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Abstract
In this paper, we investigate the stochastic disease dynamics of an SEIS epidemic
model with latent patients and active patients. The two parameters Rs0 and R∗

0 are
identified as the disease-free and endemic dynamics of the model. More specifically,
we give the almost surely exponential stability of the disease-free equilibrium in
terms of Rs0, and stochastic endemic dynamics in terms of R∗

0. The theoretical and
numerical results may be useful for studying the dynamics of disease spreading in a
randomly fluctuating environment.
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1 Introduction
Mathematical models have been an important tool in analyzing the spread and control of
infectious diseases since the pioneer work of Kermack and McKendrick []. Most of the
research literature on these types of models assumes that the disease incubation is neg-
ligible so that, once infected, each susceptible individual (in the class S) instantaneously
becomes infectious (in the class I) and later recovers (in the class R) with a permanent or
temporary acquired immunity []. A compartmental model based on these assumptions
is customarily called a SIR or SIRS model. Regarding research on the SIR or SIRS models
and its generalizations, the reader can refer to [–].

Some diseases, however, incubate inside the hosts for a period of time before the hosts
become infectious. In the case of assuming that the susceptible individual first goes
through a latent period after infection before becoming infectious, the resulting mod-
els are of SEI, SEIR or SEIRS type, respectively, depending on whether the acquired im-
munity is permanent or otherwise. There has been a great deal of work on these types
of models in the literature [–]. Some scholars simply considered the therapy of the
active patients and neglected the importance of remedying the latent patients. How-
ever, it is very important to cure the latent patients because if some diseases such as
the tuberculosis (see []) miss the best treatment time in latent period, the diseases
will be fatal. Especially, Meng et al. [] discussed an SEIS epidemic model in a popula-
tion that is compartmentalized into three classes: the susceptible, exposed, and infectious
classes, with sizes denoted by S(t), E(t), I(t), respectively. The system has the following
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form:

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ = � – μS – αSI + γE + γI,

Ė = ( – p)αSI – βE – γE – μE,

İ = pαSI + βE – γI – μI,

()

where μ is the death rate for physical disease, � the influx or recruitment of the sus-
ceptible and the exposed, γ and γ the treatment cure rate of latent and active disease,
respectively, β the breakdown rate from latent to active condition, αS(t)I(t) the bilinear
incidence, p the proportion of infection instantaneously degenerating in active condition,
the dynamics of latently infected population depends on the proportion of the infection
that results in latent infection ( – p)αI(t)S(t). The basic reproduction number of model
() is

R =
αβ( – p)�

(β + γ + μ)(μγ + μ – αp�)
,

which determines the extinction and persistence of the epidemic. According to the results
in [], one can see that

(a) if  < R < , the disease-free equilibrium (�/μ, , ) is globally asymptotically
stable, and it is unstable when R > ;

(b) if R > , the endemic equilibrium (S∗, E∗, I∗) of model () is globally asymptotically
stable, where

S∗ =
(β + γ + μ)(γ + μ)

α(β + γp + μp)
,

E∗ =
β�α( – p)(γ + μ)

αμ(β + γp + μp)(β + μ + γp + γ( – p))

(

 –

R

)

,

I∗ =
(β + γp + μp)E∗

( – p)(γ + μ)
.

()

However, the deterministic approach has some limitations in the mathematical model-
ing transmission of an infectious disease. Stochastic differential equation (SDE) models
play a significant role in various branches of applied sciences including infectious dynam-
ics, as they provide some additional degree of realism compared to their deterministic
counterpart []. Recently, many authors have introduced parameter perturbation into
epidemic models and have studied their dynamics [–].

In this paper, taking account of the effect of randomly fluctuating environment, we in-
corporate white noise in each equation of model (). We assume that fluctuations in the
environment will manifest themselves mainly as fluctuations in parameters γ, γ as fol-
lows:

γi → γi + σiḂi(t), i = , ,

where Bi(t) (i = , ) is for the mutually independent standard Brownian motions with
Bi() = , and σ 

i (i = , ), the intensities of white noise. The stochastic version corre-
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sponding to the deterministic model () takes the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dS = [� – μS – αSI + γE + γI] dt + σE dB(t) + σI dB(t),

dE = [( – p)αSI – βE – γE – μE] dt – σE dB(t),

dI = [pαSI + βE – γI – μI] dt – σI dB(t).

()

The equation for the total population N(t) = S(t) + E(t) + I(t) size is obtained from () as

dN = (� – μN) dt.

It follows that

lim
t→∞

(
S(t) + E(t) + I(t)

)
=

�

μ
. ()

By (), we take S(t) = �
μ

– E(t) – I(t), and substitute it into the second and the third equa-
tions of model (), and we can easily obtain the following limit system:

⎧
⎨

⎩

dE = [( – p)α( �
μ

– I – E)I – βE – γE – μE] dt – σE dB(t),

dI = [pα( �
μ

– I – E)I + βE – γI – μI] dt – σI dB(t),
()

with any given initial value (E(), I() ∈R

+. It is easy, by simple computations, to conclude

that model () has a unique disease-free equilibrium, E = (, ).
This paper is organized as follows. In Section , we give some preliminaries. In Sec-

tion , we deduce the conditions which will cause the disease to die out. The condition for
the disease to be persistent (i.e., endemic) is given in Section . In Section , we provide
some numerical examples to support our analytic results. In the last section, Section , we
provide a brief discussion and summary of main results.

2 Preliminaries
Throughout this paper, let (�,F , {Ft}t∈R+P) be a complete probability space with a fil-
tration {Ft}t∈R+ satisfying the usual conditions (i.e., it is right continuous and increasing
while F contains all P-null sets). Let

� =
{

(E, I) ∈R

+ :  < E(t) + I(t) <

�

μ

}

.

Consider the general n-dimensional stochastic differential equation

dx(t) = f
(
x(t), t

)
dt + ϕ

(
x(t), t

)
dB(t) ()

on t ≥  with initial value x() = x, the solution is denoted by x(t, x). Assume that f (, t) =
 and ϕ(, t) =  for all t ≥ , and equation () has the solution x(t) = , which is called the
trivial solution.
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Definition . [] The trivial solution x(t) =  of equation () is said to be almost surely
exponentially stable if for all x ∈ R

n,

lim sup
t→∞


t

log
∣
∣x(t, x)

∣
∣ <  a.s.

Definition . [] The population x(t) is said to be strongly persistent in the mean if
lim inft→∞ 

t
∫ t

 x(s) ds > .

The differential operator L associated with the function displayed in equation () is
defined for a function V (t, x) ∈ C,(R×R

n) by the formula

LV =
∂V
∂t

+ f trp ∂V
∂x

+



Trc

[

gtrp ∂V
∂x

]

, ()

where Trc means trace and trp denotes the transpose of a matrix.
The following lemma is quoted from [, ] where it was proved and applied. It plays a

similar role in this paper.

Lemma . Let x ∈ C[� × [,∞), (,∞)]. If there exist positive constants λ, μ such that

log x(t) ≥ λt – μ

∫ t


x(s) ds + F(t), a.s.

for all t ≥ , where F ∈ C[� × [,∞),R] and limt→∞ F(t)
t = , then

lim inf
t→∞


t

∫ t


x(s) ds ≥ λ

μ
, a.s.

To investigate the dynamical behavior of a population model, the first concern is whether
the solution of the model is positive and global. Motivated by [], we can prove the global
existence of a solution to model (). One can obtain the following results.

Lemma . Let (E(), I()) ∈ �, and model () admits a unique solution (E(t), I(t)) on
t ≥ , which remains in � with probability . That is, the set � is almost surely positively
invariant of model ().

3 Stochastic disease-free dynamics
Now we present the following theorem, which gives conditions for the almost surely ex-
ponential stability of the equilibrium of model (), which is motivated by [, ]. Denote
σ := min{σ,σ} and X(t) := (E(t), I(t)). First of all, we give the property of the disease-free
(i.e., I = ) dynamics.

Theorem . If

Rs
 :=

αβ( – p)�
(β + γ + μ + σ /)(μγ + μ + μσ / – αp�)

< , ()

then the disease-free equilibrium (, ) of model () is almost surely exponentially stable.
In other words, the disease will die out with probability one.
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Proof Let us fix any positive real number a. We define the following stochastic process:

z
(
X(t)

)
= aE + I. ()

Since z(X(t) > ) for all t > , we can define a C-function V : R
+ →R+ by

V
(
X(t)

)
= ln z

(
X(t)

)
.

By Itô’s formula, we can express the stochastic process V (X(x)) as

V (X(t) = V
(
X()

)
+

∫ t


LV

(
X(τ )

)
dτ + G(t), ()

where

G(t) =
∫ t



–aσE(τ )
z(X(τ ))

dB(τ ) +
∫ t



–σI(τ )
z(X(τ ))

dB(τ )

and

LV
(
X(t)

)
=


z
(
a

(
( – p)α(�/μ – E – I)I – βE – γE – μE

)

+ pα(�/μ – E – I)I + βE – γI – μI
)

–

z

(
a

σ

 E


+

σ 
 I



)

.

Regarding the quadratic variations of the stochastic integral G(t) we have

∫ t



(
–aσE(τ )

z(X(τ ))

)

dτ ≤ σ 
 t,

∫ t



(
–σI(τ )
z(X(τ ))

)

dτ ≤ σ 
 t.

By the strong law of large numbers for martingales [], we have

lim
t→∞

G(t)
t

=  a.s.

Now we prove that

LV
(
x(t)

)
<  a.s. ()

To this end, we set

v(t) = z–E, w(t) = z–I. ()

It follows that

 < v(t) <

a

,  < w(t) <  for every t > ,

that is, the stochastic processes v(t), w(t) are bounded above by max{/a, }, and non-
negative. By virtue of () we have

av(t) + w(t) =  for every t > . ()
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This enables us to write down the expression for LV (X(t)) as

LV (X) = a
(
( – p)α(�/μ – I – E)w – βv – γv – μv

)

+ pα(�/μ – I – E)w + βv – γw – μw –
a

σ

 v


–

σ 
 w



≤ (
a( – p)α�/μ + pα�/μ – γ – μ

)
w –

(
a(β + γ + μ) – β

)
v

–
σ 


(
a

 v + w). ()

In view of av + w = , we have

–
σ 


(
a

 v + w) ≤ –
σ 


(av + w) = –

σ 


(av + w).

It follows that

LV (X) ≤ Av + Aw, ()

where

A = β – a

(

β + γ + μ +
σ 



)

,

A =

μ

(

a( – p)α� + pα� – γμ – μ –
σ μ



)

.

Let a = β

β+γ+μ+σ/ , then A = . The condition Rs
 <  is equivalent to the following in-

equality:

αβ( – p)�
β + γ + μ + σ /

< μγ + μ + μσ / – αp�,

which implies A < . It follows from  < w <  that LV (X(t)) < . It finally follows from
() by dividing t on both sides and then letting t → ∞ that

lim sup
t→∞


t

ln z
(
X(t)

)
= lim sup

t→∞

t

∫ t


LV

(
X(τ )

)
dτ <  a.s., ()

which is the required assertion. �

Remark . It is noted that Rs
 = αβ(–p)�

(β+γ+μ+σ/)(μγ+μ+μσ/–αp�) < R. Therefore, if R < ,
no matter how the noise intensities change, we have the disease-free equilibrium to be
almost surely exponentially stable. However, if R > , by increasing the values of noise
intensities such that Rs

 < , the disease-free equilibrium will still be almost surely expo-
nentially stable. That is to say, in this situation, for the deterministic model, there is an
endemic equilibrium which is globally stable, but for the stochastic model, there is a sta-
ble disease-free equilibrium which means that the disease goes extinct exponentially a.s.
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4 Stochastic endemic dynamics
In this section we intend to prove the stochastic endemic dynamics (i.e., persistence of E
and I) of model () under certain parametric restrictions.

Theorem . If

R∗
 :=

αβ( – p)�
(β + γ + μ + σ 

 /)(μγ + μ + μσ 
 / – αp�)

> , ()

then for any initial value (E(), I()) ∈ �, the solution (E(t), I(t)) of model () has the fol-
lowing property:

lim inf
t→∞


t

∫ t


E(s) ds ≥ α( – p)�(γμ + μ + μσ 

 / – αp�)
μ(β + γ + μ + σ 

 /)
(
R∗

 – 
)

and

lim inf
t→∞


t

∫ t


I(s) ds ≥ (

γμ + μ + μσ 
 / – αp�

)(
R∗

 – 
)
.

That is the solutions of model () are strongly persistent in the mean.

Proof An integration of the first equation of model () yields

α( – p)�
μ

〈
I(t)

〉
– α( – p)

(〈
I(t)〉 +

〈
E(t)I(t)

〉)
– (β + γ + μ)

〈
E(t)

〉

=
E(t) – E()

t
+

σ

t

∫ t


E(s) dB(s).

We compute that

〈
E(t)

〉
=

α( – p)�
μ(β + γ + μ)

〈
I(t)

〉
–

α( – p)
β + γ + μ

(〈
I(t)〉 +

〈
E(t)I(t)

〉)
– ϕ(t)

≤ α( – p)�
μ(β + γ + μ)

〈
I(t)

〉
– ϕ(t), ()

where

ϕ(t) =


β + γ + μ

(
E(t) – E()

t
+

σ

t

∫ t


E(s) dB(s)

)

.

Since E(t), I(t) < �/μ, by the strong law of large numbers for martingales [], we have

lim
t→∞

E(t)
t

= , lim
t→∞


t

∫ t


E(s) dB(s) =  a.s.

Obviously, limt→∞ ϕ(t) =  a.s.
Applying Itô’s formula to the first equation of model () leads to

d
(
ln(μ/�E)

)
=

α( – p)�
μ

I
E

–
α( – p)I

E
– α( – p)I –

(

β + γ + μ +


σ 



)

– σ dB(t). ()
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An integration of () yields

α( – p)�
μ(β + γ + μ + σ 

 /)

〈
I
E

〉

=  +


μ(β + γ + μ + σ 
 /)

(

α( – p)
(〈

I

E

〉

+ 〈I〉
)

+
σ dB(t)

t
+

ln(μ/�(E(t) – E())
t

)

.

Noting that –∞ < ln(μ/�(E(t)) <  (as  < E(t) < �/μ), then for arbitrary  < ε < , there
exist T = T(ω) >  and a set �ε , such that P(�ε) ≥  – ε. For all t ≥ T(ω), ω ∈ �ε ,

α( – p)�
μ(β + γ + μ + σ 

 /)

〈
I
E

〉

< ,

which is equivalent to

α( – p)�
μ(β + γ + μ + σ 

 /)

∫ t



I(s)
E(s)

ds < t.

It follows from  < E(t), I(t) < �/μ that

α( – p)�
μ(β + γ + μ + σ 

 /)
I(t) < E(t). ()

Hence, applying Itô’s formula to the second equation of model () leads to

d(ln I) =
αp�

μ
– γ – μ –



σ 

 +
E
I

– αpE – α( – p)I – σ dB(t). ()

Integrating this from  to t, we have

ln I(t)
t

≥
(

αβ( – p)�
μ(β + γ + μ + σ 

 /)
+

αp�

μ
– γ – μ – σ 

 /
)

–
(

αp( – p)�
μ(β + γ + μ)

+ α( – p)
)

〈
I(t)

〉
+ ϕ(t)) –

σB(t)
t

+
ln I()

t
. ()

Since

lim
t→∞

(
ϕ(t)

)
–

σB(t)
t

+
ln I()

t
) = ,

it follows from Lemma . that

lim inf
t→∞

〈
I(t)

〉 ≥ αβ( – p)�
μ(β + γ + μ + σ 

 /)
+

αp�

μ
– γ – μ – σ 

 /

=
(
γμ + μ + μσ 

 / – αp�
)(

R∗
 – 

)
> .

Finally, according to the last equality of (), we get

lim inf
t→∞

〈
E(t)

〉
>

α( – p)�
μ(β + γ + μ + σ 

 /)
, lim inf

t→∞
〈
I(t)

〉
>  a.s.

This finishes the proof. �
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Remark . It is noted that R∗
 < Rs

 < R. Therefore, if R∗
 > , then R > . That is to say,

if for stochastic model the disease will be prevalent, for a deterministic model the disease
also must be prevalent.

5 Numerical simulations
In this section, we give some numerical simulations to show the effect of noise on the
dynamics of model () by using the Milstein method mentioned in Higham [].

For model (), the parameters are taken as follows:

� = ., μ = ., α = ., γ = ., γ = .,

β = , p = .,
()

with initial values

(
E(), I()

)
= (., .) ∈ �. ()

. Now we note that these parameters give a value of R = . to the basic
reproduction number in the deterministic case (i.e., with σ = σ = ). Consequently
the system eventually approaches an endemic equilibrium point (., .) (see
Figure ).

. Choose σ = ., σ = ., then we obtain Rs
 = .. Theorem . asserts that

the disease-free equilibrium is almost surely exponentially stable, and the disease
will die out with probability one (see Figure ).

. Choose σ = ., σ = ., then we obtain Rs
 = . and R∗

 = .. Theorem .
asserts that the solutions of model () are strongly persistent in mean (see Figure ).

. Now change σ = ., σ = ., then we obtain Rs
 = . and R∗

 = ..
Therefore, the conditions of Theorems . and . are not satisfied. In this case, our
simulations suggest that the disease will die out with probability one (see Figure ).

6 Discussions
In this paper, we mainly focus on the SDE version of an SEIS epidemic model with latent
patients and active patients. We show that the SDE model has a unique positive global
solution and establish some conditions for determining the disease outbreak or extinct.

Figure 1 The paths of E(t), I(t) for model (5) with
initial values (24). The parameters are taken as (23),
σ1 = σ2 = 0 (R0 = 1.667).
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Figure 2 The paths of E(t), I(t) for model (5) with
initial values (24). The parameters are taken as (23),
σ1 = 0.75, σ2 = 0.8 (Rs0 = 0.9279, R∗

0 = 0.5712).

Figure 3 The paths of E(t), I(t) for model (5) with
initial values (24). The parameters are taken as (23),
σ1 = 0.1, σ2 = 0.2 (Rs0 = 1.6450, R∗

0 = 1.5207).

Figure 4 The paths of E(t), I(t) for model (5) with
initial values (24). The parameters are taken as (23),
σ1 = 0.1, σ2 = 0.6 (Rs

0 = 1.6450,R∗
0 = 0.9063).

The key parameters are Rs
 and R∗

, which are all less than the corresponding deterministic
version of the basic reproduction number R.

Theorem . shows that if RS
 < , the disease will die out (cf. Figure ). Theorem .

shows that if R∗
 > , then the disease will persist (cf. Figure ). By numerical simulations,

we also show that if R∗
 <  < RS

, the disease will die out (cf. Figure ). Hence, we can
make a conjecture that the behavior of the disease is determined by R∗

. It is well known
that for deterministic epidemic models, the basic reproduction number R determines
the prevalence or extinction of the disease. In this paper, we consider the threshold R∗

 as
the basic reproduction number of model (). Notice that R∗

 < R, and it is possible that
R∗

 <  < R. This is the case when the deterministic model has an endemic (see Figure ),
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while the stochastic model has disease extinction with probability one (see Figure ). That
is to say, in this case, noise can suppress the disease outbreak.
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