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Abstract
In this paper, we establish the existence and uniqueness of extremal solutions for
nonlinear boundary value problems of a singular fractional p-Laplacian differential
equation involving Riemann-Liouville derivatives. Our results are obtained by
constructing monotone iterative sequences of upper and lower solutions and
applying the comparison result. At last, we present an example to illustrate the results.
The compactness of sequences is proved in the Appendix.
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1 Introduction
Fractional differential equations arise in the mathematical modeling of process in physics,
chemistry, aerodynamics, polymer rheology, fluid flow phenomena, wave propagation and
signal theory, electrical circuits, control theory, viscoelastic materials, and so on. The frac-
tional calculus and its various applications in many fields of science and engineering have
gained much attention and developed rapidly. Consequently, fractional differential equa-
tions have been of great interest. For details, see [–] and the references therein.

The numerical simulation plays an essential role in the analysis of fractional differential
equations, and new numerical techniques are being developed; see, for example, [, ].
Recently, many research papers have appeared concerning the existence of solutions for
the initial and boundary value problems of fractional differential equations; see [–].
The monotone iterative technique, combined with the method of upper and lower solu-
tions, is a powerful tool of obtaining the existence of solutions for fractional boundary
value problems; see [–].

By means of the monotone iterative method, in [], the following PBVP of fractional
differential equation was considered:

{
Dα

+ u(t) = f (t, u(t)), t ∈ (, T],
t–αu(t)|t= = t–αu(t)|t=T ,
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where Dα
+ is the Riemann-Liouville fractional derivative of order  < α ≤ . The properties

of the well-known Mittag-Leffler function and the existence and uniqueness of solution for
this problem were given in []. However, fewer papers considered p-Laplacian boundary
value problems of fractional order via the upper and lower method and the monotone
iterative method; see, for instance, [–].

In [], the authors have discussed the following PBVP of fractional p-Laplacian equa-
tion:{

Dβ

+ (φp(Dα
+ u(t))) = f (t, u(t), Dα

+ u(t)), t ∈ [, T],
u(t)|t= = u(t)|t=T , Dα

+ u(t)|t= = Dα
+ u(t)|t=T ,

where  < α,β ≤ , Dα
+ is the Caputo fractional derivative, and f : [, T] × R

 → R is a
continuous function. By establishing the continuation theorem, which is an extension of
the coincidence degree theory for linear differential operators with PBCs, the existence
result of solution of the PBVP was stated under the nonlinear growth restriction of f . To
the best of our knowledge, the fractional p-Laplacian differential equation with periodic
boundary conditions has rarely been considered up to now.

In this paper, we investigate the existence of extremal solutions and uniqueness of
solution for singular fractional p-Laplacian differential equation with general nonlinear
boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

Dβ

+ (φp(Dα
+ u(t))) = f (t, u(t), Dα

+ u(t)), t ∈ (, T],

t
–β
p– Dα

+ u(t)|t= = t
–β
p– Dα

+ u(t)|t=T ,
g(ũ(), ũ(T)) = ,

(.)

where  < α,β ≤ ,  < α + β ≤ , Dα
+ is the Riemann-Liouville fractional derivative of

order α, φp(t) = |t|p–t (p > ) is the p-Laplacian operator, and (φp)– = φq, 
p + 

q = . Here
f ∈ C([, T] ×R×R,R), g ∈ C(R×R,R), ũ() = t–αu(t)|t=, and ũ(T) = t–αu(t)|t=T .

In the problem (.), the boundary condition g(ũ(), ũ(T)) =  is a kind of general con-
dition. When g(x, y) = x ± y or others, this can cover periodic, antiperiodic, or other non-
linear boundary conditions. Moreover, if Dα

+ u(t)|t= = Dα
+ u(t)|t=T , then t

–β
p– Dα

+ u(t)|t= =
t

–β
p– Dα

+ u(t)|t=T . From this we can see that the boundary conditions in (.) are weaker
than those in []. Thus, our conclusions can be more extensive. Here we not only obtain
the existence of extremal solutions, but also the iterative sequences that converge to the
extremal solutions.

In the previous related results on boundary value problems for p-Laplacian differential
equations by means of the monotone iterative method, the monotone-type conditions for
nonlinear terms f with respect to the functions u or their derivatives are usually required.
However, in this paper, we only consider the functions f + Mφp(Dα

+ u(t)), not f , to satisfy
the monotone-type conditions (see (H)).

The rest of our paper is organized as follows. In Section , we provide some preliminar-
ies, the existence results for linear fractional problems with periodic boundary conditions
and the comparison result. In Section , the existence of extremal solutions and unique
solution for (.) are established by constructing two well-defined monotone iterative se-
quences of upper-lower solutions. Finally, an example is given in this section as an applica-
tion of the theoretical results. Some lengthy proofs of the compactness conclusions used
in Theorem . are settled in the Appendix.
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2 Preliminaries and existence results for linear fractional p-Laplacian problems
Let J = [, T] be a compact interval on the real axis R. It is well known that C[, T]
is a Banach space of continuous functions from [, T] into R with the norm ‖u‖C =
maxt∈[,T] |u(t)|. Denote

C–α[, T] =
{

u ∈ C(, T] : t–αu ∈ C[, T]
}

, α ∈ (, ].

Then C–α[, T] is also a Banach space with the norm ‖u‖C–α
= ‖t–αu‖C (see Lemma .).

It is clear that C[, T] := C[, T] ⊂ C–α[, T] ⊂ C–β [, T] with ‖u‖C–β
≤ ‖u‖C–α

≤
‖u‖C for  ≥ α ≥ β >  and C–α[, T] ⊂ L[, T] (L[, T] is the space of Lebesgue-
integrable real functions on [, T]). Denote

Cα
r [, T] =

{
u(t) ∈ C–α[, T] :

(
Dα

+ u
)
(t) ∈ Cr[, T] and

trDα
+ u(t)|t= = trDα

+ u(t)|t=T
}

,

where r = –β

p– , p > ,  < α,β ≤ , and p + β > .
For convenience, we first present some useful definitions and fundamental facts of frac-

tional calculus theory, some of which can be found in [, ].

Definition . ([]) The Riemann-Liouville fractional integral Iα
+ and fractional deriva-

tive Dα
+ are defined by

Iα
+ f (t) =


�(α)

∫ t


(t – s)α–f (s) ds

and

Dα
+ f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–f (s) ds =

(
d
dt

)n(
In–α

+ f
)
(t),

where n –  < α ≤ n, n ∈N, provided that the integrals exist.

Lemma . ([]) Assume that f ∈ C(, T] ∩ L(, T] with a fractional derivative of order α

( < α ≤ ) that belongs to C(, T] ∩ L(, T]. Then

Iα
+ Dα

+ f (t) = f (t) – ctα– for some c ∈R.

Lemma . (C–α[, T],‖ · ‖C–α
) and (Cα

r [, T],‖ · ‖Cα
r ) are Banach spaces, where

‖u‖C–α
=

∥∥t–αu
∥∥

C , ‖u‖Cα
r = ‖u‖C–α

+
∥∥Dα

+ u
∥∥

Cr
.

Proof Let {un}∞n= be a Cauchy sequence in the space (C–α[, T],‖ ·‖C–α
). Then there exist

vn ∈ C[, T] such that vn(t) = t–αun(t), t ∈ [, T], and thus un(t) = tα–vn(t), t ∈ (, T]. For
any ε > , there exists N >  such that

‖un – um‖C–α
= ‖vn – vm‖C < ε, n, m ≥ N ,
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which implies that there exists v(t) ∈ C[, T] such that vn(t) → v(t), t ∈ [, T], and so
un(t) = tα–vn(t) → tα–v(t), t ∈ (, T]. Let u(t) = tα–v(t), t ∈ (, T]. Then {t–αun(t)}∞n=
converges uniformly to t–αu(t), and we can easily find that u ∈ C–α[, T].

Next, we shall prove that Cα
r [, T] is a Banach space. It is clear that ‖ · ‖Cα

r is a norm. Let
{un}∞n= be a Cauchy sequence in the space (Cα

r [, T],‖ · ‖Cα
r ). Evidently, {un}∞n= is also a

Cauchy sequence in the space (C–α[, T],‖ · ‖C–α
); thus, limn→∞ t–αun(t) = t–αu(t), and

u ∈ C–α[, T]. Moreover, {tr(Dα
+ un)(t)}∞n= converges uniformly to some w(t) ∈ C[, T].

We need to verify that w(t) = tr(Dα
+ u)(t), t ∈ [, T].

For ε = , there exists N >  such that |tr(Dα
+ un)(t)–w(t)| <  for any t ∈ [, T] and n > N .

Denoting

M∗ = max
{

 + sup
t∈[,T]

∣∣w(t)
∣∣, sup

t∈[,T]

∣∣tr(Dα
+ ui

)
(t)

∣∣, i = , , . . . , N
}

,

we have∣∣∣∣t–α

∫ t


(t – s)α–s–rsrDα

+ un(s) ds
∣∣∣∣ ≤ M∗t–α

∫ t


(t – s)α–s–r ds ≤ M∗B(α,  – r)T –r ,

where B(·, ·) is the Beta function. By Lemma . we get

t–αun(t) = t–αIα
+ Dα

+ un(t) + c = t–α 
�(α)

∫ t


(t – s)α–Dα

+ un(s) ds + c

= t–α 
�(α)

∫ t


(t – s)α–s–rsrDα

+ un(s) ds + c, t ∈ [, T]. (.)

Letting n → ∞, by the Lebesgue dominated convergence theorem from (.) we derive
that

t–αu(t) = t–α 
�(α)

∫ t


(t – s)α–s–rw(s) ds + c = t–αIα

+
[
t–rw(t)

]
+ c, t ∈ [, T],

that is, u(t) = Iα
+ [t–rw(t)] + ctα–, t ∈ (, T], and so w(t) = trDα

+ u(t), t ∈ (, T]. Obviously,
trDα

+ u(t)|t= = trDα
+ u(t)|t=T ; hence, ‖un – u‖Cα

r → , and u ∈ Cα
r . The proof of the lemma

is complete. �

Lemma . ([], Lemma .) Assume that  < β ≤ , M >  is a constant, u(t) ∈
C–β [, T], and h(t) ∈ C–β [, T]. Then the linear fractional periodic boundary value prob-
lem {

Dβ

+ u(t) + Mu(t) = h(t), t ∈ (, T],
t–βu(t)|t= = t–βu(t)|t=T ,

has the following integral representation of the solution:

u(t) =
�(β)T –βtβ–Eβ ,β (–Mtβ )

 – �(β)Eβ ,β(–MTβ )

∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
h(s) ds

+
∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
h(s) ds,

where Eβ ,β(x) =
∑∞

k=
xk

�(kβ+β) is the Mittag-Leffler function; see [, ].
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Remark . Note that Eβ ,β(x) >  for all x ∈ R and Eβ ,β (x) < 
�(β) for x <  (see [],

Lemma .), so we know that  – �(β)Eβ ,β(–MTβ ) > .

Lemma . Assume that  < α,β ≤ , M >  is a constant, k ∈ R, u(t) ∈ Cα
r [, T], and

η(t) ∈ C–β [, T]. Then the linear fractional periodic boundary value problem

{
Dβ

+ (φp(Dα
+ u(t))) + Mφp(Dα

+ u(t)) = η(t), t ∈ (, T],
trDα

+ u(t)|t= = trDα
+ u(t)|t=T , ũ() = k,

(.)

has a unique solution of the following integral form:

u(t) = ktα– +


�(α)

∫ t


(t – s)α–φq

[
�(β)T –βsβ–Eβ ,β(–Msβ )

 – �(β)Eβ ,β(–MTβ )

×
∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
η(s) ds

+
∫ s


(s – τ )β–Eβ ,β

(
–M(s – τ )β

)
η(τ ) dτ

]
. (.)

Proof Let v(t) = φp(Dα
+ u(t)). Then φp(trDα

+ u(t)) = t–βv(t) for  < t ≤ T . Thus, problem
(.) is changed to the following fractional periodic boundary problem:

{
Dβ

+ v(t) + Mv(t) = η(t), t ∈ (, T],
t–βv(t)|t= = t–βv(t)|t=T .

By Lemma . we get

v(t) =
�(β)T –β tβ–Eβ ,β(–Mtβ )

 – �(β)Eβ ,β(–MTβ )

∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
η(s) ds

+
∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
η(s) ds. (.)

Hence, v(t) ∈ C–β [, T], and

Dα
+ u(t) = φq

[
�(β)T –β tβ–Eβ ,β(–Mtβ )

 – �(β)Eβ ,β(–MTβ )

∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
η(s) ds

+
∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
η(s) ds

]
. (.)

Since v(t) ∈ C(, T]∩L(, T], we have Dα
+ u(t) ∈ C(, T]∩L(, T]. By Lemma . we arrive

at

u(t) = ctα– +


�(α)

∫ t


(t – s)α–φq

[
�(β)T –βsβ–Eβ ,β(–Msβ )

 – �(β)Eβ ,β(–MTβ )

×
∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
η(s) ds

+
∫ s


(s – τ )β–Eβ ,β

(
–M(s – τ )β

)
η(τ ) dτ

]
ds.
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In view of ũ() = k, we find c = k and

u(t) = ktα– +


�(α)

∫ t


(t – s)α–φq

[
�(β)T –βsβ–Eβ ,β(–Msβ )

 – �(β)Eβ ,β(–MTβ )

×
∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
η(s) ds

+
∫ s


(s – τ )β–Eβ ,β

(
–M(s – τ )β

)
η(τ ) dτ

]
ds. (.)

Conversely, it is obvious that u(t) ∈ C–α[, T] and ũ() = k. Note that Dα
+ tα– =  and

Dα
+ Iαu = u for all u ∈ C(, T] ∩ L(, T]. Differentiating (.) with order α, we get (.).

Since η(t) ∈ C–β [, T], we have φp(Dα
+ u(t)) ∈ C–β [, T] and Dα

+ u(t) ∈ Cr[, T]. By (.)
we see that

t–βv(t) =
�(β)T –βEβ ,β(–Mtβ )
 – �(β)Eβ ,β(–MTβ )

×
∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
η(s) ds

+ t–β

∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
η(s) ds

and

t–βv(t)|t= = t–βv(t)|t=T

=
T –β

 – �(β)Eβ ,β(–MTβ )

∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
η(s) ds.

Thus, trDα
+ u(t)|t= = trDα

+ u(t)|t=T . Differentiating (.) with order β , by Lemma . we
obtain

Dβ

+
(
φp

(
Dα

+ u(t)
))

+ Mφp
(
Dα

+ u(t)
)

= η(t).

This completes the proof. �

Lemma . (Comparison result) If u(t) ∈ Cα
r [, T] and satisfies

⎧⎪⎨
⎪⎩

Dβ

+ (φp(Dα
+ u(t))) + Mφp(Dα

+ u(t)) ≥ , t ∈ (, T],
trDα

+ u(t)|t= = trDα
+ u(t)|t=T ,

ũ() ≥ ,

where M >  is a constant, then Dα
+ u(t) ≥  and u(t) ≥  for t ∈ (, T].

Proof Let w(t) = φp(Dα
+ u(t)). Then w(t) ∈ C–β [, T] and satisfies

{
Dβ

+ w(t) + Mw(t) ≥ , t ∈ (, T],
t–βw(t)|t= = t–βw(t)|t=T ,
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and hence w(t) ≥  for t ∈ (, T] by Lemma . and Remark .. Since φp(x) is nondecreas-
ing, u(t) ∈ Cα

r [, T] satisfies

{
Dα

+ u(t) ≥ , t ∈ (, T],
ũ() ≥ ,

and so we get u(t) ≥ , t ∈ (, T], by (.) and (.). This lemma is complete. �

Remark . In fact, from the above proof, we can see that Lemma . unifies and includes
two separate comparison results, which are applied to the next Theorem . directly.

3 Main results
We first introduce the definition of a pair of lower and upper solutions for using the mono-
tone iterative method.

Definition . A function u(t) ∈ Cα
r [, T] is called a lower solution of problem (.) if it

satisfies
{

Dβ

+ (φp(Dα
+ u(t))) ≤ f (t, u(t), Dα

+ u(t)), t ∈ (, T],
trDα

+ u(t)|t= = trDα
+ u(t)|t=T , g(ũ(), ũ(T)) ≥ .

(.)

A function v(t) ∈ Cα
r [, T] is called an upper solution of problem (.) if it satisfies

{
Dβ

+ (φp(Dα
+ v(t))) ≥ f (t, v(t), Dα

+ v(t)), t ∈ (, T],
trDα

+ v(t)|t= = trDα
+ v(t)|t=T , g(ṽ(), ṽ(T)) ≤ .

(.)

For our main results, we need the following assumptions.

(H) Assume that u, v ∈ Cα
r [, T] are lower and upper solutions of problem (.), respec-

tively, and u(t) ≤ v(t), t ∈ (, T].
(H) There exists a constant M >  such that

f
(
t, u(t), Dα

+ u(t)
)

– f
(
t, v(t), Dα

+ v(t)
) ≤ M

[
φp

(
Dα

+ v(t)
)

– φp
(
Dα

+ u(t)
)]

for u(t) ≤ u(t) ≤ v(t) ≤ v(t), Dα
+ u(t) ≤ Dα

+ u(t) ≤ Dα
+ v(t) ≤ Dα

+ v(t), t ∈ (, T].
(H) There exist constants λ >  and μ ≥  such that

g(x, y) – g(x, y) ≤ λ(x – x) – μ(y – y)

for ũ() ≤ x ≤ x ≤ ṽ() and ũ(T) ≤ y ≤ y ≤ ṽ(T).

Theorem . Suppose that f ∈ C([, T] ×R×R,R), g ∈ C(R×R,R), and (H), (H), and
(H) hold. Then there exist sequences {un(t)}, {vn(t)} ⊂ Cα

r [, T] such that limn→∞ un = x,
limn→∞ vn = y on (, T] and x, y are minimal and maximal solutions on the interval [u, v]
of problem (.), respectively, where

[u, v] =
{

u ∈ Cα
r [, T] : u(t) ≤ u(t) ≤ v(t), t ∈ (, T], ũ() ≤ ũ() ≤ ṽ()

}
,
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that is, for any solution u ∈ [u, v],

u ≤ u ≤ · · · ≤ un ≤ · · · ≤ x ≤ u ≤ y ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v.

Moreover, we have

Dα
+ u ≤ Dα

+ u ≤ · · · ≤ Dα
+ un ≤ · · · ≤ Dα

+ x

≤ Dα
+ u ≤ Dα

+ y ≤ · · · ≤ Dα
+ vn ≤ · · · ≤ Dα

+ v ≤ Dα
+ v.

Proof Let F(u(t)) := f (t, u(t), Dα
+ u(t)). For n = , , . . . , we define

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dβ

+ (φp(Dα
+ un(t))) + Mφp(Dα

+ un(t))
= F(un–(t)) + Mφp(Dα

+ un–(t)), t ∈ (, T],
trDα

+ un(t)|t= = trDα
+ un(t)|t=T ,

ũn() = ũn–() + 
λ

g(ũn–(), ũn–(T)),

(.)

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dβ

+ (φp(Dα
+ vn(t))) + Mφp(Dα

+ vn(t))
= F(vn–(t)) + Mφp(Dα

+ vn–(t)), t ∈ (, T],
trDα

+ vn(t)|t= = trDα
+ vn(t)|t=T ,

ṽn() = ṽn–() + 
λ

g(ṽn–(), ṽn–(T)).

(.)

Since u, v ∈ Cα
r [, T], we know that Dα

+ u(t), Dα
+ v(t) ∈ Cr[, T], and so F(u(t)) +

φp(Dα
+ u(t)), F(v(t)) + φp(Dα

+ v(t)) ∈ C–β[, T]. In view of Lemma ., the functions u

and v are well defined in the space Cα
r [, T]. By induction, we can infer that un and vn are

well defined in the space Cα
r [, T].

First, we prove that u(t) ≤ u(t) ≤ v(t) ≤ v(t), t ∈ (, T], and Dα
+ u(t) ≤ Dα

+ u(t) ≤
Dα

+ v(t) ≤ Dα
+ v(t), t ∈ (, T]. Let δ(t) := φp(Dα

+ u(t)) – φp(Dα
+ u(t)). The definition of u

and the assumption that u is a lower solution imply that

Dβ

+δ(t) + Mδ(t) = F
(
u(t)

)
– Dβ

+
(
φp

(
Dα

+ u(t)
)) ≥ 

and t–βδ(t)|t= = t–βδ(t)|t=T , ũ() – ũ() = 
λ

g(ũ(), ũ(T)) ≥ . Thus, we have
Dα

+ u(t) ≤ Dα
+ u(t) and u(t) ≥ u(t), t ∈ (, T] by Lemma ..

Using a similar method, we can show that v(t) ≤ v(t) and Dα
+ v(t) ≤ Dα

+ v(t) for all
t ∈ (, T]. Now, we put ξ (t) = φp(Dα

+ v(t)) – φp(Dα
+ u(t)). From (.), (.), and (H) we

get

Dβ

+ξ (t) + Mξ (t) = F
(
v(t)

)
– F

(
u(t)

)
+ M

[
φp

(
Dα

+ v(t)
)

– φp
(
Dα

+ u(t)
)] ≥  (.)

and

t–βξ (t)|t= = t–βξ (t)|t=T . (.)
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We find, by (H) and (H), that

ṽ() – ũ() = ṽ() +

λ

g
(
ṽ(), ṽ(T)

)
–

[
ũ() +


λ

g
(
ũ(), ũ(T)

)]

=

λ

[
λ
(
ṽ() – ũ()

)
+ g

(
ṽ(), ṽ(T)

)
– g

(
ũ(), ũ(T)

)]
≥ μ

λ

(
ṽ(T) – ũ(T)

) ≥ . (.)

It follows from (.)-(.) and Lemma . that Dα
+ v(t) ≥ Dα

+ u(t) and v(t) ≥ u(t), t ∈
(, T].

Next, we show that u and v are lower and upper solutions of problem (.), respectively.
From (.) and assumptions (H) and (H) we have

Dβ

+
(
φp

(
Dα

+ u(t)
))

= F
(
u(t)

)
– F

(
u(t)

)
+ F

(
u(t)

)
– M

[
φp

(
Dα

+ u(t)
)

– φp
(
Dα

+ u(t)
)]

≤ F
(
u(t)

)
and

 = g
(
ũ(), ũ(T)

)
– g

(
ũ(), ũ(T)

)
+ g

(
ũ(), ũ(T)

)
– λ

[
ũ() – ũ()

]
≤ g

(
ũ(), ũ(T)

)
– μ

(
ũ(T) – ũ(T)

)
.

Since ũ(T) ≥ ũ(T), the last inequality implies g(ũ(), ũ(T)) ≥ . This proves that u is a
lower solution of problem (.). In the same way, we can show that v is an upper solution
of (.).

Using mathematical induction, we have

u(t) ≤ u(t) ≤ · · · ≤ un(t) ≤ un+(t) ≤ vn+(t) ≤ vn(t) ≤ · · · ≤ v(t) ≤ v(t),

Dα
+ u ≤ Dα

+ u ≤ · · · ≤ Dα
+ un ≤ Dα

+ un+ (.)

≤ Dα
+ vn+ ≤ Dα

+ vn ≤ · · · ≤ Dα
+ v ≤ Dα

+ v

for t ∈ (, T] and n = , , , . . . .
The sequences {t–αun} and {trDα

+ un} are uniformly bounded and equicontinuous (see
Lemma A. in the Appendix). Similarly, we can prove that the sequences {t–αvn} and
{trDα

+ vn} are uniformly bounded and equicontinuous. The Arzelà-Ascoli theorem guar-
antees that {t–αun} and {t–αvn} converge to t–αx(t) and t–αy(t) uniformly on [, T], re-
spectively, and {trDα

+ un} and {trDα
+ vn} converge to {trDα

+ x(t)} and {trDα
+ y(t)} uniformly

on [, T], respectively. Therefore, ‖un – x‖Cα
r → , ‖vn – y‖Cα

r →  (n → ∞).
By the integral representation (.) for the linear fractional problem, the solution un(t)

of problem (.) can be expressed as

un(t) = tα–
[

ũn–() +

λ

g
(
ũn–(), ũn–(T)

)]

+


�(α)

∫ t


(t – s)α–φq

[
Msβ–Eβ ,β

(
–Msβ

)
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×
∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
ηn–(s) ds

+
∫ s


(s – τ )β–Eβ ,β

(
–M(s – τ )β

)
ηn–(τ ) dτ

]
, t ∈ (, T],

where ηn–(s) = F(un–(s)) + Mφp(Dα
+ un–(s)) and

M :=
�(β)T –β

 – �(β)Eβ ,β(–MTβ )
. (.)

By the assumption on f , applying the dominated convergence theorem, we get that x(t)
satisfies the following integral equation:

x(t) = tα–x̃() +


�(α)

∫ t


(t – s)α–φq

[
Msβ–Eβ ,β

(
–Msβ

)

×
∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
η(s) ds

+
∫ s


(s – τ )β–Eβ ,β

(
–M(s – τ )β

)
η(τ ) dτ

]
, t ∈ (, T],

where η(s) = F(x(s)) + Mφp(Dα
+ x(s)). By Lemma . we have that x(t) is a solution of prob-

lem (.). Meanwhile, y(t) is also a solution of problem (.) and satisfies u ≤ x ≤ y ≤ v

on (, T].
To prove that x(t) and y(t) are extremal solutions of (.), let u ∈ [u, v] be any solution of

problem (.). We suppose that un ≤ u ≤ vn, t ∈ (, T], for some n. Let ζ (t) = φp(Dα
+ u(t)) –

φp(Dα
+ un+(t)), η(t) = φp(Dα

+ vn+(t)) – φp(Dα
+ u(t)). Thus, by condition (H) we have

Dβ

+ζ (t) + Mζ (t) = F
(
u(t)

)
– F

(
un(t)

)
+ M

[
φp

(
Dα

+ u
)

– φp
(
Dα

+ un
)] ≥ 

and

Dβ

+η(t) + Mη(t) = F
(
vn(t)

)
– F

(
u(t)

)
+ M

[
φp

(
Dα

+ vn
)

– φp
(
Dα

+ v
)] ≥ .

Moreover, from condition (H) we find

ũ() – ũn+() =

λ

[
λũ() + g

(
ũ(), ũ(T)

)
–

(
λũn() + g

(
ũn(), ũn(T)

))]
≥ μ

λ

(
ũ(T) – ũn(T)

) ≥ 

and

ṽn+() – ũ() =

λ

[
λṽn() + g

(
ũ(), ũ(T)

)
–

(
λũ() + g

(
ũn(), ũn+(T)

))]
≥ μ

λ

(
ṽn+(T) – ũ(T)

) ≥ .

These inequalities and Lemma . imply that Dα
+ un+(t) ≤ Dα

+ u(t) ≤ Dα
+ vn+(t) and

un+(t) ≤ u(t) ≤ vn+(t), t ∈ (, T], so by induction x(t) ≤ u(t) ≤ y(t) and Dα
+ x ≤ Dα

+ u ≤
Dα

+ y on (, T] by taking the limits as n → ∞. This finishes the proof. �
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Remark . In Definition ., we also can use g(ũ(), ũ(T)) ≤  instead of g(ũ(), ũ(T)) ≥
 to define the lower solution of problem (.) and use g(ṽ(), ṽ(T)) ≥  instead of
g(ṽ(), ṽ(T)) ≤  to define the upper solution of problem (.), with the remaining condi-
tions unchanged. However, the conclusions of Theorem . hold under assumptions (H),
(H), and

(H′
) there exist constants λ′ > , μ′ ≥  such that

g(x, y) – g(x, y) ≥ –λ′(x – x) + μ′(y – y)

for ũ() ≤ x ≤ x ≤ ṽ() and ũ(T) ≤ y ≤ y ≤ ṽ(T). Meanwhile, in the proof, we need
to transform the definitions of ũn() and ṽn() in (.) and (.) into the forms

ũn() = ũn–() –

λ′ g

(
ũn–(), ũn–(T)

)
, ṽn() = ṽn–() –


λ′ g

(
ṽn–(), ṽn–(T)

)

and make the corresponding modification in view of (H′
).

Theorem . The assumptions of Theorem . hold, and there exists a constant N > 
such that

N
[
φp

(
Dα

+ v(t)
)

– φp
(
Dα

+ u(t)
)] ≤ f

(
t, u(t), Dα

+ u(t)
)

– f
(
t, v(t), Dα

+ v(t)
)

(.)

for u(t) ≤ u(t) ≤ v(t) ≤ v(t), Dα
+ u(t) ≤ Dα

+ u(t) ≤ Dα
+ v(t) ≤ Dα

+ v(t), t ∈ (, T], and
ũ() = ṽ(). Then problem (.) has a unique solution in the order interval [u, v].

Proof By Theorem . we see that x(t) and y(t) are extremal solutions and x(t) ≤ y(t), t ∈
(, T]. In order to prove that x(t) ≥ y(t), t ∈ (, T], we let w(t) = φp(Dα

+ x(t)) – φp(Dα
+ y(t)),

t ∈ (, T]. From (.) we arrive at

{
Dβ

+ w(t) = F(x(t)) – F(y(t)) ≥ N[φp(Dα
+ y(t)) – φp(Dα

+ x(t))] = –Nw(t),
t–βw(t)|t= = t–βw(t)|t=T .

Then w(t) ≥ , t ∈ (, T], that is, Dα
+ x(t) ≥ Dα

+ y(t), t ∈ (, T]. Also, by (.), since ũ() =
ṽ(), we have x̃() = ỹ(). Therefore, Lemma . implies x(t) ≥ y(t), t ∈ (, T]. Thus, we
obtain x = y. The proof is complete. �

Example . Consider the following fractional periodic boundary value problem:

⎧⎪⎨
⎪⎩

Dβ

+ (φp(Dα
+ u(t))) = t/( – t) – [Dα

+ u(t)] + u(t), t ∈ (, ],
t/Dα

+ u(t)|t= = t/Dα
+ u(t)|t=,

ũ()( �(/)
�(/) – ũ()) = ,

(.)

where α = /, β = /, p = , T = , and f (t, u, Dα
+ u) = t/( – t) – [Dα

+ u(t)] + u(t),
g(x, y) = x( �(/)

�(/) – y). Set

u(t) ≡ , v(t) =
�(/)
�(/)

t/, t ∈ [, ].
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It is easy to verify that D/
+ u(t) ≡  and D/

+ v(t) = t–/ for t ∈ (, ] and

t/D/
+ u(t)|t= =  = t/D/

+ u(t)|t=, t/D/
+ v(t)|t= =  = t/D/

+ v(t)|t=,

D/
+

(
φ

(
D/

+ u(t)
)) ≡  ≤ f

(
t, u, D/

+ u
)

= t/( – t),

D/
+

(
φ

(
D/

+ v(t)
))

= D/
+

(
t–/) =  ≥ f

(
t, v, D/

+ v
)

= t/( – t) – t–/ +
�(/)
�(/)

t/,

g
(
ũ(), ũ()

)
= , g

(
ṽ(), ṽ()

)
= .

These show that u and v are the lower and upper solutions of (.), respectively, and
u(t) ≤ v(t) on [, ].

For u ≤ u ≤ v ≤ v, we have φ(D/
+ v) – φ(D/

+ u) = (D/
+ v) – (D/

+ u) and

f
(
t, u, D/

+ u
)

+ φ
(
D/

+ u
)

–
[
f
(
t, v, D/

+ v
)

+ φ
(
D/

+ v
)]

= u – v ≤ .

Thus, f (t, u, D/
+ u) – f (t, v, D/

+ v) ≤ M[φ(D/
+ v) – φ(D/

+ u)], where M = .
In addition, ∂g(x,y)

∂x = �(/)
�(/) – y ≥ – �(/)

�(/) , ∂g(x,y)
∂y = –x for ũ() ≤ x ≤ ṽ(), y ∈

[ũ(), ṽ()] = [, �(/)
�(/) ]. Therefore, g(u, v) – g(u, v) ≤ �(/)

�(/) (u – u) for ũ() ≤ u ≤
u ≤ ṽ(), ũ() ≤ v ≤ v ≤ ṽ(). Hence, conditions (H), (H), and (H) are satisfied.
There exist two monotone iterative sequences {uk} and {vk} that converge uniformly to
the minimal and maximal solutions of fractional periodic boundary problem (.) in
[u, v] by Theorem ..

Appendix
Lemma A. The sequences {t–αun} and {trDαun} are uniformly bounded and equicontin-
uous in C[, T], where un is defined by (.) in Theorem ..

Proof We first show that {t–αun} are uniformly bounded in C[, T]. Since u, v ∈
Cα

r [, T], we have φp(Dα
+ v(t)) ∈ C–β [, T], that is, t–βφp(Dα

+ v(t)) ∈ C[, T]. Thus, there
exists a constant γ >  such that

∥∥t–βφp
(
Dα

+ v
)∥∥

C ≤ γ, t ∈ [, T],

which is equivalent to

∣∣φp
(
Dα

+ v(t)
)∣∣ ≤ γtβ–, t ∈ (, T]. (A.)

Let

ηn–(t) = F
(
un–(t)

)
+ Mφp

(
Dα

+ un–(t)
)
, t ∈ (, T]. (A.)

By condition (H) and (A.) we get

ηn–(t) ≤ F
(
v(t)

)
+ Mφp

(
Dα

+ v(t)
) ≤ F

(
v(t)

)
+ Mγtβ–, t ∈ (, T].
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Hence,

‖ηn–‖C–β
≤ ∥∥F(v)

∥∥
CT + Mγ =: γ, t ∈ [, T]. (A.)

Let

xn–(s) = Msβ–Eβ ,β
(
–Msβ

)∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
ηn–(s) ds

+
∫ s


(s – τ )β–Eβ ,β

(
–M(s – τ )β

)
ηn–(τ ) dτ , (A.)

where M is defined in (.). Then xn– ∈ C–β [, T]. Noting that Eβ ,β(x) < 
�(β) for x < ,

by (A.) and (A.) we have

∣∣xn–(s)
∣∣ ≤ Msβ– 

�(β)

∫ T


(T – s)β–sβ–‖ηn–‖C–β

ds

+


�(β)

∫ s


(s – τ )β–τβ–‖ηn–‖C–β

dτ

≤ Msβ– γ

�(β)
B(β ,β)Tβ– +

γ

�(β)
B(β ,β)sβ–, s ∈ (, T], (A.)

which yields

∣∣s–βxn–(s)
∣∣ ≤ M

γ

�(β)
B(β ,β)Tβ– +

γ

�(β)
B(β ,β)Tβ , s ∈ (, T].

Thus, for s ∈ (, T], we get

srφq
(
xn–(s)

)
= φq

(
s–βxn–(s)

)
≤ φq

(
M

γ

�(β)
B(β ,β)Tβ– +

γ

�(β)
B(β ,β)Tβ

)
=: C. (A.)

This implies that φq(xn–(s)) = Dα
+ un(s) is bounded in Cr[, T]. From (.) and Lemma .

we find

t–αun(t) = ũn–() +

λ

g
(
ũn–(), ũn–(T)

)
+

t–α

�(α)

∫ t


(t – s)α–φq

(
xn–(s)

)
ds. (A.)

Using (A.), (A.), and condition (H), we get

∣∣t–αun(t)
∣∣ =

∣∣∣∣ũn–() +

λ

g
(
ũn–(), ũn–(T)

)∣∣∣∣ +
∣∣∣∣ t–α

�(α)

∫ t


(t – s)α–φq

(
xn–(s)

)
ds

∣∣∣∣
≤

∣∣∣∣ṽ() +

λ

g
(
ṽ(), ṽ(T)

)∣∣∣∣ +
Ct–α

�(α)

∫ t


(t – s)α–s–r ds

≤
∣∣∣∣ṽ() +


λ

g
(
ṽ(), ṽ(T)

)∣∣∣∣ +
CB(α,  – r)

�(α)
T –r , t ∈ [, T].

Hence, {t–αun} are uniformly bounded in C[, T].
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Next, we prove that {t–αun} are equicontinuous in C[, T]. Suppose  < t ≤ t ≤ T .
From (A.) and (A.) we have

∣∣t–α
 un(t) – t–α

 un(t)
∣∣

=
∣∣∣∣ t–α


�(α)

∫ t


(t – s)α–φq

(
xn–(s)

)
ds –

t–α


�(α)

∫ t


(t – s)α–φq

(
xn–(s)

)
ds

∣∣∣∣
≤

∣∣∣∣ t–α


�(α)

∫ t

t

(t – s)α–φq
(
xn–(s)

)
ds

∣∣∣∣
+

∣∣∣∣ t–α


�(α)

∫ t



[
(t – s)α– – (t – s)α–]φq

(
xn–(s)

)
ds

∣∣∣∣
+

∣∣∣∣ t–α
 – t–α


�(α)

∫ t


(t – s)α–φq

(
xn–(s)

)
ds

∣∣∣∣
≤ Ct–α


�(α)

∫ t

t

(t – s)α–s–r ds +
Ct–α


�(α)

∫ t



∣∣[(t – s)α– – (t – s)α–]s–r∣∣ds

+
C(t–α

 – t–α
 )

�(α)

∫ t


(t – s)α–s–r ds

=: I + II + III.

For part I, we have

∫ t

t

t–α
 (t – s)α–s–r ds ≤ t–α

 tα–r
 B(α,  – r) = t–r

 B(α,  – r) < ∞.

By the absolute continuity of the integral, we have that I can be sufficiently small when t

is sufficiently close to t. For part II, we have

II =
C

�(α)

[
t–α


∫ t


(t – s)α–s–r ds – t–α



∫ t


(t – s)α–s–r ds

]

=
C

�(α)

[
t–α


∫ t


(t – s)α–s–r ds – t–α



(∫ t


(t – s)α–s–r ds –

∫ t

t

(t – s)α–s–r ds
)]

=
C

�(α)

((
t

t

)–α

· tα
 – tα



)
B(α,  – r) + t–α



∫ t

t

(t – s)α–s–r ds. (A.)

It is easy to see that as t approaches t, II goes to zero.
For part III, we have

III ≤ C(t–α
 – t–α

 )
�(α)t–α


t–r
 B(α,  – r).

Combining the results of I, II, and III, we have that |t–α
 un(t) – t–α

 un(t)| →  as t → t.
When t =  ≤ t ≤ T , from (A.) and (A.) we have

∣∣t–α
 un(t) – ũn()

∣∣ =
∣∣∣∣ t–α


�(α)

∫ t


(t – s)α–φq

(
xn–(s)

)
ds

∣∣∣∣
≤ C

�(α)

∫ t


t–α
 (t – s)α–s–r ds
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=
C

�(α)
t–r
 B(α,  – r)

→  as t → .

This shows that {t–αun} are equicontinuous in C[, T].
In the following, we will check that {trDα

+ un} are relatively compact in C[, T].
First, we prove that {trDα

+ un} are uniformly bounded in C[, T]. By (.) and (.) we
get

Dα
+ un(t) = φq

[
Mtβ–Eβ ,β

(
–Mtβ

)∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
ηn–(s) ds

+
∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
ηn–(s) ds

]
, (A.)

where ηn– is defined in (A.). By (A.) and the definition of xn– in (A.) and (A.), we
still have

∣∣trDα
+ un(t)

∣∣ =
∣∣trφq

(
xn–(t)

)∣∣ =
∣∣φq

(
t–βxn–(t)

)∣∣ ≤ C, t ∈ (, T].

Therefore, {trDα
+ un} are uniformly bounded in C[, T].

Second, we prove that {trDα
+ un} are equicontinuous in C[, T]. Since φp(trDα

+ u(t)) =
t–βφp(Dα

+ u(t)), we need to deal with the equicontinuity of {t–βφp(Dα
+ un)} in C[, T].

Choosing  < t ≤ t ≤ T , by (A.) and (A.) we have

∣∣t–β
 φp

(
Dα

+ un(t)
)

– t–β
 φp

(
Dα

+ un(t)
)∣∣

=
∣∣∣∣M

[
Eβ ,β

(
–Mtβ


)

– Eβ ,β
(
–Mtβ


)]∫ T


(T – s)β–Eβ ,β

(
–M(T – s)β

)
ηn–(s) ds

+ t–β


∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
ηn–(s) ds

– t–β


∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
ηn–(s) ds

∣∣∣∣
≤ M

∣∣Eβ ,β
(
–Mtβ


)

– Eβ ,β
(
–Mtβ


)∣∣ ∫ T


(T – s)β– 

�(β)
sβ–‖ηn–‖C–β

ds

+
∣∣∣∣t–β



∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
ηn–(s) ds

– t–β


∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
ηn–(s) ds

∣∣∣∣
≤ t–β



∣∣∣∣
∫ t



[
(t – s)β–Eβ ,β

(
–M(t – s)β

)
– (t – s)β–Eβ ,β

(
–M(t – s)β

)]
ηn–(s) ds

∣∣∣∣
+

∣∣∣∣(t–β
 – t–β


)∫ t


(t – s)β–Eβ ,β

(
–M(t – s)β

)
ηn–(s) ds

∣∣∣∣
+

∣∣∣∣t–β


∫ t

t

(t – s)β–Eβ ,β
(
–M(t – s)β

)
ηn–(s) ds

∣∣∣∣
+ C∗∣∣Eβ ,β

(
–Mtβ


)

– Eβ ,β
(
–Mtβ


)∣∣

=: I′ + II′ + III′ + IV′,
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where

C∗ = M
γ

�(β)
Tβ–B(β ,β).

It is easy to verify that II′, III′, and IV′ go to zero as t → t. In the following, we only
consider I′:

I′ ≤ γt–β


∣∣∣∣
∫ t



[
(t – s)β–Eβ ,β

(
–M(t – s)β

)
– (t – s)β–Eβ ,β

(
–M(t – s)β

)]
sβ– ds

∣∣∣∣
≤ γt–β



∫ t


(t – s)β–∣∣Eβ ,β

(
–M(t – s)β

)
– Eβ ,β

(
–M(t – s)β

)∣∣sβ– ds

+
γ

�(β)
t–β


∫ t



(
(t – s)β– – (t – s)β–)sβ– ds.

By the continuity of the Mittag-Leffler function and (A.) we have that I′ goes to zero as
t → t. It is easy to verify that the equicontinuity of {trDα

+ un} is true for t =  by (A.)
and similar estimates. This completes the proof of the lemma. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Author details
1Department of Mathematics, Shandong Jianzhu University, Jinan, Shandong 250101, China. 2School of Mathematical
Science, University of Jinan, Jinan, Shandong 250022, China. 3School of Mathematics, Shandong University, Jinan,
Shandong 250100, China.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (11571200, 11425105), the Doctoral Fund
of Shandong Jianzhu University (XNBS1534), and the Doctoral Fund of University of Jinan (160100101).

Received: 10 June 2016 Accepted: 25 July 2016

References
1. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
2. Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, New

York (1999)
3. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach,

Yverdon (1993)
4. Diethelm, K: The Analysis of Fractional Differential Equations. Springer, Heidelberg (2010)
5. Abbas, S, Banerjee, M, Momani, S: Dynamical analysis of fractional-order modified logistic model. Comput. Math.

Appl. 62, 1098-1104 (2011)
6. Liu, JG, Xu, MY: Higher-order fractional constitutive equations of viscoelastic materials involving three different

parameters and their relaxation and creep functions. Mech. Time-Depend. Mater. 10, 263-279 (2006)
7. Magin, RL: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586-1593

(2010)
8. Bai, J, Feng, XC: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16, 2492-2502

(2007)
9. Fu, ZJ, Chen, W, Yang, HT: Boundary particle method for Laplace transformed time fractional diffusion equations.

J. Comput. Phys. 235, 52-66 (2013)
10. Pang, GF, Chen, W, Fu, ZJ: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys.

293, 280-296 (2015)
11. Jankowski, T: Boundary problems for fractional differential equations. Appl. Math. Lett. 28, 14-19 (2014)
12. Jankowski, T: Fractional problems with advanced arguments. Appl. Math. Comput. 230, 371-382 (2014)
13. Zhang, XG, Liu, LS, Wu, YH: The uniqueness of positive solution for a fractional order model of turbulent flow in a

porous medium. Appl. Math. Lett. 37, 26-33 (2014)
14. Zhao, YL, Chen, HB, Qi, B: Multiple solutions for a coupled system of nonlinear fractional differential equations via

variational methods. Appl. Math. Comput. 257, 417-427 (2015)



Ding et al. Advances in Difference Equations  (2016) 2016:201 Page 17 of 17

15. Wei, ZL, Li, QD, Che, JL: Initial value problems for fractional differential equations involving Riemann-Liouville
sequential fractional derivative. J. Math. Anal. Appl. 367, 260-272 (2010)

16. Ahmad, B, Sivasundaram, S: On four-point nonlocal boundary value problems of nonlinear integro-differential
equations of fractional order. Appl. Math. Comput. 217, 480-487 (2010)

17. Zhang, XG, Liu, LS, Wu, YH, Wiwatanapataphee, B: The spectral analysis for a singular fractional differential equation
with a signed measure. Appl. Math. Comput. 257, 252-263 (2015)

18. Al-Refai, M, Hajji, MA: Monotone iterative sequences for nonlinear boundary value problems of fractional order.
Nonlinear Anal. 74, 3531-3539 (2011)

19. Liu, ZH, Sun, JH, Szántó, I: Monotone iterative technique for Riemann-Liouville fractional integro-differential
equations with advanced arguments. Results Math. 63, 1277-1287 (2013)

20. Zhang, SQ, Su, XW: The existence of a solution for a fractional differential equation with nonlinear boundary
conditions considered using upper and lower solutions in reverse order. Comput. Math. Appl. 62, 1269-1274 (2011)

21. Wang, Y, Liu, LS, Wu, YH: Extremal solutions for p-Laplacian fractional integro-differential equation with integral
conditions on infinite intervals via iterative computation. Adv. Differ. Equ. 2015, 24 (2015)

22. Hu, CZ, Liu, B, Xie, SF: Monotone iterative solutions for nonlinear boundary value problems of fractional differential
equation with deviating arguments. Appl. Math. Comput. 222, 72-81 (2013)

23. Jia, M, Liu, XP: Multiplicity of solutions for integral boundary value problems of fractional differential equations with
upper and lower solutions. Appl. Math. Comput. 232, 313-323 (2014)

24. Wei, ZL, Dong, W, Che, JL: Periodic boundary value problems for fractional differential equations involving a
Riemann-Liouville fractional derivative. Nonlinear Anal. 73, 3232-3238 (2010)

25. Ding, YZ, Wei, ZL, Xu, JF, O’Regan, D: Extremal solutions for nonlinear fractional boundary value problems with
p-Laplacian. J. Comput. Appl. Math. 288, 151-158 (2015)

26. Chen, TY, Liu, WB: An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian
operator. Appl. Math. Lett. 25, 1671-1675 (2012)

27. Zhang, XG, Liu, LS, Wiwatanapataphee, B, Wu, YH: The eigenvalue for a class of singular p-Laplacian fractional
differential equations involving the Riemann-Stieltjes integral boundary conditions. Appl. Math. Comput. 235,
412-422 (2014)

28. Chen, TY, Liu, WB, Liu, JY: Solvability of periodic boundary value problem for fractional p-Laplacian equation. Appl.
Math. Comput. 244, 422-431 (2014)


	Extremal solutions for singular fractional p-Laplacian differential equations with nonlinear boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and existence results for linear fractional p-Laplacian problems
	Main results
	Appendix
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


