-Schmidt procedure [, ], we will prove bifurcation theorems in this sec-
tion.

Proof of Theorem . By the spectral theorem of completely continuous fields [, ],
{�,,

α } is a basis set of space H and any w ∈ H can be written as

w =
∞∑

|α|=

(
ψ 

α�
α

)
+

∞∑

|α|=

(
ψ

α�
α

)
+

∞∑

|α|=

(
uα�

α

)
.

Equivalently,

ψ  =
∞∑

|α|=

(
ψ 

αϕα

)
, ψ =

∞∑

|α|=

(
ψ

αϕα

)
, u =

∞∑

|α|=

(uαϕα). ()

It follows from () and () that

∞∑

|α|=

β
αψ 

αϕα + G(w) = , |α| = , , , . . . ,

∞∑

|α|=

β
αψ

αϕα + G(w) = , |α| = , , , . . . ,

∞∑

|α|=

β
αu

αϕα + G(w) = , |α| = , , . . . .

()

Consequently, we have




Llβu(,,) +
〈
G(w),ϕ(,,)

〉
= , ()

〈ϕα ,ϕα〉β
αψ 

α +
〈
G(w),ϕα

〉
= , |α| = , , , . . . ,

〈ϕα ,ϕα〉β
αψ

α +
〈
G(w),ϕα

〉
= , |α| = , , , . . . ,

()

〈ϕα ,ϕα〉β
αuα +

〈
G(w),ϕα

〉
= , |α| ≥  and α �= (, , ). ()

Here, 〈p, q〉 def=
∫

�
pq dx.

We know that

β > β,
α , |α| = , , . . . ,

β > β
α , |α| ≥  and α �= (, , ).

Hence, the bifurcation is determined by β, β. However, the bifurcation at T = TC (i.e.,
β = ) is known; see (). We are focussed on the case that T = TC (i.e., β = ).
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For each (X, L, T) ∈ {(X, L, T)|T = TC}, there is a neighbourhood U of (X, L, T)
such that

β

⎧
⎪⎪⎨

⎪⎪⎩

<  if (X, L, T) ∈ {(X, L, T)|T > TC} ∩ U,

=  if (X, L, T) ∈ {(X, L, T)|T = TC} ∩ U,

>  if (X, L, T) ∈ {(X, L, T)|T < TC} ∩ U,

β
α < , (X, L, T) ∈ U, else.

Obviously, equations () admit a solution ψ ,
α = . In this case, the transition is deter-

mined by () and ().
By the implicit function theorem and equations (), if (X, L, T) ∈ U, then we have the

following functions in a neighbourhood of (ψ ,ψ, u) = (, , ):

uα = o
(|u(,,)|

)
, |α| ≥  and α �= (, , ). ()

Consequently, by () and equations (), we have

u(,,) =
π

Lβ
(,,)

(–ν + νX)(u(,,)) + o
(|u(,,)|

)
,

uα = o
(|u(,,)|

)
, α �= (, , ) nor (, , ) nor (, , ).

Then equation () can be written as

L

βu(,,) – A(u(,,)) + o

(|u(,,)|
)

= .

Here the parameter A was introduced in Section ; see ().
Thus, we have

(u(,,)) =
Lβ

A
+ o(β).

Then by (), a nontrivial solution of equations () can be expressed as

ψ = , u = ±
(

L
A

β

) 


cos
πx

L
+ o

(
β





)
.

This completes the proof of Theorem .. �

Proof of Theorem . Following the same process as we mentioned above, any w ∈ H can
be written as

w̃ = w̃� +
∞∑

|α|=

(
w̃

α�
α

)
+

∞∑

|α|=

(
w̃

α�
α

)
+

∞∑

|α|=

(
w̃α�

α

)
.

And we can rewrite () as

ξw̃ +
〈
J(w̃), (�)∗

〉
= , ()
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〈
�i

α ,
(
�i

α

)∗〉
ξ i
αw̃i

α +
〈
J(w̃),

(
�i

α

)∗〉
= , |α| ≥ , i = , ,

〈
�

α ,
(
�

α

)∗〉
ξ 
α w̃

α +
〈
J(w̃),

(
�

α

)∗〉
= , |α| ≥  and α �= (, , ),

()

〈
�

(,,),
(
�

(,,)
)∗〉

βw̃
(,,) +

〈
J(w̃),

(
�

(,,)
)∗〉

= . ()

Here, 〈p, q〉 def=
∫

�
pq + pq + pq dx. Also, β = ξ 

(,,).
For each (X, L, T) ∈ {(X, L, T)|T = TC, TC < TC}, there is a neighbourhood U of

(X, L, T) such that

β

⎧
⎪⎪⎨

⎪⎪⎩

< , (X, L, T) ∈ {(X, L, T)|T > TC} ∩ U,

= , (X, L, T) ∈ {(X, L, T)|T = TC} ∩ U,

> , (X, L, T) ∈ {(X, L, T)|T < TC} ∩ U,

ξ ,,
α < , (X, L, T) ∈ U, else.

By the implicit function theorem and equations (), (), if (X, L, T) ∈ U, then we have
the following functions in a neighbourhood of w = :

w̃ = N
(
w̃

(,,)
) + o

(∣
∣w̃

(,,)
∣
∣)

,

w̃
(,,) = N

(
w̃

(,,)
) + o

(∣
∣w̃

(,,)
∣
∣)

,

w̃
(,,) = N

(
w̃

(,,)
) + o

(∣
∣w̃

(,,)
∣
∣)

,

w̃,,
α = o

(∣
∣w̃

(,,)
∣
∣)

, else.

Consequently, () can be rewritten as

βw̃
(,,) – M

(
w̃

(,,)
) + o

(∣
∣w̃

(,,)
∣
∣)

= .

Here these parameters were introduced in Section ; see ().
Then a nontrivial solution of equations () can be expressed as

ψ =
(

–λ

γ

) 
 ±

(
ξ

M

) 


cos
πx

L
+ o

(|ξ | 

)
,

ψ = o
(|ξ | 


)
,

u = ±y
(,,)

(
ξ

M

) 


cos
πx

L
+ o

(|ξ | 

)
.

This completes the proof. �
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