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Abstract
This paper investigates a computational method to find an approximation to the
solution of fractional differential equations subject to local and nonlocalm-point
boundary conditions. The method that we will employ is a variant of the spectral
method which is based on the normalized Bernstein polynomials and its operational
matrices. Operational matrices that we will developed in this paper have the ability to
convert fractional differential equations together with its nonlocal boundary
conditions to a system of easily solvable algebraic equations. Some test problems are
presented to illustrate the efficiency, accuracy, and applicability of the proposed
method.
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1 Introduction
Recently the studies of fractional differential equations (FDEs) gained the attention of
many scientists around the globe. This topic remains a central point in several special
issues and books. Fractional-order operators are nonlocal in nature and due to this prop-
erty, they are most nicely applicable to various systems of natural and physical phenomena.
This property has motivated many scientists to develop fractional-order models by con-
sidering the ideas of fractional calculus. Examples of such systems can be found in many
disciplines of science and engineering such as physics, biomathematics, chemistry, dy-
namics of earthquakes, dynamical processes in porous media, material viscoelastic theory,
and control theory of dynamical systems. Furthermore, the outcome of certain observa-
tions indicates that fractional-order operators possess some properties related to systems
having long memory. For details of applications and examples, we refer the reader to the
work in [–].

The qualitative study of FDEs which discusses analytical investigation of certain prop-
erties like existence and uniqueness of solutions has been considered by several authors.
In  Guptta [] studied the solvability of three point boundary value problems (BVPs).
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Since then many researchers have been working in this area and provided many useful
results which guarantee the solvability and existence of a unique solution of such prob-
lems. For the reader interested in the existence theory of such problem we refer to work
presented by Ruyun Ma [] in which the author presents a detailed survey on the topic.
In [] the author derived an analytic relation which guarantees the existence of positive
solution of a general third order multi-point BVPs. Also some analytic properties of so-
lutions of FDEs are discussed by El-Sayed in []. Often it is impossible to arrive at the
exact solution when FDEs has to be solved under some constraints in the form of bound-
ary conditions. Therefore the development of approximation techniques remains a central
and active area of research.

The spectral methods, which belong to the approximation techniques, are often used
to find approximate solution of FDEs. The idea of the spectral method is to convert FDEs
to a system of algebraic equations. However, different techniques are used for this con-
version. Some of well-known techniques are the collocation method, the tau method, and
the Galerkin method. The tau and Galerkin methods are analogous in the sense that the
FDEs are enforced to satisfy some algebraic equations, then some supplementary set of
equations are derived using the relations of boundary conditions (see, e.g., [] and the
references therein). The collocation method [, ], which is an analog of the spectral
method, consists of two steps. First, a discrete representation of the solution is chosen
and then FDEs are discretized to obtain a system of algebraic equations.

These techniques are extensively used to solve many scientific problems. Doha et al. []
used collocation methods and employed Chebyshev polynomials to find an approximate
solution of initial value problems of FDEs. Similarly, Bhrawy et al. [] derived an explicit
relation which relates the fractional-order derivatives of Legendre polynomials to its se-
ries representation, and they used it to solve some scientific problems. Saadatmandi and
Dehghan [] and Doha et al. [] extended the operational matrices method and derived
operational matrices of fractional derivatives for orthogonal polynomials and used it for
solving different types of FDEs. Some recent and good results can be found in the articles
like [, , ].

Some other methods have also been developed for the solution of FDEs. Among oth-
ers, some of them are iterative techniques, reproducing kernel methods, finite difference
methods etc. Esmaeili and Shamsi [] developed a new procedure for obtaining an ap-
proximation to the solution of initial value problems of FDEs by employing a pseudo-
spectral method, and Pedas and Tamme [] studied the application of spline functions
for solving FDEs. In [], the author used a quadrature tau method for obtaining the nu-
merical solution of multi-point boundary value problems. Also the authors in [–] ex-
tended the spectral method to find a smooth approximation to various classes of FDEs and
FPDEs. Some recent results in which orthogonal polynomials are applied to solve various
scientific problems can be found in [–].

Multi-point nonlocal boundary value problems appears widely in many important sci-
entific phenomena like in elastic stability and in wave propagation. For the solution of such
a problem Rehman and Khan [, ] introduced an efficient numerical scheme, based on
the Haar wavelet operational matrices of integration for solving linear multi-point bound-
ary value problems for FDEs. FDEs subject to multi-point nonlocal boundary conditions
are a little bit difficult. In this area of research a few articles are available. Some good results
on solution of nonlocal boundary value problems can be found in [–].
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Bernstein polynomials are frequently used in many numerical methods. Bernstein poly-
nomials enjoy many useful properties, but they lack the important property of orthogo-
nality. As the orthogonality property is one of more important properties in approxima-
tion theory and numerical simulations, these polynomials cannot be directly implemented
in the current technique of numerical approximations. To overcome this difficulty, these
non-orthogonal Bernstein polynomials are transformed into an orthogonal basis [–].
But as the degree of the polynomials increases the transformation matrix becomes ill con-
ditioned [, ], which results some inaccuracies in numerical computations. Recently
Bellucci introduced an explicit relation for normalized Bernstein polynomials []. One
applied Gram-Schmidt orthonormalization process to some sets of Bernstein polynomi-
als of different scale levels, identifying the pattern of polynomials, and generalizing the
result. The main results presented in this article are based on these generalized bases.

In this article we present an approximation procedure to find an approximate solution of
the FDEs subject to local and nonlocal m-point BVPs. The method is designed to solve lin-
ear FDEs with constant coefficients, linear FDEs with variable coefficients, and nonlinear
FDEs, under local and nonlocal m-point boundary conditions. In particular, we consider
the following generalized class of FDEs:

Dσ U(t) =
p∑

i=

λiDρi U(t) + f (t), ()

Dσ U(t) =
p∑

i=

λi(t)Dρi U(t) + f (t), ()

Dσ U(t) +
p∑

i=

λiDρi U(t) = F
(
U(t)ρ , U(t)ρ , . . . , U(t)ρp

)
+ f (t). ()

In equation () λi ∈ R, t ∈ [,ω], f (t) ∈ C([,ω]). The orders of the derivatives are defined
as

 < ρ ≤  < ρ ≤  · · ·p –  < ρp ≤ p < σ ≤ p + .

In equation () λi(t) ∈ C([,ω]). In () F(U(t)ρ , U(t)ρ , . . . , U(t)ρp ) is a nonlinear function
of U(t) and its fractional derivatives.

The main aim in this paper is to find a smooth approximation to U(t), which satisfies a
given set of m-point boundary conditions. We consider the following two types of bound-
ary constraints.

Type : Multi-point local boundary conditions defined as

U() = u, U(τi) = ui, i = , , p – , U(ω) = up. ()

Type : Non local m-point boundary conditions, defined as

Uj() = uj, j = , , . . . , p – ,
m̂–∑

i=

ϕiU(τi) = U(ω). ()
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We use the normalized Bernstein polynomials for our investigation, which is based on the
explicit relations presented in []. We use these polynomials to develop new operational
matrices. We develop four operational matrices, two of them being operational matrices
of integration and differentiation, the formulation technique for these two operational
matrices is the same as that used for traditional orthogonal polynomials. We introduce two
more operational matrices to deal with the local and nonlocal boundary conditions. To the
best of our knowledge such types of operational matrices are not designed for normalized
Bernstein polynomials.

We organized the rest of article as follows. In Section , we recall some basic concepts
definition from fractional calculus, approximation theory, and matrix theory. Also we
present some properties of normalized Bernstein polynomials which are helpful in our
further investigation. In Section , we present a detailed procedure for the construction
of the required operational matrices. In Section , the developed matrices are employed
to solve FDEs by introducing a new algorithm. In Section , the proposed algorithm is
applied to some test problems to show the efficiency of the proposed algorithm. The last
section is devoted to a short conclusion.

2 Some basic definitions
In this section, we present some basic notation and definitions from fractional calculus
and well-known results which are important for our further investigation. More details
can be found in [, ].

Definition  The Riemann-Liouville fractional-order integral of order σ ∈ R+ of a func-
tion φ(t) ∈ (L[a, b], R) is defined by

aIσ
t φ(t) =


	(σ )

∫ t

a
(t – s)σ–φ(s) ds. ()

The integral on right hand side exists and is assumed to be convergent.

Definition  For a given function φ(t) ∈ Cn[a, b], the fractional-order derivative in the
Caputo sense, of order σ is defined as

Dσφ(t) =


	(n – σ )

∫ t

a

φ(n)(s)
(t – s)σ+–n ds, n –  ≤ σ < n, n ∈ N .

The right side is assumed to be point wise defined on (a,∞), where n = [σ ] +  in the case
that σ is not an integer.

This leads to Iσ tk = 	(+k)
	(+k+σ ) tk+σ for σ > , k ≥ , Dσ C = , for a constant C and

Dσ tk =
	( + k)

	( + k – σ )
tk–σ , for k ≥ [σ ]. ()

Throughout the paper, we will use the Brenstein polynomials of degree n. The analytic
relation of the Brenstein polynomials of degree n defined on [, ] is given as

B(i,n)(t) =
n–i∑

k=

(–)k

(
n
i

)(
n – i

k

)
ti+k , i = , , . . . , n. ()



Khalil et al. Advances in Difference Equations  (2016) 2016:177 Page 5 of 28

The set of polynomials defined by () have a lot of interesting properties. They are posi-
tive on [, ] and also approximate a smooth function on the domain [, ]. The polynomi-
als defined in () are not orthogonal, after the application of the Gram-Schmidt process
the explicit form of normalized Bernstein polynomials is obtained (as discussed in detail
in []) by

φj,n(t) =
√

(n – j) + ( – t)n–j
j∑

k=


(j,k)tj–k , ()

where


(j,k) = (–)k 	(n – k + )	(j – )
	(j – k + )	(n – j + )	(k + )	(j – k + )

.

The polynomials defined in () are not directly applicable in construction of operational
matrices (it will be clear in the next section). Therefore, we further generalize the relation

φj,n(t) =
√

(n – j) + 
j∑

k=

n–j∑

l=

︷ ︸︸ ︷

(j,k,l) tl+j–k , ()

where

︷ ︸︸ ︷

(j,k,l) =

((–)(n–j+k+l)	(n – j + )	(n – k + )	(j + ))
	(l + )	(n – j – l + )	(j – k + )	(n – j + )	(k + )	(j – k + )

. ()

Note that in equation (), φj,n(t) is of degree n for all choices of j. By analyzing we observe
that the minimum power of t is at maximum value of k and minimum value of l, which
is . Conversely the maximum power of t is n. These polynomials are orthogonal on the
interval [, ]. To make them applicable on the interval [,ω], we simply make substitution
of t = t

ω
without loss of generality. So we can write the orthogonal Bernstein polynomials

on the interval [,ω] as follows:

φj,n(t) = w(j,n)

j∑

k=

n–j∑

l=

︷ ︸︸ ︷

(j,k,l)

tl+j–k

ωl+j–k , ()

where w(j,n) =
√

(n – j) + /
√

ω. The orthogonality relation for these polynomials is de-
fined as follows:

∫ ω


φi,n(t)φj,n(t) = δ(i,j). ()

As usual we can approximate any function f ∈ C[,ω] in the normalized Bernstein poly-
nomial as

f (t) =
n∑

j=

cjφj,n(t), where cj =
∫ ω


f (t)φj,n(t) dt, ()

which can always be written as

f (t) = HT
N�

ω
N(t), ()
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where HT
N and �

ω
N(t) are N = n +  terms column vector containing coefficients and Bern-

stein polynomials, respectively, and one defined

HT
N = [c, c, . . . , cn], ()

�
ω
N(t) =

[
φ,n(t),φ,n(t), . . . ,φj,n(t)

]T . ()

As N represents the size of the resulting algebraic equations it is considered as a scale level
of the scheme.

The integral of the triple product of fractional-order Legendre polynomials over the do-
main of interest was recently used in []. There the author used this value to solve frac-
tional differential equations with variable coefficients directly. We use a triple product for
Bernstein polynomials to construct a new operational matrix which is of basic importance
in solving FDEs with variable coefficients. The following theorem is of basic importance.

Theorem  The definite integral of the product of three Bernstein polynomials over the
domain [,ω] is constant and is defined as

∫ ω


φa,n(t)φb,n(t)φc,n(t) dt = �(a,b,c), ()

where

�(a,b,c) = w((a,b,c),n)

a∑

k=

n–a∑

l=

b∑

r=

n–b∑

s=

c∑

p=

n–c∑

q=

︷ ︸︸ ︷

(a,k,l)

︷ ︸︸ ︷

(b,r,s)

︷ ︸︸ ︷

(c,p,q) ω

(l + a + b + c + q – p – s – r – k + )

and w((a,b,c),n) = w(a,n)w(b,n)w(c,n).

Proof Consider the following expression:

∫ ω


φa,n(t)φb,n(t)φc,n(t) dt = w((a,b,c),n)

a∑

k=

n–a∑

l=

b∑

r=

n–b∑

s=

c∑

p=

n–c∑

q=

︷ ︸︸ ︷

(a,k,l)

︷ ︸︸ ︷

(b,r,s)

︷ ︸︸ ︷

(c,p,q)

ωl+a+b+c+q–p–s–r–k

×
∫ ω


tl+a+b+c+q–p–s–r–k dt.

Evaluating the integral and using the notation �(a,b,c) we can write

�(a,b,c) = w((a,b,c),n)

a∑

k=

n–a∑

l=

b∑

r=

n–b∑

s=

c∑

p=

n–c∑

q=

︷ ︸︸ ︷

(a,k,l)

︷ ︸︸ ︷

(b,r,s)

︷ ︸︸ ︷

(c,p,q) ω

(l + a + b + c + q – p + s – r – k + )
. �

Now, we present the inverse of the well-known Vandermonde matrix. The inverse of
this matrix will be used when we use operational matrices to solve under local boundary
conditions.
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Theorem  [, ] Consider a matrix V defined as

V =

⎡

⎢⎢⎢⎢⎣

τ τ 
 · · · τ

p


τ τ 
 · · · τ

p


...
...

. . .
...

τp τ
p
p · · · τ

p
p

⎤

⎥⎥⎥⎥⎦
, ()

where τ < τ < · · · < τp. The inverse of this matrix exists and in defined as

V – = [b(j,i)], where i, j = , , . . . , p,

where the entries b(j,i) are defined by

b(j,i) =

τj

(–)k

⎛

⎜⎝

∑
≤m <···< mp–k ≤p

m,...,mn–k �=j
τm · · · τmn–k

∏
≤m≤n

m �=j
(τm – τj)

⎞

⎟⎠ . ()

3 Operational matrices of derivative and integral
Now we are in a position to construct new operational matrices. The operational matrices
of derivatives and integrals are frequently used in the literature to solve fractional-order
differential equations. In this section, we present the proofs of constructions of four new
operational matrices. These matrices act as building blocks in the proposed method.

Theorem  The fractional integration of order σ of the function vector �ω
N(t) (as defined

in ()) is defined as

Iσ
�

ω
N(t) = P(σ ,ω)

(N×N)�
ω
N(t),

where P(σ ,ω)
(N×N) is an operational matrix for fractional-order integration and is given as

P(σ ,ω)
(N×N) =

⎡

⎢⎢⎢⎢⎣

(,) (,) · · · (,n)

(,) (,) · · · (,n)
...

...
. . .

...
(n,) (n,) · · · (n,n)

⎤

⎥⎥⎥⎥⎦
, ()

where

(r,s) = w(r,n)w(s,n)

s∑

k′=

n–s∑

l′=

r∑

k=

n–r∑

l=

︷ ︸︸ ︷

(s,k′ ,l′) 
′

(r,k,l,σ ,ω)ω
l+r–k+σ+

(l + l′ + s + r – k – k′ + σ + )
,

where
︷ ︸︸ ︷

(s,k′ ,l′) is as defined in (), and


′
(r,k,l,σ ,ω) =

︷ ︸︸ ︷

(r,k,l) 	(l + r – k + )

	(l + r – k +  + σ )ωl+r–k .
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Proof Consider the general element of () and apply fractional integral of order σ , con-
sequently we will get

Iσ φr,n(t) = w(r,n)

r∑

k=

n–r∑

l=

︷ ︸︸ ︷

(r,k,l)

Iσ tl+r–k

ωl+r–k . ()

Using the definition of fractional-order integration we may write

Iσ φr,n(t) = w(r,n)

r∑

k=

n–r∑

l=


′
(r,k,l,σ ,ω)t

l+r–k+σ , ()

where 
′
(r,k,l,σ ,ω) =

︷ ︸︸ ︷

(r,k,l) 	(l+r–k+)
	(l+r–k++σ )ωl+r–k . We can approximate tl+r–k+σ with normalized Bern-

stein polynomials as follows:

tl+r–k+σ =
n∑

s=

c(r,s)φs,n(t), where c(r,s) =
∫ ω


tl+r–k+σφs,n(t) dt. ()

Using equation (), we can write

c(r,s) = w(s,n)

s∑

k′=

n–s∑

l′=

︷ ︸︸ ︷

(s,k′ ,l′)
ωl′+s–k′

∫ ω


tl+l′+s+r–k–k′+σ dt. ()

On further simplifications, we can get

c(r,s) = w(s,n)

s∑

k′=

n–s∑

l′=

︷ ︸︸ ︷

(s,k′ ,l′) ωl+r–k+σ+

(l + l′ + s + r – k – k′ + σ + )
. ()

Using () and () in () we get

Iσ φr,n(t) =
n∑

s=

w(r,n)w(s,n)

s∑

k′=

n–s∑

l′=

r∑

k=

n–r∑

l=

︷ ︸︸ ︷

(s,k′ ,l′) 
′

(r,k,l,σ ,ω)ω
l+r–k+σ+

(l + l′ + s + r – k – k′ + σ + )
φs,n(t). ()

Using the notation

(r,s) = w(r,n)w(s,n)

s∑

k′=

n–s∑

l′=

r∑

k=

n–r∑

l=

︷ ︸︸ ︷

(s,k′ ,l′) 
′

(r,k,l,σ ,ω)ω
l+r–k+σ+

(l + l′ + s + r – k – k′ + σ + )
,

and evaluating for r = , , . . . , n and s = , , . . . , n completes proof of the theorem. �

Theorem  The fractional derivative of order σ of the function vector �ω
N(t) (as defined in

()) is defined as

Dσ
�

ω
N(t) = D(σ ,ω)

(N×N)�
ω
N(t),



Khalil et al. Advances in Difference Equations  (2016) 2016:177 Page 9 of 28

where D(σ ,ω)
(N×N) is defined as

D(σ ,ω)
(N×N) =

⎡

⎢⎢⎢⎢⎣

(,) (,) · · · (,n)

(,) (,) · · · (,n)
...

...
. . .

...
(n,) (n,) · · · (n,n)

⎤

⎥⎥⎥⎥⎦
, ()

where

(r,s) = w(r,n)w(s,n)

s∑

k′=

n–s∑

l′=

r∑

k=

n–r∑

l=

︷ ︸︸ ︷

(s,k′ ,l′) 
′′

(r,k,l,σ ,ω)ω
l+r–k–σ+

(l + l′ + s + r – k – k′ – σ + )

and


′′
(r,k,l,σ ,ω) =

⎧
⎪⎨

⎪⎩

︷ ︸︸ ︷

(r,k,l) 	(l+r–k+)
	(l+r–k+–σ )ωl+r–k if l + r – k ≥ σ ,

 if l + r – k < σ .
()

Proof On application of the derivative of order σ to a general element of (), we may
write

Dσφr,n(t) = w(r,n)

r∑

k=

n–r∑

l=

︷ ︸︸ ︷

(r,k,l)

Dσ tl+r–k

ωl+r–k . ()

Using the definition of the fractional-order derivative we can easily write

Dσφr,n(t) = w(r,n)

r∑

k=

n–r∑

l=


′′
(r,k,l,σ ,ω)t

l+r–k–σ , ()

where


′′
(r,k,l,σ ,ω) =

⎧
⎪⎨

⎪⎩

︷ ︸︸ ︷

(r,k,l) 	(l+r–k+)
	(l+r–k+–σ )ωl+r–k if l + r – k ≥ σ ,

 if l + r – k < σ .
()

We can approximate tl+r–k–σ with the Bernstein polynomials as follows:

tl+r–k–σ =
n∑

s=

c(r,s)φs,n(t),

c(r,s) =
∫ ω


tl+r–k–σφs,n(t) dt.

()

Using equation (), we can write

c(r,s) = w(s,n)

s∑

k′=

n–s∑

l′=

︷ ︸︸ ︷

(s,k′ ,l′)
ωl′+s–k′

∫ ω


tl+l′+s+r–k–k′–σ dt. ()
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On further simplification we can get

c(r,s) = w(s,n)

s∑

k′=

n–s∑

l′=

︷ ︸︸ ︷

(s,k′ ,l′) ωl+r–k–σ+

(l + l′ + s + r – k – k′ – σ + )
. ()

Using () and () in () we get

Dσφr,n(t) =
n∑

s=

w(r,n)w(s,n)

s∑

k′=

n–s∑

l′=

r∑

k=

n–r∑

l=

︷ ︸︸ ︷

(s,k′ ,l′) 
′′

(r,k,l,σ ,ω)ω
l+r–k–σ+

(l + l′ + s + r – k – k′ + σ + )
φs,n(t). ()

Using the notation

(r,s) = w(r,n)w(s,n)

s∑

k′=

n–s∑

l′=

r∑

k=

n–r∑

l=

︷ ︸︸ ︷

(s,k′ ,l′) 
′′

(r,k,l,σ ,ω)ω
l+r–k–σ+

(l + l′ + s + r – k – k′ – σ + )
,

and evaluating for r = , , . . . , n, and s = , , . . . , n, we complete the proof of the
theorem. �

The operational matrices developed in the previous theorems can easily solve FDEs with
initial conditions. Here we are interested in the approximate solution of FDEs under com-
plicated types of boundary conditions. Therefore we need some more operational matrices
such that we can easily handle the boundary conditions effectively.

The following matrix plays an important role in the numerical simulation of fractional
differential equations with variable coefficients.

Theorem  For a given function f ∈ C[,ω], and u = HT
N�

ω
N(t), the product of f (t) and σ

order fractional derivative of the function u(t) can be written in matrix form as

f (t)Dσ u(t) = HT
NQ(f ,σ ,ω)

(N×N)�
ω
N(t),

where Q(f ,σ ,ω)
(N×N) = D(σ ,ω)

(N×N)R
(f ,ω)
(N×N), and D(σ ,ω)

(N×N) is an operational matrix for fractional-order
derivative and

R(f ,ω)
(N×N) =

⎡

⎢⎢⎢⎢⎣

(,) (,) · · · (,n)

(,) (,) · · · (,n)
...

...
. . .

...
(n,) (n,) · · · (n,n)

⎤

⎥⎥⎥⎥⎦
, ()

where

(r,s) =
n∑

q=

dq�(q,r,s)r, s = , , . . . , n,

and the entries �(q,r,s) are defined as in Theorem , and dq are the spectral coefficients of
the function f (t).
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Proof Applying Theorem  we can write

Dσ u(t) = HT
ND(σ ,ω)

(N×N)�
ω
N(t) ()

and

f (t)Dσ u(t) = HT
ND(σ ,ω)

(N×N)

︷ ︸︸ ︷
�

ω
N(t), ()

where

︷ ︸︸ ︷
�

ω
N(t) =

[
f (t)φ,n(t), f (t)φ,n(t), . . . , f (t)φn,n(t)

]T .

Consider the general element of
︷ ︸︸ ︷
�

ω
N(t), and approximate it with normalized Bernstein

polynomials as

f (t)φr,n(t) =
n∑

s=

cr
sφs,n(t), ()

where cr
i can easily be calculated as

cr
s =
∫ ω


f (t)φr,n(t)φs,n(t) dt. ()

Now as f (t) ∈ C[,ω], we can approximate it with normalized Bernstein polynomials as

f (t) =
n∑

q=

dqφq,n(t),

dq =
∫ ω


f (t)φq,n(t) dt.

()

Using equation () in () we get the following estimates:

cr
s =

n∑

q=

dq

∫ ω


φq,n(t)φr,n(t)φs,n(t) dt. ()

In view of Theorem  we obtain the following estimate:

cr
s =

n∑

q=

dq�(q,r,s). ()

Using () in ()

f (t)φr,n(t) =
n∑

s=

n∑

q=

dq�(q,r,s)φs,n(t). ()
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Evaluating () for s = , , . . . , n and r = , , . . . , n we can write

⎡

⎢⎢⎢⎢⎣

f (t)φ,n(t)
f (t)φ,n(t)

...
f (t)φn,n(t)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

(,) (,) · · · (,n)

(,) (,) · · · (,n)
...

...
. . .

...
(n,) (n,) · · · (n,n)

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

φ,n(t)
φ,n(t)

...
φn,n(t)

⎤

⎥⎥⎥⎥⎦
, ()

where (r,s) =
∑n

q= dq�(q,r,s). In simplified notation, we can write

︷ ︸︸ ︷
�

ω
N(t) = R(f ,ω)

(N×N)�
ω
N(t). ()

Using () in () we get the desired result. The proof is complete. �

Since one of our aims in this paper is to solve FDEs under different types of local and
non-local boundary conditions, we have to face some complicated situations, so to handle
these situations we will use the operational matrix developed in the next theorem.

Theorem  Let f be a function of the form f (t) = atn′ where a ∈ R and n′ ∈ N, then for
any function u(t) ∈ C[,ω], u(t) = HT

N�
ω
N(t), τ ≤ ω. Then we can generalize the product of

Iσ
τ u(t) dt and f (t) in matrix form as

f (t)Iσ
τ u(t) dt = HT

NW(σ ,τ ,a,n′ ,ω)
(N×N) �

ω
N(t),

where

W(σ ,τ ,a,n′ ,ω)
(N×N) =

⎡

⎢⎢⎢⎢⎣

(,) (,) · · · (,n)

(,) (,) · · · (,n)
...

...
. . .

...
(n,) (n,) · · · (n,n)

⎤

⎥⎥⎥⎥⎦
. ()

The entries of the matrix are defined by

(i,j) = a�(i,σ ,τ ,ω)w(j,n)

j∑

p=

n–j∑

q=

︷ ︸︸ ︷

(j,p,q)

ωn′+

(q + j – p + n + )
,

where

�(i,σ ,τ ,ω) = w(i,n)

i∑

k=

n–i∑

l=

︷ ︸︸ ︷

(i,k,l)

	(l + i – k + )τ l+i–k+σ

	(l + i – k + σ + )ωl+i–k .

Proof Consider the general term �
ω
N(t), if we calculate the σ order definite integral from

 to τ we get

Iσ
τ u(t) dt = Iσ

τ HT
N�

ω
N(t) =

n∑

i=

ciIσ
τ φi,n(x). ()



Khalil et al. Advances in Difference Equations  (2016) 2016:177 Page 13 of 28

Using () we may write

Iσ
τ u(t) dt =

n∑

i=

ciw(i,n)

i∑

k=

n–i∑

l=

︷ ︸︸ ︷

(i,k,l) Iσ

τ

xl+i–k

ωl+i–k

=
n∑

i=

ciw(i,n)

i∑

k=

n–i∑

l=

︷ ︸︸ ︷

(i,k,l)

	(l + i – k + )τ l+i–k+σ

	(l + i – k + σ + )ωl+i–k .

()

Using the notation

�(i,σ ,τ ,ω) = w(i,n)

i∑

k=

n–i∑

l=

︷ ︸︸ ︷

(i,k,l)

	(l + i – k + )τ l+i–k+σ

	(l + i – k + σ + )ωl+i–k ,

we can write

atn′
 Iσ

τ u(t) dt =
n∑

i=

cia�(i,σ ,τ ,ω)tn′
. ()

Now a�(i,σ ,τ ,ω)tn′ can be approximated with Bernstein polynomials as follows:

a�(i,σ ,τ ,ω)tn′
=

n∑

j=

d(i,j)φj,n(t), ()

where d(i,j) can be calculated as

d(i,j) = a�(i,σ ,τ ,ω)w(j,n)

j∑

p=

n–j∑

q=

︷ ︸︸ ︷

(j,p,q)

∫ ω



xq+j+n′–p

ωq+j–p

= a�(i,σ ,τ ,ω)w(j,n)

j∑

p=

n–j∑

q=

︷ ︸︸ ︷

(j,p,q)

ωn′+

(q + j – p + n + )
. ()

Using the notation (i,j) = d(i,j) and equation () in () we get the desired result. The
proof is complete. �

4 Application of operational matrices
The operational matrices derived in the previous section play a central role in the nu-
merical simulation of FDEs under different types of boundary conditions. We start our
discussion with the following class of FDEs:

Dσ U(t) =
p∑

i=

λiDρi U(t) + f (t), ()

where λi ∈ R, t ∈ [,ω], f (t) ∈ C([,ω]). The orders of the derivatives are defined as

 < ρ ≤  < ρ ≤  · · ·p –  < ρp ≤ p < σ ≤ p + .
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The solution to this equation can be assumed in terms of series representation of normal-
ized Bernstein polynomials such that the following relation holds:

Dσ U(t) = HT
N�

ω
N(t). ()

Now by the application of fractional integral of order σ , and use of Theorem , we can
explicitly write U(t) as follows:

U(t) –
p∑

i=

citi = HT
NP(σ ,ω)

(N×N)�
ω
N(t). ()

Our main aim is to obtain HT
N, which is an unknown vector. We will use this vector to get

the solution to the problem.

Type : Suppose we have to solve () under the following condition:

U() = u, U(τi) = ui, i = , , p – , U(ω) = up, ()

c can easily be obtained using the initial condition U() = . The solution in () must
satisfy all the conditions, therefore using the conditions at the intermediate and boundary
points we have

p∑

i=

ciτ
i
 = (u – u) – HT

NP(σ ,ω)
(N×N)�

ω
N(τ ),

p∑

i=

ciτ
i
 = (u – u) – HT

NP(σ ,ω)
(N×N)�

ω
N(τ ),

...
...

p∑

i=

ciτ
i
p– = (up– – u) – HT

NP(σ ,ω)
(N×N)�

ω
N(τ p–),

p∑

i=

ciτ
i
p = (up – u) – HT

NP(σ ,ω)
(N×N)�

ω
N(τω).

()

In order to make the notation simple we use τp = ω in last equation. Equation () can
then also be written in matrix form as

⎡

⎢⎢⎢⎢⎣

τ τ 
 · · · τ

p


τ τ 
 · · · τ

p


...
...

. . .
...

τp τ
p
p · · · τ

p
p

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

c

c
...

cp

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

(u – u) – HT
NP(σ ,ω)

(N×N)�
ω
N(τ )

(u – u) – HT
NP(σ ,ω)

(N×N)�
ω
N(τ )

...
(up – u) – HT

NP(σ ,ω)
(N×N)�

ω
N(τ p)

⎤

⎥⎥⎥⎥⎦
. ()
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The matrix in the left is a Vandermonde matrix, in view of Theorem  its inverse exists.
Using the inverse of V we get the values of ci:

ci =
p∑

j=

b(i, j)
{

(uj – u) – HT
NP(σ ,ω)

(N×N)�
ω
N(τ j)

}
. ()

Using the values of ci in equation () we may write

U(t) – u –
p∑

i=

p∑

j=

b(i, j)
{

(uj – u) – HT
NP(σ ,ω)

(N×N)�
ω
N(τ j)

}
ti = HT

NP(σ ,ω)
(N×N)�

ω
N(t). ()

In simplified notation we can write

U(t) – g(t) +
p∑

i=

p∑

j=

b(i, j)
{

tiHT
NP(σ ,ω)

(N×N)�
ω
N(τ j)

}
= HT

NP(σ ,ω)
(N×N)�

ω
N(t), ()

where g(t) = u +
∑p

i=
∑p

j= b(i,j)(uj – u)ti. Approximating g(t) = GT
N�

ω
N(t) and making use

of Theorem , we can easily get

U(t) + HT
N

p∑

i=

p∑

j=

{
W

(σ ,τj ,b(i,j) ,i,ω)
(N×N)

}
�

ω
N(t) = HT

NP(σ ,ω)
(N×N)�

ω
N(t) + GT

N�
ω
N(t). ()

In simplified notation we can write

U(t) = HT
NE

N×N�
ω
N(t) + GT

N�
ω
N(t), ()

where

E
N×N = P(σ ,ω)

(N×N) –
p∑

i=

p∑

j=

{
W

(σ ,τj ,b(i,j),i,ω)
(N×N)

}

is N × N matrix related to type  boundary conditions. For instance we stop the current
procedure here and discuss the procedure of obtaining analogous relation for U(t) under
type  boundary conditions.

Type : Suppose if we need to solve the problem under m-point non-local boundary
conditions

Uj() = uj, j = , , . . . , p – ,
m–∑

i=

ϕiU(τi) = U(ω). ()

Then using the initial conditions we can find the first p constants of integrations in equa-
tion (),

U(t) = HT
NP(σ ,ω)

(N×N)�
ω
N(t) +

(p–)∑

l=

ultl + cptp. ()
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However, the last constant cp is unknown. In order to get a relation for cp we use nonlocal
boundary conditions. Using the m-point boundary condition we get

U(ω) = HT
NP(σ ,ω)

(N×N)�
ω
N(ω) +

(p–)∑

l=

ulω
l + cnω

n, ()

m–∑

i=

ϕiU(τi) = HT
N

m–∑

i=

ϕiP(σ ,ω)
(N×N)�

ω
N(τ i) +

m–∑

i=

(p–)∑

l=

ϕiulτ
l
i + cp

m–∑

i=

ϕiτ
p. ()

From (), we see that left sides of () and () are equal, therefore for the sake of ob-
taining the value of cp, we can write

{
HT

NP(σ ,ω)
(N×N)�

ω
N(ω) –

m–∑

i=

ϕiP(σ ,ω)
(N×N)�

ω
N(τ i)

}
+

{(p–)∑

l=

ulω
l –

m–∑

i=

(p–)∑

l=

ϕiulτ
l
i

}

= cp

{m–∑

i=

ϕiτ
p
i – ωp

}
. ()

On further simplification we get

cp =

{
HT

N

ζ

P(σ ,ω)
(N×N)�

ω
N(ω) –

m–∑

i=

ϕi

ζ
P(σ ,ω)

(N×N)�
ω
N(τ i)

}
+ ζ, ζ �= , ()

where ζ = {∑m–
i= ϕiτ

p
i –ωp} and ζ = 

ζ
{∑(n–)

l= ulτ
l –
∑m–

i=
∑(p–)

l= ϕiulτ
l
i }. Now, using ()

in () we get

U(t) = HT
NP(σ ,ω)

(N×N)�
ω
N(t) +

(p–)∑

l=

ultl

+ HT
N

tp

ζ

{
P(σ ,ω)

(N×N)�
ω
N(ω) –

m–∑

i=

ϕitp

ζ
P(σ ,ω)

(N×N)�
ω
N(τ i)

}
+ ζtp. ()

Now, in view of Theorem , we can write () as

U(t) = HT
NP(σ ,ω)

(N×N)�
ω
N(t) + HT

NW
(σ ,ω, 

ζ
,p,ω)

(N×N) �
ω
N(t)

–
m–∑

i=

HT
NW

(σ ,τi ,
ϕi
ζ

,p,ω)
(N×N) �

ω
N(t) + GT

N�
ω
N(t). ()

Here
∑(p–)

l= ultl + ζtp = GT
N�

ω
N(t). On further simplification we can write

U(t) = HT
NE

N×N�
ω
N(t) + GT

N�
ω
N(t), ()

where

E
N×N = P(σ ,ω)

(N×N) + W
(σ ,ω, 

ζ
,p,ω)

(N×N) –
m–∑

i=

W
(σ ,τi ,

ϕi
ζ

,p,ω)
(N×N) .
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We see that for both local and non-local boundary conditions we get U(t) in matrix form
as

U(t) = HT
NEN×N�

ω
N(t) + GT

N�
ω
N(t). ()

Here HT
N is an unknown vector to be determined. Note that we use E = E if type  bound-

ary conditions are given, otherwise use E = E. Now using () and using Theorem , we
can write

p∑

i=

λiDρi U(t) = HT
NEN×N

p∑

i=

λiD(ρi ,ω)
(N×N)�

ω
N(t) + GT

N

p∑

i=

λiD(ρi ,ω)
(N×N)�

ω
N(t). ()

Approximating f (t) = FT
N�

ω
N(t), and using (), () in () we may write

HT
N�

ω
N(t) = HT

NEN×N

p∑

i=

λiD(ρi ,ω)
(N×N)�

ω
N(t) + GT

N

p∑

i=

λiD(ρi ,ω)
(N×N)�

ω
N(t) + FT

N�
ω
N(t). ()

After a long calculation and simplification we get

HT
N – HT

NEN×N

p∑

i=

λiD(ρi ,ω)
(N×N) + GT

N

p∑

i=

λiD(ρi ,ω)
(N×N) – FT

N = . ()

We see that () is an easily solvable matrix equation and it can easily be solved for HT
N,

by using HT
N in () this will lead us to an approximate solution to the problem.

Next, we consider the linear FDEs with variable coefficients,

Dσ U(t) =
p∑

i=

λi(t)Dρi U(t) + f (t), ()

where λi(t) ∈ C([,ω]), t ∈ [,ω], f (t) ∈ C([,ω]). We start our analysis with the initial
assumption

Dσ U(t) = HT
N�

ω
N(t). ()

Using the integral of order σ we can write

U(t) = HT
N�

ω
N(t) +

p∑

i=

citi. ()

We can of course get U(t) as

U(t) = HT
NEN×N�

ω
N(t) + GT

N�
ω
N(t), ()

where EN×N , GT
N�

ω
N(t) can be analogously derived as in the previous section depending

on the type of boundary conditions to be used. Using () and Theorem , we can easily
write

p∑

i=

λi(t)Dρi U(t) = HT
NEN×N

p∑

i=

Q(λi(t),ρi ,ω)
(N×N) �

ω
N(t) + GT

N

p∑

i=

Q(λi(t),ρi ,ω)
(N×N) �

ω
N(t). ()
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Approximating f (t) = FT
N�

ω
N(t), and using (), () in () we may write

HT
N�

ω
N(t) = HT

NEN×N

p∑

i=

Q(λi(t),ρi ,ω)
(N×N) �

ω
N(t)

+ GT
N

p∑

i=

Q(λi(t),ρi ,ω)
(N×N) �

ω
N(t) + FT

N�
ω
N(t). ()

On rearranging we get

HT
N – HT

NEN×N

p∑

i=

Q(λi(t),ρi ,ω)
(N×N) + GT

N

p∑

i=

Q(λi(t),ρi ,ω)
(N×N) – FT

N = . ()

Now, we consider the nonlinear FDEs. The nonlinear FDEs are often very difficult to
solve with operational matrix techniques. One way is to use the collocation method, by
doing so the FDEs result in nonlinear algebraic equations. These nonlinear algebraic equa-
tions are then solved iteratively using the Newton method or some other iterative method.
The second approach is to linearize the nonlinear part of the fractional differential equa-
tion using a quasilinearization technique. Doing so the nonlinear fractional differential
equations is converted to a recursively solvable linear differential equations. This tech-
nique was introduced recently and has been used to find an approximate solution of many
scientific problem. The quasilinearization method was introduced by Bellman and Kalaba
[] to solve nonlinear ordinary or partial differential equations as a generalization of the
Newton-Raphson method. The origin of this method lies in the theory of dynamic pro-
gramming. In this method, the nonlinear equations are expressed as a sequence of linear
equations and these equations are solved recursively. The main advantage of this method
is that it converges monotonically and quadratically to the exact solution of the original
equations []. Also some other interesting work in which quasilinearization method is
applied to scientific problems is in [–]. Consider a nonlinear fractional-order differ-
ential equation of the form

Dσ U(t) +
p∑

i=

λiDρi U(t) = F
(
U(t)ρ , U(t)ρ , . . . , U(t)ρp

)
+ f (t). ()

The general procedure of this method is as given now. First solve the linear part with a
given set of local or nonlocal conditions

Dσ U(t) +
p∑

j=

λiDρi U(t) = f (t). ()

This equation can easily be solved using the method developed in the previous discussion.
Label the solution at this step as U(t).
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The next step is to linearize the nonlinear part with a multivariate Taylor series expan-
sion about U(t). So after linearizing and simplification we get

Dσ U()(t) +
p∑

j=

λjDρj U()(t)

= F(
(
U()(t), Uγ

()(t), Uρ
()(t), . . . , Uρn

()(t)
)

+
n∑

j=

(
Uρj

() – Uρi
()
) ∂f
∂Uρj

(
U()(t), Uρ

()(t), Uρ
()(t), . . . , Uρn

()(t)
)

+ f (t).

()

The above equation is an FDE with variable coefficients. It can easily be solved with the
method developed in Section .. The solution at this stage will be labeled U(t) and is
the solution of the problem at first iteration. Again we have to linearize the problem about
U(t) to obtain the solution at second iteration. The whole process can be seen as a recur-
rence relation like

Dσ U(r+)(t) +
n∑

j=

bj(t)Dρj U(r+)(t) =
︷︸︸︷
F(t) .

And the boundary conditions become

Uj
r+() = uj, Ur+(τ ) =

m–∑

i=

ζiUr+(ηi),

where bj(t) = λj – ∂f
∂Uρj (U(r)(t), Uρ

(r)(t), Uρ
(r) (t), . . . , Uρn

(r) (t)) and

︷︸︸︷
F(t) = f

(
U(r)(t), Uρ

(r)(t), Uρ
(r) (t), . . . , Uρn

(r) (t)
)

–
n∑

j=

Uρj
(r)

∂f
∂Uρj

+ g(t).

It can be easily noted that the above equation is fractional differential equation with vari-
able coefficients. Using the initial solution X(t) we may start the iterations. The coeffi-

cients bi(t) and the source term
︷︸︸︷
F(t) can be updated at every iteration r to get the next

solution at r + . At every step we may solve the problem at given nonlocal boundary con-
ditions. We assume that the method converges to the exact solution of the problem if there
is convergence at all.

5 Examples
To show the applicability and efficiency of the proposed method, we solve some fractional
differential equations. The numerical simulation is carried out using MatLab. However,
we believe that the algorithm can be simulated using any simulation tool kit.

Example  As a first problem we solve the following linear integer order boundary value
problem

DU(t) =



DU(t) +




DU(t) +



U(t) + g(t), ()
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where

g(t) =
(




)
· (π sin(π t) – π cos(π t) –  sin(π t) + π sin(π t)

)
.

We can easily see that the exact solution is U(t) = sin(π t). We test our algorithm by solving
this problem under the following sets of boundary conditions:

S =
{

U() = , U
(




)
= ., U

(



)
= –, U() = 

}
,

S =
{

U() = , U(.) = , U(.) = , U() = 
}

,

S =
{

U() = , U ′() = π , U ′′() = ,

U() + .U(.) + U(.) + .U(.) + .U(.) = U()
}

.

We approximate the solution to this problem with different types of boundary conditions
and observe that the approximate solution is very accurate. For illustration purposes we
calculate the absolute difference at a different scale levels. The results are displayed in
Figure  and Figure  for boundary conditions S and S, respectively. We compare the
exact solution and approximate solution under boundary conditions S at different scale
levels, and the results are displayed in Table . It can easily be noted that with increase of
scale level, that the approximate solution becomes more and more accurate, and at scale
level N = , the approximate solution is accurate up to the seventh digit. The accuracy
may be increased by using a high scale level. For instance we simulate the algorithm at
high scale level and measure ‖EN‖ and ‖EN‖∞ at each scale level N . Table  shows these
results at high scale levels under boundary conditions S and S. From this example, we
conclude that the proposed method is convergent for integer order differential equations
(linear).

Figure 1 Absolute difference of exact and approximate solution for different values of N under
boundary condition S1. Here we fix ω = 3, and use notation EN = |Uexact – UN|.
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Figure 2 Absolute difference of exact and approximate solution for different values of N under
boundary condition S2. Here we fix ω = 3, and use the notation EN = |Uexact – UN|.

Table 1 Comparison of exact and approximate solution of Example 1 using the boundary
condition as defined in S

t N

Exact U(t) N = 5 N = 7 N = 9 N = 11

t = 0.4 0.95105651629 0.9677391807 0.9499276887 0.9510565133 0.95105651554
t = 0.8 0.58778525229 0.5806739865 0.5877691649 0.5877785192 0.5877882463
t = 1.2 –0.58778525229 –0.5879798137 –0.5877896195 –0.5877852801 –0.58778528235
t = 1.6 –0.95105651629 –0.9318025727 –0.9510687377 –0.9510565637 –0.9510565256
t = 2.0 –0.00000000000 –0.0160927142 –0.0000151536 –0.0000001456 –0.00000000975
t = 2.4 0.95105651629 0.9684572120 0.9510519403 0.9510565108 0.95105651183
t = 2.8 0.58778525229 0.5667990904 0.5879771600 0.5877852533 0.5877852523
t = 3 0.00000000000 0.0634719308 –0.0001774663 0.0000000045 0.00000000125

Table 2 Comparison of exact and approximate solution of Example 1 using the boundary
condition as defined in S

S1 S2

‖EN‖2 ‖EN‖∞ ‖EN‖2 ‖EN‖∞
N = 5 7.23× 10–2 6.53× 10–1 4.72× 10–1 3.68× 10–1

N = 8 1.003× 10–4 2.913× 10–2 6.53× 10–2 0.58× 10–3

N = 10 4.82× 10–6 3.21× 10–5 0.587× 10–3 0.778× 10–4

N = 15 3.92× 10–11 7.84× 10–9 9.51× 10–5 9.510× 10–8

N = 20 6.22× 10–16 5.61× 10–14 1.51× 10–10 1.456× 10–12

N = 30 9.36× 10–19 8.22× 10–18 9.510× 10–11 9.108× 10–13

N = 40 9.28× 10–21 0.781× 10–18 5.87× 10–16 5.33× 10–18

To show the efficiency of proposed method in solving nonlocal m-point boundary prob-
lem, we solve Example  under a -point nonlocal boundary condition as defined in S. We
observe that the method works well, the absolute difference is much less than –, a very
high accuracy for such complicated problems. We compare the approximate solution with
the exact solution at different scale levels. We also calculate ‖E‖ at different scale levels.
The results are displayed in Figure .
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Figure 3 Simulation and observation of Example 1. (a) Comparison of approximate solution at different
scale levels with the exact solution. (b) Absolute difference of exact and approximate solution.
(c) Convergence of ‖E‖2 at different scale levels.

Example  As a second example consider the following fractional-order differential equa-
tion:

D.U(t) + D.U(t) + D.U(t) + U(t) = g(t). ()

Here we consider g(t) as

g(t) =
,,,,,t


 (t – ,t + ,t – ,)

,,,,,
– t(t – )

–
(
,,,,,t


 (,,t – ,,t

+ ,,t – ,,t + ,,)
)

/,,,,,,,

–
(
,,,,,t


 (,t – ,,t + ,,t

– ,,t + ,,)
)
/,,,,,,,. ()

We consider the following two types of boundary conditions:

S =
{

U() = , U(.) = ., U(.) = ., U() = 
}

,

S =
{

U() = , U ′() = , U ′′() = ,

U() + .U(.) + U(.) + .U(.) – .U(.) = U()
}

.

It can easily be observed that the exact solution of the problem is U(t) = t(t – ).
We solve this problem with the proposed method under boundary conditions S, and we

observe that the approximate solution obtained via the new method is very accurate even
for very small value of N . Figure (a) shows the comparison of the approximate solution
with the exact solution. One can easily see that the approximate solution matches very
well with the exact solution. In the same figure we also display the absolute error obtained
with the new method. It is clear that the absolute error is less than – at scale level
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Figure 4 Example 2. (a) Comparison of approximate solution with the exact solution under boundary
condition S . (b) Absolute error obtained with the new method at different scale levels. (c) ‖E‖2 obtained
with the new method at different values of N.

Figure 5 Example 2. (a) Comparison of approximate solution with the exact solution under boundary
condition S . (b) Absolute error obtained with the new method at different scale levels. (c) ‖E‖2 obtained
with the new method at different values of N.

N = . We measure ‖E‖ at different values of N and observe that the method is highly
convergent. We also approximate solution of this problem under boundary condition S.
The results are displayed in Figure . We can easily observe that the approximate solution
of the method converges to the exact solution as the value of N increases.

Example  As a third example consider the following fractional differential equation with
variable coefficients:

D.U(t) +
(
t – t – 

)
D. +

(
t + 

)
D.U(t) + tU(t) = g(t). ()
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We consider the following types of boundary conditions:

S =
{

U() = , U ′() = , U(.) + .U(.) + U(.) – .U(.) = U()
}

,

S =
{

U() = , U(.) = ., U() = .
}

.

We select a suitable g(t), such that the exact solution of the problem is et . We simulate the
proposed algorithm to solve this problem under boundary conditions S and we observe
that the method works well. The results are displayed in Figure . In this figure we display
the comparison of the exact and the approximate solution, the absolute error of approxi-
mation and the square norm of the error. One can easily conclude that the method is highly
efficient. We solve the problem under boundary condition S and the results are displayed
in Table . One can easily see that the approximate solution is much more accurate.

Figure 6 Example 3. (a) Comparison of the approximate solution with the exact solution under boundary
condition S . (b) Absolute error obtained with the new method at different scale levels. (c) ‖E‖2 obtained
with the new method at different values of N.

Table 3 Comparison of exact and approximate solution of Example 3 using the boundary
condition as defined in S

t N

Exact U(t) N = 2 N = 3 N = 4 N = 5 N = 6

t = 0.0 1.000000000 1.0152591045 0.9989268650 1.0000584609 0.9999973751 1.000000102
t = 0.1 1.105170918 1.1048778054 1.1055690936 1.1051373901 1.1051724714 1.105170872
t = 0.2 1.221402758 1.2115236915 1.2222416889 1.2213694032 1.2214034018 1.221402755
t = 0.3 1.3498588075 1.3351967629 1.3506284171 1.3498396744 1.3498594914 1.349858762
t = 0.4 1.4918246976 1.4758970196 1.4924130441 1.4918009400 1.4918267043 1.491824610
t = 0.5 1.6487212707 1.6336244616 1.6492793361 1.6486734983 1.6487243484 1.648721203
t = 0.6 1.8221188003 1.8083790888 1.8229110590 1.8220452095 1.8221217781 1.822118764
t = 0.7 2.0137527074 2.0001609012 2.0149919788 2.0136714962 2.0137550986 2.013752651
t = 0.8 2.2255409284 2.2089698990 2.2272058616 2.2254753425 2.2255438696 2.225540838
t = 0.9 2.4596031111 2.4348060820 2.4612364735 2.4595472949 2.4596078085 2.459603059
t = 1.0 2.7182818284 2.6776694503 2.7187675805 2.7181454617 2.7182834949 2.718281628
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Figure 7 Example 2, ‖E‖2 vs. iteration, for Example 4, obtained with the new method at different
values of N. Here we use boundary conditions S1.

Example  As a last example consider the following nonlinear fractional differential
equation:

D.U(t) + D.U(t) + U(t) = D.UU + U +
(
D.U

) + g(t), ()

with boundary conditions

S =
{

U() = , U(.) = ., U() = .
}

,

S =
{

U() = , U ′() = ,

.U
(




)
+ .U

(



)
+ .U

(



)
– .U

(



)
= U()

}
.

Select a suitable g(t) such that the exact and unique solution of the above problem is
U(t) = et/. We approximate the solution of this problem with the iterative method pro-
posed in the paper under boundary condition S. We carry out the iteration at different
scale levels N . We observe that the method converges more rapidly to the exact solution
for high values of N . For instance, at some values of N we calculate ‖E‖ at each iteration.
The results are displayed in Figure , one can see that ‖E‖ falls below – at the fifth
iteration using scale level N = . On solving the problem under boundary conditions S

we observe that the method provides very accurate estimate of solution. The results are
displayed in Table .

6 Conclusion
From experimental results and analysis of the proposed method we conclude that the
method is efficient in solving linear and nonlinear fractional-order differential equations
under different types of boundary conditions. The method has the ability to solve both
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Table 4 Comparison of exact and approximate solution of Example 4 using the boundary
condition as defined in S

t N

Exact U(t) First iteration Second iteration Third iteration Fourth iteration

t = 0.0 1.0000000000 0.9993612934 1.0001381646 1.0000260271 1.000000020
t = 0.1 1.0168063300 1.1131408265 1.0322239559 1.0171510593 1.016806465
t = 0.2 1.0338951135 1.2060058045 1.0595571295 1.0344373486 1.033895324
t = 0.3 1.0512710963 1.2803801650 1.0835040499 1.0519291558 1.051271352
t = 0.4 1.0689391057 1.3388134647 1.1052061945 1.0696628704 1.068939387
t = 0.5 1.0869040495 1.3839808784 1.1255801546 1.0876670104 1.086904346
t = 0.6 1.1051709180 1.4186831997 1.1453176345 1.1059622221 1.105171226
t = 0.7 1.1237447856 1.4458468410 1.1648854519 1.1245612803 1.123745105
t = 0.8 1.1426308117 1.4685238330 1.1845255377 1.1434690886 1.142631142
t = 0.9 1.1618342427 1.4898918253 1.2042549363 1.1626826787 1.161834578
t = 1.0 1.1813604128 1.5132540859 1.2238658054 1.1821912111 1.181360731

local and nonlocal boundary value problems. We use normalized Bernstein polynomi-
als for our analysis. But the method can be used to generalize such types of operational
matrices for almost all types of orthogonal polynomials. It is also possible to get a more
approximate solution of such problems using other types of orthogonal polynomials like
Legendre, Jacobi, Laguerre, Hermite etc. It is not clear to us which is the best set of or-
thogonal polynomials for this method. Further investigation is required to generalize the
method to solve other types of scientific problems.
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