
Kim et al. Advances in Difference Equations  (2016) 2016:202 
DOI 10.1186/s13662-016-0925-0

R E S E A R C H Open Access

Some explicit identities on
Changhee-Genocchi polynomials and
numbers
Byung-Moon Kim1, Joohee Jeong2 and Seog-Hoon Rim2*

*Correspondence: shrim@knu.ac.kr
2Department of Mathematics
Education, Kyungpook National
University, 80 Daehakro, Bukgu,
Daegu, 41566, S. Korea
Full list of author information is
available at the end of the article

Abstract
In this paper, we introduce a new family of functions, which is called the
Changhee-Genocchi polynomials. We study some explicit identities on these
polynomials, which are related to Genocchi polynomials and Changhee polynomials.
Also, we represent Changhee-Genocchi polynomials by gamma and beta functions.
We also study some properties of higher-order Changhee-Genocchi polynomials

related to Changhee polynomials and Daehee polynomials.
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1 Introduction
The Genocchi polynomials are defined by the generating function (see [, ])
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When x = , Gn = Gn() are called the Genocchi numbers. From () we see that
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We consider Changhee-Genocchi polynomials defined by the generating function

 log( + t)
 + t

( + t)x =
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n=

CGn(x)
tn

n!
. ()

When x = , CGn = CGn() are called the Changhee-Genocchi numbers.
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The gamma and beta functions are defined by the following definite integrals:

�(α) =
∫ ∞


e–ttα– dt, α > , ()

and

B(α,β) =
∫ 


tα–( – t)β– dt

=
∫ ∞



tα–

( + t)α+β
dt, α > ,β > . ()

From () and () we have (see [])

�(α + ) = α�(α), B(α,β) =
�(α)�(β)
�(α + β)

. ()

We recall that the classical Stirling numbers of the first kind S(n, k) and S(n, k) are
defined by the relations (see [])

(x)n =
n∑

k=

S(n, k)xk and

xn =
n∑

k=

S(n, k)(x)k ,

respectively. Here (x)n = x(x – ) · · · (x – n + ) denotes the falling factorial polynomial of
order n. We also have
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In this paper, we introduce a new family of functions, which is called the Changhee-
Genocchi polynomials.

We study some properties of these polynomials, which are related to Genocchi polyno-
mials and Changhee polynomials. Also we represent Changhee-Genocchi polynomials by
gamma and beta functions.

We also study higher-order Changhee-Genocchi polynomials related to Changhee poly-
nomials and Daehee polynomials.

Most of the ideas in this paper come from Kim and Kim []. Specifically, equations (),
(), and () are related to the papers [–].

2 Changhee-Genocchi polynomials
First, we relate our newly defined Changhee-Genocchi polynomials to Genocchi polyno-
mials.
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Replacing t by et –  in () and applying (), we get
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The left-hand side of () is the generating function of the Genocchi polynomials.
Thus, by comparing the coefficients of () and () we have the following theorem.

Theorem  For any nonnegative integer k, we have

Gk(x) =
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CGn(x)S(k, n). ()

On the other hand, if we replace t by log( + t) in () and apply (), then we get
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where S(k, n) are the Stirling numbers of the first kind.
By comparing the coefficients of both sides of (), we get the following theorem.

Theorem  For any nonnegative integer k, we have

CGk(x) =
k∑

n=

Gn(x)S(k, n). ()

Remark When x =  in (), we can see that Changhee-Genocchi numbers are integers.

We can consider equation () as the inversion formula for (). From () we can consider
the following identity:
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Thus, by comparing the coefficients of both sides of () we have
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From () we can derive the following theorem.

Theorem  For any nonnegative integer n, we have
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In this paper, we define the λ-Changhee-Genocchi polynomials by a generating function
as follows:

 log( + t)
( + t)λ + 

( + t)λx =
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n=
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We recall that the λ-Changhee polynomials are defined in [] by
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When λ = , Changhee-Genocchi polynomials are well-known Changhee polynomials, cf.
[–]. In order to establish a reflexive symmetry on the Changhee-Genocchi polynomi-
als, we consider the following:
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By comparing the coefficients of () we have the following theorem.

Theorem  For n ∈N, we have

CGn( – x) = CGn,–(x). ()

Thus, from () and () we have
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By comparing the coefficients of () we have
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On the other hand, by (), (), and () we have
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Thus, by () and () we have the following identities, which relate the λ-Changhee-
Genocchi polynomials, the Stirling numbers, and the beta and gamma polynomials:
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From () we consider
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By comparing the coefficients of () we have the following theorem.
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Theorem  For any nonnegative integer n, we have

CGn,λ( – x) = CGn,–λ(x). ()

Remark If we take λ =  in Theorem , then we have the result in Theorem .

From the second line of () and from () we have
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By comparing the coefficients of () and () we have the following theorem.
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For r ∈ N, we define the Changhee-Genocchi polynomials CG(r)
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generating function
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From () we have the following relation between the Changhee-Genocchi polynomials
of order r and the Changhee polynomials of order r:
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By comparing the coefficients of () and () we have the following theorem.

Theorem  For any nonnegative integer n, we have
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For d ∈N with d ≡  (mod ), we have the following identity:

d–∑

a=

(–)a( + t)a =
 + ( + t)d

 + t
. ()

So, for such d ≡  (mod ), from (), (), and () we see that
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By comparing the coefficients in (), for d ≡  (mod ), we have the following theorem.

Theorem  For any nonnegative integer n and d ≡  (mod ), we have
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We remark that, for d ≡  (mod ), from () and () we have the inversion of Theorem .
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From the generating function of the Changhee-Genocchi polynomials in (), replacing
t by λ log( + t), we get
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Thus, the left-hand side of () can be represented by the λ-Changhee-Genocchi polyno-
mials as follows:

λ log( + t)
( + t)λ + 

( + t)λx = λ

∞∑

k=

CGk,λ(x)
tk

k!
. ()

By comparing the coefficients of () and () we have the following theorem.

Theorem  For any nonnegative integer k, we have

CGk,λ(x) =
k∑

n=

λn–Gn(x)S(k, n).

From the generating function of the Changhee-Genocchi numbers in () we want to see
the recurrence relation for the Changhee-Genocchi numbers:

 log( + t) =
∞∑

n=

CGn
tn

n!
(t + )

=
∞∑
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CGn
tn+

n!
+

∞∑
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CGn
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∞∑
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∞∑

n=

CGn
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∞∑
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On the other hand, from the left-hand side of () we have

 log( + t) =
∞∑

n=

(–)n–(n – )!
tn

n!
. ()

By comparing the coefficients of () and () we have the following recurrence relation
for the Changhee-Genocchi numbers.

Theorem  We have

CG = ,

nCGn– + CGn = (n – )!(–)n– for n ≥ .

From the higher-order Changhee-Genocchi polynomials

(
 log( + t)
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)r

( + t)x =
∞∑

n=

CG(r)
n (x)

tn

n!
()

we can deduce

CG(r)
 (x) = CG(r)

 (x) = · · · = CG(r)
r–(x) = . ()
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Thus, from () we can rewrite () as follows:

(
 log( + t)

 + t

)r

( + t)x =
∞∑

n=

CG(r)
n+r(x)

tn+r

(n + r)!
. ()

We recall that the Dahee polynomials are defined by the generating function (see [, ])

log( + t)
t

( + t)x =
∞∑

n=

Dn(x)
tn

n!
.

When x = , Dn = Dn() are called the Dahee numbers.
For r ∈ N, the higher-order Daehee numbers are given by the generating function (see

[, , ])
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.

From () we have
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)
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Thus, from () we have the following theorem.

Theorem  For any nonnegative integer n and d ≡  (mod ), we have


d–∑

a=

(–)aDn(a) =
CGn+

n + 
+

CGn+,d

n + 
.

3 Changhee-Genocchi polynomials arising from differential equations
In this section, we give new identities on the Changhee-Genocchi numbers by using dif-
ferential equations. We use the idea recently developed by Kwon et al. [].

By equation () we can write the generating function for the Changhee-Genocchi num-
bers as follows:

F(t) =
 log( + t)

 + t
=

∞∑

n=

CGn
tn

n!
. ()
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Let

G(t) = log( + t) and H(t) =


 + t
.

Then

G(N)(t) =
(

d
dt

)N

G(t) = (–)N–(N – )!e–N ·G(t), and

H (N)(t) =
(

d
dt
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–



)N

N !e–(N+)·K (t), where K(t) = log( + t/).

Thus,
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)N
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k
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k
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=
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On the other hand,
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∞∑
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From () we have

F (N)(t) =
(

d
dt

)N

F(t) =
∞∑

m=

CGN+m
tm

m!
. ()

By comparing the coefficients of (), (), and () we have new identities on the
Changhee-Genocchi numbers as follows.

Theorem  For any nonnegative integer s, we have

CGs+N =
s∑

m=

(
s
m

){( m∑

n=

(–N + k)nS(m, n)

)( s–m∑

l=

(–k – )lS(s – m, l)


s–m

)}

×
N∑

k=

(
N
k

)
(–)N–

(



)k

k!(N – k – )!.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details
1Department of Mechanical System Engineering, Dongguk University, 123 Dongdae-ro, Gyungju-si, Gyeongsangbuk-do,
38066, S. Korea. 2Department of Mathematics Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu,
41566, S. Korea.

Acknowledgements
The authors would like to express their sincere gratitude to the Editor, who gave us valuable comments to improve this
paper.

Received: 25 June 2016 Accepted: 25 July 2016

References
1. Kim, T: On the multiple q-Genocchi and Euler numbers. Russ. J. Math. Phys. 15(4), 481-486 (2008)
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