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Abstract
In this paper, with the aid of functional analysis, for almost sectorial operators and
some fixed point theorems, we study the existence and uniqueness of mild solutions
to fractional neutral evolution equations with almost sectorial operators. We also
show that mild solutions can become strong and classical solutions under
appropriate assumptions. Finally, we present an example to illustrate the applicability
of our results.
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1 Introduction
Throughout this paper, by (X,‖ · ‖) we denote a Banach space. As usual, for a linear oper-
ator A, D(A), R(A), and σ (A) stand for the domain, range, and spectrum of A, respectively.
Moreover, L(X) denotes the space of all bounded linear operators on X.

A sectorial operator is a linear operator A in a Banach space whose spectrum lies in a
closed sector Sω = {z ∈ C\{} | | arg z| ≤ μ} ∪ {} for some  ≤ ω < π and whose resolvent
(z – A)– satisfies the estimate

∥
∥(z – A)–∥∥ ≤ M|z|– for all z /∈ Sω. (.)

Several elliptic differential operators considered in the spaces of continuous functions or
Lebesgue spaces belong to the class of sectorial operators. Therefore, many PDEs with
elliptic operators can be transformed into evolution equations with sectorial operators in
a Banach space; for example, see [–].

In , Wahl [] first pointed out that the resolvent estimates of elliptic differential
operators considered in spaces of regular functions, such as the spaces of Hölder continu-
ous functions, do not satisfy estimate (.). However, such operators satisfy the following
estimate for some – < γ < :

∥
∥(z – A)–∥∥ ≤ M|z|γ for all z /∈ Sω.

Now we recall the following definition [–].
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Definition . Let – < γ <  and  ≤ ω < π . By �
γ
ω(X) we denote the set of all closed

linear operators A : D(A) ⊆ X → X such that
(i) the spectral set σ (A) of A is in the sector Sμ = {z ∈C\{} | | arg z| ≤ μ} ∪ {}, that is,

σ (A) ⊆ Sμ;
(ii) for every ω < μ < π , there exists a constant Cμ >  such that

∥
∥(z – A)–∥∥ ≤ Cμ|z|γ for all z /∈ Sμ.

A linear operator is called an almost sectorial operator on X if it belongs to �
γ
ω(X). Con-

cerning the relationship between sectorial and almost sectorial operators, it has been
found that a sectorial operator is an almost sectorial operator, but the converse is not true
[, , –]. Some recent results on almost sectorial operators can be found in [, –].

The use of fractional calculus in the mathematical modeling of engineering and physi-
cal problems has become increasingly popular in recent years. Examples include material
sciences, mechanics, wave propagation, signal processing, system identification, and so
on. In consequence, the topic of fractional (ordinary, partial, functional) differential equa-
tions has developed into a hot research area; for example, see [–]. Wang et al. []
studied a fractional-order Cauchy problem with almost sectorial operators. In [], the
author discussed mild solutions for abstract fractional differential equations with almost
sectorial operators and infinite delay. More recently, in [], the authors investigated frac-
tional Cauchy problems with almost sectorial operators. Fractional functional differential
equations are used to describe anomalous diffusion processes with memory or hereditary
properties. For details and some recent results on functional fractional differential equa-
tions, we refer the reader to a series of papers [–, , , , , , , ]. To the
best of our knowledge, the study of fractional neutral evolution equations (FNEEs) with
almost sectorial operators is yet to be initiated. The aim of this paper is to investigate the
existence and uniqueness of solutions of FNEEs.

The rest of the paper is organized as follows. In Section , we introduce some notation,
definitions, and basic properties about fractional derivatives and functional analysis asso-
ciated with almost sectorial operators. In Section , we prove the existence and uniqueness
of mild solutions to FNEEs with almost sectorial operators. Under some suitable assump-
tions, we also show that mild solutions correspond to strong and classical solutions. Sec-
tion  contains an example for illustration of our results, and we conclude our work in
Section .

2 Preliminaries
Here, we recall some preliminary material related to our work [, –].

2.1 Fractional integrals and derivatives
In this subsection, we give some basic definitions and properties of the fractional integral
and derivatives.

Definition . The Riemann-Liouville integral aIα
t x and the Riemann-Liouville fractional

derivative aDα
t x are respectively defined as

(

aIα
t x

)

(t) =


�(α)

∫ t

a
(t – τ )α–x(τ ) dτ , t > a,
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and

(

aDα
t x

)

(t) =
(

Dm+
aIm+–α

t x
)

(t) =


�(m +  – α)
dm+

dtm+

∫ t

a
(t – τ )m–αx(τ ) dτ , t > a,

provided that the right-hand side is pointwise defined on [a,∞). Here, � denotes the
gamma function, and m ∈N.

Definition . The Caputo fractional derivative C
a Dα

t x is defined via the Riemann-
Liouville derivative as

(C
a Dα

t x
)

(t) = aDα
t

(

x(t) –
m

∑

k=

x(k)(a)
k!

(t – a)k

)

, t > a, m ≤ α < m + , m ∈N.

Note that if x(k)(a) = , k = , , . . . , m, then (C
a Dα

t x)(t) coincides with (aDα
t x)(t).

Now we enlist some properties of the Riemann-Liouville fractional integral and the Ca-
puto derivative (see [, –]).

Proposition . Let α,β > . Then the following properties hold:
(i) (aIα

t aIβ
t x)(t) = (aIα+β

t x)(t) for all x ∈ L(a, b);
(ii) (aIα

t (x ∗ y))(t) = ((aIα
t x) ∗ y)(t) for all x, y ∈ L(a, b), where ∗ denotes convolution;

(iii) The Caputo derivative C
a Dα

t is a left inverse of aIα
t , that is, (C

a Dα
t aIα

t x)(t) = x(t) for all
x ∈ L(a, b); in general, it is not a right inverse. In fact, for m ≤ α < m + , m ∈N, and
x ∈ Cm+([a, b]), we have (aIα

t
C
a Dα

t x)(t) = x(t) –
∑m

k=
x(k)(a)

k! (t – a)k .

2.2 Special functions
Here we present some basic definitions and properties of two special functions that we
need in the sequel (see [, , , ]).

Definition . The two-parameter Mittag-Leffler function is defined by

Eα,β (z) =
∞

∑

k=

zk

�(kα + β)
, α,β > , z ∈C.

In particular, if β = , then Eα,β coincides with the one-parameter Mittag-Leffler func-
tion Eα(z), that is, Eα,(z) = Eα(z). If α = β = , then E,(z) = ez .

Definition . The Wright-type function is defined by

�α(z) =

π

∞
∑

k=

(–z)k

(k – )!
�(kα) sin(kπα),  < α < , z ∈ C.

The following properties of the Wright-type function (cf. []) are useful in establishing
the definition of mild solutions to FNEEs with almost sectorial operators.

Proposition . Let – < ν < ∞, λ > . Then the following properties hold:
(i) �α(t) ≥  for all t > ;

(ii)
∫ ∞


α

tα+ �α( 
tα )e–λt dt = e–λα ;
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(iii)
∫ ∞

 �α(t)tν dt = �(+ν)
�(+αν) ; in particular,

∫ ∞
 �α(t) dt = ;

(iv)
∫ ∞

 �α(t)e–zt dt = Eα(–z), z ∈C;
(v)

∫ ∞
 αt�α(t)e–zt dt = Eα,α(–z), z ∈C.

2.3 Complex powers
In this subsection, we give the definition and properties of complex powers of almost sec-
torial operators, which will be used in the next section. For more details, see [, ].

We define the path ϒθ := {R+eiθ } ∪ {R+e–iθ } ( < θ < π ) oriented so that S
θ lies to the left

of ϒθ . In the forthcoming analysis, we write �
γ
ω instead of �

γ
ω(X). Let β ∈ C and A ∈ �

γ
ω

with – < γ <  and  < ω < π/. Then the complex power Aβ of A is defined by

Aβ := zβ (A) =


π i

∫

ϒθ

zβ (z – A)– dz, z ∈ C\(–∞, ].

Now we list some properties of Aβ (see []).

Proposition . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/. Then, for all α,β ∈ C, the

following statements hold.
(i) The operator Aβ is closed.

(ii) AαAβ ⊆ Aα+β . Moreover, if Aβ is bounded, then AαAβ = Aα+β .
(iii) Aβ is injective, and (Aβ )– = A–β .
(iv) An = A · · ·A

︸ ︷︷ ︸

n times

for all n ∈N and A = I .

(v) If Re(β) >  + γ , then A–β is bounded.

Based on Proposition ., we now prove a lemma, which will be used in the next section.

Lemma . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/, and let Re(β) >  + γ . Then

A–βAβ = AβA–β = A.

Proof Since Re(β) >  + γ , by Proposition .(ii), (v) we get Aβ–A–β = A–. On the other
hand, by Proposition .(iii) we can verify that (Aβ–A–β )– = AβA–β . Therefore, we have
AβA–β = A, and the proof is completed. �

It is worth noting that Proposition .(v) implies that the operator A–β belongs to L(X)
whenever Re(β) >  + γ . So, in this situation, the linear space Xβ := D(Aβ ) (Re(β) >  + γ )
is a Banach space with the graph norm ‖x‖β = ‖Aβx‖, x ∈ Xβ . Of particular interest is that
these spaces Xβ will provide the basic topology for analyzing the solutions of FNEEs with
almost sectorial operators.

2.4 Properties of the operators Sα(t) and Pα(t)
We introduce families of operators {T(t)}t∈S

π/–ω
, {Sα(t)}t∈S

π/–ω
, and {Pα(t)}t∈S

π/–ω
asso-

ciated with the operator A as follows:

T(t) := e–tz(A) =


π i

∫

ϒθ

e–tz(z – A)– dz, t ∈ S
π/–ω, z ∈ C\(–∞, ],

Sα(t) := Eα

(

–ztα
)

(A) =


π i

∫

ϒθ

Eα

(

–ztα
)

(z – A)– dz,

t ∈ S
π/–ω, z ∈ C\(–∞, ], (.)
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Pα(t) := Eα,α
(

–ztα
)

(A) =


π i

∫

ϒθ

Eα,α
(

–ztα
)

(z – A)– dz,

t ∈ S
π/–ω, z ∈C\(–∞, ].

These operators appear in representations of solutions for FNEEs with almost sectorial
operators. Further details about these operators can be found in [, ].

Notice that the operator family {T(t)}t∈S
π/–ω

is a semigroup in view of the semigroup
property: T(s + t) = T(s)T(t) for all s, t ∈ S

π/–ω . Also, the operator T(t) can characterize
the resolvent (z + A)– of –A as

(z + A)– =
∫ ∞


e–ztT(t) dt, z ∈C, Re(z) > . (.)

From (.) and (.) it follows that there is a one-to-one correspondence between A and
the semigroup T(t). By Proposition .(iv), (v) and definition (.) we can obtain the third
property, that is, the operators Sα(t) and Pα(t) can be represented by T(t) as

Sα(t)x =
∫ ∞


�α(s)T

(

stα
)

x ds, t ∈ S
π/–ω, x ∈ D

(

Sα(t)
)

, (.)

Pα(t)x =
∫ ∞


αs�α(s)T

(

stα
)

x ds, t ∈ S
π/–ω, x ∈ D

(

Pα(t)
)

. (.)

For the reader’s convenience, we recall some more properties of the operator T in the
following proposition.

Proposition . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/. Then the following proper-

ties hold.
(i) T(t) is analytic in S

π/–ω , and dnT(t)
dtn = (–A)nT(t), t ∈ S

π/–ω , n ∈N.
(ii) There is a constant C = C(γ ) such that ‖T(t)‖ ≤ Ct–γ –, t > .

(iii) The range R(T(t)) of T(t), t ∈ S
π/–ω , is contained in D(A∞). In particular,

R(T(t)) ⊆ D(Aβ ) for all β ∈C with Re(β) > , AβT(t)x = 
π i

∫

ϒθ
zβe–tz(z – A)– dz

for all x ∈ X , and there exists a constant C∗ = C∗(β ,γ ) >  such that
‖AβT(t)‖ ≤ C∗t–γ –Re(β)– for all t > .

(iv) If β >  + γ , then D(Aβ ) ⊆ �T = {x ∈ X| limt→+ T(t)x = x}.

In the following, we describe the properties of the operators Sα(t) and Pα(t) [, ].

Proposition . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/. The following statements

hold.
(i) For each fixed t ∈ S

π/–ω , Sα(t) and Pα(t) are linear and bounded operators on X .
Moreover, there exist constants Cs = C(α,γ ) >  and Cp = C(α,γ ) >  such that for
all t > , ‖Sα(t)‖ ≤ Cst–α(+γ ) and ‖Pα(t)‖ ≤ Cpt–α(+γ ).

(ii) For t > , Sα(t) and Pα(t) are continuous in the uniform operator topology.
Moreover, for every r > , the continuity is uniform on [r,∞).

(iii) For each fixed t ∈ S
π/–ω and all x ∈ D(A), (Sα(t) – I)x =

∫ t
 –sα–APα(s)x ds.

(iv) For all x ∈ D(A) and t > , C
 Dα

t Sα(t)x = –ASα(t)x.
(v) For all t > , Sα(t) = Iα

t (tα–Pα(t)).
(vi) Let β >  + γ . For all x ∈ D(Aβ ), limt→+ Sα(t)x = x.
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Proposition . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/, and let  < β <  – γ . Then

(i) the range R(Pα(t)) of Pα(t) for t >  is contained in D(Aβ );
(ii) S ′

α(t)x = –tα–APα(t)x, and S ′
α(t)x for x ∈ D(A) is locally integrable on (,∞);

(iii) for all x ∈ D(A) and t > , ‖ASα(t)x‖ ≤ Ct–α(+γ )‖Ax‖, where C is a constant
depending on γ ,α.

Lemma . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/, and let  < β <  – γ . Then, for

each fixed t ∈ S
π/–ω , Pα(t) is a bounded linear operator on Xβ . Moreover, there exists a

positive constant C such that for all t > ,

∥
∥AβPα(t)x

∥
∥ ≤ αC

�( – γ – β)
�( – α(γ + β))

t–α(γ +β+)‖x‖.

Proof By relation (.), Proposition .(iii), and Proposition .(iii) we get

∥
∥AβSα(t)x

∥
∥ ≤

∫ ∞


αs�α(s)

∥
∥AβT

(

stα
)∥
∥ds‖x‖

≤ αCt–α(γ +β+)
∫ ∞


s–γ –β�α(s) ds‖x‖

= αC
�( – γ – β)

�( – α(γ + β))
t–α(γ +β+)‖x‖.

The proof is completed. �

3 Main results
Consider a problem of fractional neutral evolution equations (FNEEs) with almost secto-
rial operator given by

{
C
 Dα

t (x(t) – g(t, xt)) + Ax(t) = f (t, xt),  < α < , t ∈ [, T],
x(t) = ϕ(t), t ∈ [–h, ],

(.)

where h, T > , A is an almost sectorial operator, that is, A ∈ �
γ
ω (– < γ < ,  < ω < π/),

f (t, xt), g(t, xt) : [, T] × C([–h, ], X) → X are given functions, ϕ(t) : [–h, ] → X is an
initial function, and xt is defined by xt(s) = x(t + s) for s ∈ [–h, ].

To study problem (.), we need the following assumption.
(H) x(t) ∈ C([–h, T], X), x(t) ∈ D(A) for all t ∈ [, T], Ax ∈ L((, T), X),

f (t, xt) ∈ L((, T), X), and there exists a constant β such that β >  + γ and
Aβg(t, xt) ∈ L((, T), X).

To define a mild solution of (.), we prove the following lemma.

Lemma . Assume that condition (H) holds and x(t) satisfies problem (.). Then, for
every ϕ(t) ∈ C([–h, ], Xβ ), x(t) satisfies the integral equation

x(t) =

⎧

⎪⎨

⎪⎩

Sα(t)(ϕ() – g(, x)) + g(t, xt) –
∫ t

 (t – s)α–APα(t – s)g(s, xs) ds
+

∫ t
 (t – s)α–Pα(t – s)f (s, xs) ds, t ∈ [, T],

ϕ(t), t ∈ [–h, ].
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Proof In view of condition (H), we know that (Theorem . in []) problem (.) is equiv-
alent to the fractional integral equation

⎧

⎪⎨

⎪⎩

x(t) = ϕ() – g(, x) + g(t, xt) – 
�(α)

∫ t
 (t – s)α–Ax(s) ds

+ 
�(α)

∫ t
 (t – s)α–f (s, xs) ds, t ∈ [, T],

x(t) = ϕ(t), t ∈ [–h, ].

Applying the Laplace transform to this integral equation, we get

X(s) = sα–(sα + A
)–(

ϕ() – g(, x)
)

+ sα
(

sα + A
)–G(s) +

(

sα + A
)–F(s), (.)

where

X(s) =
∫ ∞


e–stx(t) dt, G(s) =

∫ ∞


e–stg(t, xt) dt, F(s) =

∫ ∞


e–stf (t, xt) dt.

Using (.), integration by parts, and Proposition .(i), we have

sα
(

sα + A
)–G(s)

= sα

∫ ∞



∫ ∞


e–sα tT(t)e–sτ g(τ , xτ ) dt dτ

= sα

∫ ∞



∫ ∞


e–sαλα

T
(

λα
)

e–sτ g(τ , xτ )αλα– dλdτ

=
∫ ∞



(∫ ∞


–T

(

λα
)

e–sτ g(τ , xτ ) dτ

)

de–(sλ)α

=
(

e–(sλ)α
∫ ∞


–T

(

λα
)

e–sτ g(τ , xτ ) dτ

)∣
∣
∣
∣

∞

λ=

–
∫ ∞



∫ ∞


αλα–AT

(

λα
)

e–(sλ)α e–sτ g(τ , xτ ) dτ dλ

=
∫ ∞


e–sτ g(τ , xτ ) dτ –

∫ ∞



∫ ∞


αλα–AT

(

λα
)

e–(sλ)α e–sτ g(τ , xτ ) dτ dλ. (.)

Furthermore, by using Proposition .(ii) and relation (.) the right-hand side of (.) can
be written as

∫ ∞


e–sτ g(τ , xτ ) dτ –

∫ ∞



∫ ∞


αλα–AT

(

λα
)

e–(sλ)α e–sτ g(τ , xτ ) dτ dλ

=
∫ ∞


e–sτ g(τ , xτ ) dτ –

∫ ∞



∫ ∞



∫ ∞


αλα–AT

(

λα
) α

θα+

× �α

(

θα

)

e–sλθ e–sτ g(τ , xτ ) dθ dτ dλ

=
∫ ∞


e–sτ g(τ , xτ ) dτ

–
∫ ∞



∫ ∞

τ

∫ ∞


α

(
ω – τ

θ

)α–

AT
((

ω – τ

θ

)α)
α

θα+

× �α

(

θα

)

e–sωg(τ , xτ ) dθ dω dτ
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=
∫ ∞


e–sτ g(τ , xτ ) dτ –

∫ ∞



∫ ∞

τ

∫ ∞


α(ω – τ )α–uAT

(

u(ω – τ )α
)

× �α(u)e–sωg(τ , xτ ) du dω dτ

=
∫ ∞


e–sτ g(τ , xτ ) dτ –

∫ ∞



∫ ∞

τ

(ω – τ )α–APα(ω – τ )e–sωg(τ , xτ ) dω dτ

=
∫ ∞


e–sτ g(τ , xτ ) dτ –

∫ ∞


e–sω

(∫ ω


(ω – τ )α–APα(ω – τ )g(τ , xτ ) dτ

)

dω. (.)

By a similar argument we get

sα–(sα + A
)–(

ϕ() – g(, x)
)

+
(

sα + A
)–F(s)

=
∫ ∞


e–stSα(t)

(

ϕ() – g(, x)
)

dt

+
∫ ∞


e–st

(∫ t


(t – τ )α–Pα(t – τ )f (τ , xτ ) dτ

)

dt. (.)

Finally, combining (.)-(.), we conclude

x(t) = Sα(t)
(

ϕ() – g(, x)
)

+ g(t, xt) –
∫ t


(t – s)α–APα(t – s)g(s, xs) ds

+
∫ t


(t – s)α–Pα(t – s)f (s, xs) ds.

The proof is completed. �

By Lemma . we define a mild solution to problem (.) as follows.

Definition . By a mild solution to problem (.) on the interval [–h, T] we mean a func-
tion x(t) ∈ C([–h, T], X) satisfying

x(t) =

⎧

⎪⎨

⎪⎩

Sα(t)(ϕ() – g(, x)) + g(t, xt) –
∫ t

 (t – s)α–APα(t – s)g(s, xs) ds
+

∫ t
 (t – s)α–Pα(t – s)f (s, xs) ds, t ∈ [, T],

ϕ(t), t ∈ [–h, ].

In the sequel, we use |w| = maxs∈[–h,] ‖w(s)‖, where ‖ · ‖ is an arbitrary norm in X.
To study the existence and uniqueness of a mild solution to problem (.), we require

the following assumptions.

(H) The resolvent (λI + A)– of –A is compact for every λ > .
(H) The function g(t, xt) : [, T] × C([–h, ], X) → D(Aβ ) is a continuous function with

respect to t ∈ [, T], and there exists a positive constant Mg such that for any xt ∈
C([–h, ], X), Aβg(t, xt) is strongly measurable and satisfies the inequality

∥
∥Aβg(t, xt)

∥
∥ ≤ Mg

(

 + |xt|
)

,

and there exist positive constants Lg and θ with θ > α( + γ ) such that for any t, s ∈
[, T] and xt , ys ∈ C([–h, ], X), Aβg(t, xt) satisfies the Lipschitz condition

∥
∥Aβg(t, xt) – Aβg(s, ys)

∥
∥ ≤ Lg

(|t – s|θ + |xt – ys|
)

.
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(H) For almost all t ∈ [, T], the function f (t, xt) : [, T]×C([–h, ], X) → X is continuous;
for each xt ∈ C([–h, ], X), f (t, xt) is strongly measurable; and there exists a function
m(t) ∈ Lp((, T),R+) with p > – 

αγ
such that ‖f (t, xt)‖ ≤ m(t) for all t ∈ [, T] and

xt ∈ C([–h, ], X).

We now show the existence of a mild solution to problem (.) via Krasnoselskii’s fixed
point theorem.

Theorem . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/, and ϕ(t) ∈ C([–h, ], Xβ ) for

β >  + γ . Assume that conditions (H)-(H) hold. Then there exists T such that problem
(.) has a mild solution on the interval [–h, T].

Proof For any fixed r > , we set

B =
{

x(t) ∈ C
(

[–h, T], X
)

: x(t) = ϕ(t), t ∈ [–h, ]; max
t∈[,T]

∥
∥x(t) – ϕ()

∥
∥ ≤ r

}

.

Obviously, B is a closed convex subset of C([–h, T], X). Choose T ∈ (, T] such that

K + r∗Mg
∣
∣A–β

∣
∣ +

αr∗CMg�(β – γ )
�( – α(γ +  – β))

· T–α(γ +–β)


–α(γ +  – β)

+ Cp

(
T –q(+αγ )


 – q( + αγ )

) 
q
‖m‖Lp((,T),R+) ≤ r

and

Lg
∣
∣A–β

∣
∣ +

αCLg�(β – γ )
�( – α(γ +  – β))

· T–α(γ +–β)


–α(γ +  – β)
<  (.)

with q = p/(p – ) and

r∗ =  + max
{

r +
∥
∥ϕ()

∥
∥, max

t∈[–h,]

∥
∥ϕ(t)

∥
∥

}

,

K = max
t∈[,T]

∥
∥Sα(t)

(

ϕ() – g(, x)
)

– ϕ()
∥
∥.

(.)

Now we consider two operators F and F on C([–h, T], X):

(Fx)(t) =

⎧

⎪⎨

⎪⎩

Sα(t)(ϕ() – g(, x)) + g(t, xt)
+

∫ t
 (t – s)α–APα(t – s)g(s, xs) ds, t ∈ [, T],

ϕ(t), t ∈ [–h, ],

and

(Fx)(t) =

{∫ t
 (t – s)α–Pα(t – s)f (s, xs) ds, t ∈ [, T],

, t ∈ [–h, ].

Obviously, x(t) is a mild solution to equation (.) if and only if the operator equation
Fx + Fx = x has a solution x ∈ B. Therefore, the existence of a mild solution is equivalent
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to the existence of a function x ∈ B such that Fx + Fx = x. To prove the latter, we divide
the proof into four steps.

Step . The operators F and F map the set B into C([–h, T], X), respectively. First, we
show that for any fixed x(t) ∈ B, (Fx)(t) is continuous for all t ∈ [–h, T]. It is clear that
(Fx)(t) is continuous for t ∈ [–h, ). For the case t = , we have

∥
∥(Fx)(t) – (Fx)()

∥
∥ ≤ ∥

∥
(

Sα(t) – I
)

ϕ()
∥
∥ +

∥
∥g(t, xt) – Sα(t)g(, x)

∥
∥

+
∥
∥
∥
∥

∫ t


(t – s)α–APα(t – s)g(s, xs) ds

∥
∥
∥
∥

.

Noting that ϕ(), g(t, xt) ∈ Xβ , by Proposition .(vi), we get ‖(Sα(t) – I)ϕ()‖ →  and
‖g(t, xt) – Sα(t)g(, x)‖ →  as t → +, respectively. On the other hand, by Lemmas .
and . we obtain

∥
∥
∥
∥

∫ t


(t – s)α–APα(t – s)g(s, xs) ds

∥
∥
∥
∥

≤ r∗Mg

∫ t


(t – s)α–∥∥A–βPα(t – s)

∥
∥ds

≤ αr∗CMg�(β – γ )
�( – α(γ +  – β))

∫ t


(t – s)α–(t – s)–α(γ –β+) ds

=
αr∗CMg�(β – γ )
�( – α(γ +  – β))

· t–α(γ –β+)

–α(γ – β + )
.

This shows that
∫ t

 (t – s)α–APα(t – s)g(s, xs) ds →  as t → +. So, (Fx)(t) is continuous
at t = . For the case  < t < t ≤ T , we have

∥
∥(Fx)(t) – (Fx)(t)

∥
∥ ≤ ∥

∥
(

Sα(t) – Sα(t)
)(

x() – g(, x)
)∥
∥ +

∥
∥g(t, xt ) – g(t, xt )

∥
∥

+
∥
∥
∥
∥

∫ t


(t – s)α–APα(t – s)g(s, xs) ds

–
∫ t


(t – s)α–APα(t – s)g(s, xs) ds

∥
∥
∥
∥

= I + I + I,

where

I =
∥
∥
(

Sα(t) – Sα(t)
)(

x() – g(, x)
)∥
∥, I =

∥
∥g(t, xt ) – g(t, xt )

∥
∥,

I =
∥
∥
∥
∥

∫ t


(t – s)α–APα(t – s)g(s, xs) ds –

∫ t


(t – s)α–APα(t – s)g(s, xs) ds

∥
∥
∥
∥

.

By condition (H) and Proposition .(vi) we have I →  and I →  as t → t. Now it
remains to show that, in this case, I →  as t → t. Using condition (H) and Lemmas .
and ., we have

I =
∥
∥
∥
∥

∫ t


sα–APα(s)g(t – s, xt–s) ds –

∫ t


sα–APα(s)g(t – s, xt–s) ds

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t


sα–APα(s)

(

g(t – s, xt–s) – g(t – s, xt–s)
)

ds
∥
∥
∥
∥
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+
∥
∥
∥
∥

∫ t

t

sα–APα(s)g(t – s, xt–s) ds
∥
∥
∥
∥

≤
∫ t


sα–∥∥A–βPα(s)

∥
∥
∥
∥Aβg(t – s, xt–s) – Aβg(t – s, xt–s)

∥
∥ds

+
∫ t

t

sα–∥∥A–βPα(s)
∥
∥
∥
∥Aβg(t – s, xt–s)

∥
∥ds

≤ αCLg�(β – γ )
�( – α(γ +  – β))

∫ t


s–αγ +αβ–α–(|t – t|θ + |xt–s – xt–s|

)

ds

+
αr∗CMg�(β – γ )
�( – α(γ +  – β))

∫ t

t

s–αγ +αβ–α– ds

≤ αCLg�(β – γ )
�( – α(γ +  – β))

· t–α(γ –β+)


–α(γ – β + )

(

|t – t|θ + max
s∈[,t]

|xt–s – xt–s|
)

+
αr∗CMg�(β – γ )
�( – α(γ +  – β))

· t–α(γ –β+)
 – t–α(γ –β+)


–α(γ – β + )

.

Moreover, since x(t) is continuous and β >  + γ , we have I →  as t → t. It follows
that (Fx)(t) is continuous for all t ∈ (, T]. Hence, the operator F maps the set B into
C([–h, T], X).

Next, we show that for any fixed x(t) ∈ B, (Fx)(t) is continuous for all t ∈ [–h, T]. Obvi-
ously, (Fx)(t) is continuous for any t ∈ [–h, ). For the case t = , by the Hölder inequality
we get

∥
∥(Fx)(t) – (Fx)()

∥
∥ ≤

(∫ t



(

(t – s)α–∥∥Pα(t – s)
∥
∥
)q ds

) 
q
‖m‖Lp((,T),R+)

≤ t–q(+αγ )

 – q( + αγ )
‖m‖Lp((,T),R+)

with  < q = p
p– < 

+αγ
. This shows that ‖(Fx)(t) – (Fx)()‖ →  as t → +. Thus, it

follows that the function (Fx)(t) is continuous at t = . For  < t < t ≤ T , we have

∥
∥(Fx)(t) – (Fx)(t)

∥
∥ =

∥
∥
∥
∥

∫ t


(t – s)α–Pα(t – s)f (s, xs) ds

–
∫ t


(t – s)α–Pα(t – s)f (s, xs) ds

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t


(t – s)α–(Pα(t – s) – Pα(t – s)

)

f (s, xs) ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t



(

(t – s)α– – (t – s)α–)Pα(t – s)f (s, xs) ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

t

(t – s)α–Pα(t – s)f (s, xs) ds
∥
∥
∥
∥

= I + I + I,

where

I =
∥
∥
∥
∥

∫ t


(t – s)α–(Pα(t – s) – Pα(t – s)

)

f (s, xs) ds
∥
∥
∥
∥

,
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I =
∥
∥
∥
∥

∫ t



(

(t – s)α– – (t – s)α–)Pα(t – s)f (s, xs) ds
∥
∥
∥
∥

,

I =
∥
∥
∥
∥

∫ t

t

(t – s)α–Pα(t – s)f (s, xs) ds
∥
∥
∥
∥

.

For I, we choose a small δ >  and get

I ≤
∫ t–δ


(t – s)α–∥∥Pα(t – s) – Pα(t – s)

∥
∥
∥
∥f (s, xs)

∥
∥ds

+
∫ t

t–δ

(t – s)α–∥∥Pα(t – s) – Pα(t – s)
∥
∥
∥
∥f (s, xs)

∥
∥ds

≤ max
s∈[,t–δ]

∥
∥Pα(t – s) – Pα(t – s)

∥
∥

(∫ t–δ


(t – s)q(α–) ds

) 
q
‖m‖Lp((,T),R+)

+
∫ t

t–δ

(t – s)α–(Cp(t – s)–α(+γ ) + Cp(t – s)–α(+γ ))∥∥f (s, xs)
∥
∥ds

≤ max
s∈[,t–δ]

∥
∥Pα(t – s) – Pα(t – s)

∥
∥

(∫ t–δ


(t – s)q(α–) ds

) 
q
‖m‖Lp((,T),R+)

+ Cp

(∫ t

t–δ

(t – s)–q(αγ +) ds
) 

q
‖m‖Lp((,T),R+)

= max
s∈[,t–δ]

∥
∥Pα(t – s) – Pα(t – s)

∥
∥

(
tq(α–)+
 – δq(α–)+

q(α – ) + 

) 
q
‖m‖Lp((,T),R+)

+ Cp

(
δ–q(αγ +)

 – q(αγ + 

) 
q
‖m‖Lp((,T),R+).

This, together with Proposition .(ii), leads to I →  as t → t and δ → .
For I, by the Hölder inequality we have

I ≤ Cp

(∫ t



∣
∣(t – s)α– – (t – s)α–∣∣q(t – s)–αq(+γ ) ds

) 
q
‖m‖Lp((,T),R+)

≤ Cp

(∫ t



(

(t – s)–q(+αγ ) – (t – s)–q(+αγ ))ds
) 

q
‖m‖Lp((,T),R+)

= Cp

(
t–q(+αγ )
 – t–q(+αγ )


 – q( + αγ )

+
(t – t)–q(+αγ )

 – q( + αγ )

) 
q
‖m‖Lp((,T),R+).

Moreover, since  < q = p
p– < 

+αγ
, we get I →  as t → t.

For I, by the same reasoning we have

I ≤
(∫ t

t

(

(t – s)α–∥∥Pα(t – s)
∥
∥
)q ds

) 
q
‖m‖Lp((,T),R+)

≤ Cp

(
(t – t)–q(+αγ )

 – q( + αγ )

) 
q
‖m‖Lp((,T),R+).

This gives I →  as t → t. It follows that (Fx)(t) is continuous for any t ∈ (, T]. Hence,
F maps the set B into C([–h, T], X).
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Step . We show that Fx + Fy ∈ B for every pair x, y ∈ B. By the definitions of the oper-
ators F and F we have

(Fx)(t) + (Fy)(t) =

⎧

⎪⎨

⎪⎩

Sα(t)(ϕ() – g(, x)) + g(t, xt) –
∫ t

 (t – s)α–APα(t – s)g(s, xs) ds
+

∫ t
 (t – s)α–Pα(t – s)f (s, ys) ds, t ∈ [, T],

ϕ(t), t ∈ [–h, ],

so we only need to verify that maxt∈[,T] ‖Fx + Fy – ϕ()‖ ≤ r. According to assumptions
(H)-(H) and Lemmas . and ., we get

∥
∥Fx + Fy – ϕ()

∥
∥ ≤ ∥

∥Sα(t)
(

ϕ() – g(, x)
)

– ϕ()
∥
∥ +

∥
∥g(t, xt)

∥
∥

+
∥
∥
∥
∥

∫ t


(t – s)α–APα(t – s)g(s, xs) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t


(t – s)α–Pα(t – s)f (s, ys) ds

∥
∥
∥
∥

≤ K + r∗Mg
∣
∣A–β

∣
∣ +

αr∗CMg�(β – γ )
�( – α(γ +  – β))

· T–α(γ +–β)


–α(γ +  – β)

+ Cp

(
T –q(+αγ )


 – q( + αγ )

) 
q
‖m‖Lp((,T),R+)

≤ r.

Therefore, Fx + Fy ∈ B for every pair x, y ∈ B.
Step . The mapping F is contractive. For any x, y ∈ B, by Lemmas . and . we have

∥
∥(Fx)(t) – (Fy)(t)

∥
∥

≤ ∥
∥g(t, xt) – g(t, yt)

∥
∥ +

∥
∥
∥
∥

∫ t


(t – s)α–APα(t – s)

(

g(s, xs) – g(s, ys)
)

ds
∥
∥
∥
∥

≤
(

Lg
∣
∣A–β

∣
∣ +

αCLg�(β – γ )
�( – α(γ +  – β))

· t–α(γ +–β)

–α(γ +  – β)

)

‖x – y‖.

which, together with (.), shows that the mapping F is contractive on B.
Step . The operator F is compact. First, we show that F is continuous. Let {xn} ⊆ B

with xn → x on B. Then, by assumption (H) and the fact that xn
t → xt for t ∈ [, T] we get

f
(

t, xn
t
) → f (t, xt), a.e., t ∈ [, T], as n → ∞.

On the other hand, by assumption (H) and Proposition .(i) we have

∥
∥
∥
∥

∫ t


(t – s)α–Pα(t – s)f

(

s, xn
s
)

ds
∥
∥
∥
∥

≤ Cp
t–αγ

–αγ
‖m‖Lp((,T),R+).

This implies that (t – s)α–Pα(t – s)f (s, xn
s ) ∈ L((, t), X). Thus, by the Lebesgue dominated

convergence theorem we get

∥
∥
∥
∥

∫ t


(t – s)α–Pα(t – s)

(

f
(

s, xn
s
)

– f (s, xs)
)

ds
∥
∥
∥
∥

→  as n → ∞.
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Hence, F is continuous. It remains to show that F(B) is relatively compact. According to
assumption (H) and Theorem . in [], the family of functions {Fx : x ∈ B} is uniformly
bounded. From Step  we observe that {Fx : x ∈ B} is a family of equicontinuous functions.
So, by the known Ascoli-Arzelà theorem, the family {Fx : x ∈ B} is relatively compact.
Hence, F is compact.

Therefore, by Krasnoselskii’s fixed point theorem, we deduce that problem (.) has a
mild solution on the interval [–h, T]. The proof is completed. �

Next, we discuss the uniqueness of mild solutions to problem (.). For that, we need an
additional condition.

(H) There exists a constant Lf >  such that for all t ∈ [, T] and xt , yt ∈ C([–h, ], X), the
function f satisfies the Lipschitz condition

∥
∥f (t, xt) – f (t, yt)

∥
∥ ≤ Lf |xt – yt|.

The uniqueness result is based on the Banach contraction principle.

Theorem . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/, and ϕ(t) ∈ C([–h, ], Xβ ) for

β >  + γ . Assume that conditions (H)-(H) hold. Then there exists T ∈ (, T] such that
problem (.) has a unique mild solution on the interval [–h, T].

Proof For any fixed r > , we set

B =
{

x ∈ C
(

[–h, T], X
)

: x(t) = ϕ(t), t ∈ [–h, ]; max
t∈[,T]

∥
∥x(t) – ϕ()

∥
∥ ≤ r

}

.

Obviously, B is a closed convex subset of C([–h, T], X). Choose T ∈ (, T] such that

K + r∗Mg
∣
∣A–β

∣
∣ +

αr∗CMg�(β – γ )
�( – α(γ +  – β))

· T–α(γ +–β)


–α(γ +  – β)

+ Cp

(
T –q(+αγ )


 – q( + αγ )

) 
q
‖m‖Lp((,T),R+) ≤ r

and

Lg
∣
∣A–β

∣
∣ +

αCLg�(β – γ )
�( – α(γ +  – β))

· T–α(γ +–β)


–α(γ +  – β)
+

CpLf T–αγ


–αγ
< ,

where r∗ and K are the constants defined by (.). Now we consider the operator F defined
by

(Fx)(t) =

⎧

⎪⎨

⎪⎩

Sα(t)(ϕ() – g(, x)) + g(t, xt) –
∫ t

 (t – s)α–APα(t – s)g(s, xs) ds
+

∫ t
 (t – s)α–Pα(t – s)f (s, xs) ds, t ∈ [, T],

ϕ(t), t ∈ [–h, ].

Similarly to the proof of Theorem ., we can show that F maps the subset B into itself.
Moreover, for any x(t), y(t) ∈ B, we have
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∥
∥(Fx)(t) – (Fy)(t)

∥
∥

≤ ∥
∥g(t, xt) – g(t, yt)

∥
∥ +

∥
∥
∥
∥

∫ t


(t – s)α–APα(t – s)

(

g(s, xs) – g(s, ys)
)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t


(t – s)α–Pα(t – s)

(

f (s, xs) – f (s, ys)
)

ds
∥
∥
∥
∥

≤
(

Lg
∣
∣A–β

∣
∣ +

αCLg�(β – γ )
�( – α(γ +  – β))

· t–α(γ +–β)

–α(γ +  – β)
+

CpLf t–αγ

–αγ

)

‖x – y‖.

So the mapping F is contractive. It follows from the Banach contractive principle that
problem (.) has a unique mild solution on the interval [–h, T]. �

In particular, if g(t, xt) ≡ c (c is a constant), then we have the following corollary.

Corollary . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/, and ϕ(t) ∈ C([–h, ], Xβ ) for

β >  + γ . Assume that conditions (H)-(H) hold. Then there exists T ∈ (, T] such that
the abstract fractional functional equation

{

(C
 Dα

t x)(t) + Ax(t) = f (t, xt),  < α < , t ∈ [, T],
x(t) = ϕ(t), t ∈ [–h, ]

(.)

has a unique mild solution on the interval [–h, T].

In particular, when β = , then we have  >  + γ (– < γ < ). So X = D(A) is a Banach
space with the graph norm ‖x‖ = ‖Ax‖, where x ∈ D(A). In this case, condition (H) can
be written as follows:

(H∗
) The function g(t, xt) : [, T] × C([–h, ], X) → D(A) is a continuous function with

respect to t ∈ [, T]; there exists a positive constant Mg such that for any xt ∈
C([–h, ], X), Ag(t, xt) is strongly measurable and satisfies the inequality

∥
∥Ag(t, xt)

∥
∥ ≤ Mg

(

 + |xt|
)

;

and there exist positive constants Lg and θ with θ > α( + γ ) such that for any t, s ∈
[, T] and xt , ys ∈ C([–h, ], X), Ag(t, xt) satisfies the Lipschitz condition

∥
∥Ag(t, xt) – Ag(s, ys)

∥
∥ ≤ Lg

(|t – s|θ + |xt – ys|
)

.

Consequently, we arrive at the following corollary, which is a particular case of Theo-
rem ..

Corollary . Let A ∈ �
γ
ω with – < γ <  and  < ω < π/, and ϕ(t) ∈ C([–h, ], X).

Assume that conditions (H∗
), (H), and (H) hold. Then there exists T ∈ (, T] such that

problem (.) has a unique mild solution on the interval [–h, T].

Now we turn our attention to further conditions on f and g so that the mild solution be-
comes a strong solution and a classical solution. We first give the definitions of the strong
solution and the classical solution to problem (.).
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Definition . A function x(t) : [–h, T] → X is said to be a strong solution to problem
(.) if

(i) x(t) is continuous on [–h, T], and (C
 Dα

t x)(t) ∈ L((, T), X); and
(ii) x(t) takes values in D(A) and satisfies problem (.).

Definition . A function x(t) : [–h, T] → X is said to be a classical solution to problem
(.) if

(i) x(t) is continuous on [–h, T], and (C
 Dα

t x)(t) ∈ C([, T], X); and
(ii) x(t) takes values in D(A) and satisfies problem (.).

In the following, we prove that a mild solution can become a strong solution to problem
(.) under some assumptions. To do this, we require stronger conditions than conditions
(H) and (H):

(H∗
) For almost all t ∈ [, T], the function f (t, xt) : [, T] × C([–h, ], X) → X is continu-

ous; for each xt ∈ C([–h, ], X), f (t, xt) is strongly measurable; and there exists a func-
tion m(t) ∈ Lp((, T),R+) with p > αγ +α–

α(γ +) such that ‖f (t, xt)‖ ≤ m(t) for all t ∈ [, T]
and xt ∈ C([–h, ], X).

(H∗
) There exist constants Lf >  and θ with θ > α( + γ ) such that for all t, s ∈ [, T] and

xt , ys ∈ C([–h, ], X), the function f satisfies the Lipschitz condition

∥
∥f (t, xt) – f (s, ys)

∥
∥ ≤ Lf

(|t – s|θ + |xt – yt|
)

.

Theorem . Let A ∈ �
γ
ω with – < γ < – 

 and  < ω < π/, and ϕ(t) ∈ C([–h, ], X).
Suppose that conditions (H∗

)-(H∗
) hold. In addition, suppose that the following conditions

are satisfied:

(Ha) For almost all t ∈ [, T] and xt ∈ C([–h, ], X), C
 Dα

t g(t, xt) ∈ L([, T], X).
(Hb) In condition (H∗

 ),  < Lg < .
(Hc) For almost all t ∈ [, T] and xt ∈ C([–h, ], X), Ag(t, xt) ∈ L((, T), X) and Ag(t,

xt) ∈ L∞((, T), X).
(Hd) For almost all t ∈ [, T] and xt ∈ C([–h, ], X), f (t, xt) ∈ L((, T), X) and Af (t, xt) ∈

L∞((, T), X).

Then the mild solution x is the unique strong solution to problem (.), provided that
A(ϕ() – g(, x)) ∈ L∞((, T), X).

Proof Using the assumption – < γ < – 
 , we have αγ +α–

α(γ +) > – 
αγ

. Hence, the conclusion of
Theorem . is also true if we replace conditions (H)-(H) by (H∗

)-(H∗
). Now, we will fol-

low the argument of Wang et al. in (see [], Theorem .) to prove that the mild solution x
is a strong solution to problem (.).

First, we show that x(t) is Hölder continuous with an exponent ϑ with ϑ > α( + γ ) on
the interval [–h, T]. For any t ∈ [, T], taking �t >  such that t + �t ≤ T, we have

∥
∥x(t + �t) – x(t)

∥
∥

≤ ∥
∥
(

Sα(t + �t) – Sα(t)
)(

ϕ() – g(, x)
)∥
∥ +

∥
∥g(t + �t, xt+�t) – g(t, xt)

∥
∥

+
∥
∥
∥
∥

∫ t+�t


(t + �t – s)α–APα(t + �t – s)g(s, xs) ds
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–
∫ t


(t – s)α–APα(t – s)g(s, xs) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t+�t


(t + �t – s)α–Pα(t + �t – s)f (s, xs) ds –

∫ t


(t – s)α–Pα(t – s)f (s, xs) ds

∥
∥
∥
∥

= I + I + I + I.

For I, by Proposition .(i), (iii) we get

I =
∥
∥
(

Sα(t + �t) – Sα(t)
)(

ϕ() – g(, x)
)∥
∥

=
∥
∥
∥
∥

∫ t+�t

t
–sα–APα(s)

(

ϕ() – g(, x)
)

ds
∥
∥
∥
∥

≤ Cp
(t + �t)–αγ – t–αγ

–αγ

∥
∥A

(

ϕ() – g(, x)
)∥
∥.

For I, using Lemma ., condition (H∗
), and Proposition .(i), we get

I =
∥
∥
∥
∥

∫ t+�t


(t + �t – s)α–APα(t + �t – s)g(s, xs) ds

–
∫ t


(t – s)α–APα(t – s)g(s, xs) ds

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t


(t – s)α–APα(t – s)

(

g(s + �t, xs+�t) – g(s, xs)
)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ �t


(t + �t – s)α–APα(t + �t – s)g(s, xs) ds

∥
∥
∥
∥

≤ Lg

∫ t


(t – s)α–∥∥Pα(t – s)

∥
∥
(

(�t)θ + |xs+�t – xs|
)

ds

+ r∗Mg

∫ �t


(t + �t – s)α–∥∥Pα(t + �t – s)

∥
∥ds

≤ CpLg
T–αγ


–αγ

(�t)θ + CpLg

∫ t


(t – s)–αγ –|xs+�t – xs| ds + r∗Mg

(t + �t)–αγ – t–αγ

–αγ
.

Similarly to I, we have

I =
∥
∥
∥
∥

∫ t+�t


(t + �t – s)α–Pα(t + �t – s)f (s, xs) ds –

∫ t


(t – s)α–Pα(t – s)f (s, xs) ds

∥
∥
∥
∥

≤ Cp
(t + �t)–q(+αγ ) – t–q(+αγ )

 – q( + αγ )
‖m‖Lp((,T),R+) +

Lf CpT–αγ


–αγ
(�t)θ

+ Lf Cp

∫ t


(t – s)–αγ –|xs+�t – xs| ds.

As a consequence, we get

∥
∥x(t + �t) – x(t)

∥
∥

≤ Cp
(t + �t)–αγ – t–αγ

–αγ

∥
∥A

(

ϕ() – g(, x)
)∥
∥ + Lg(�t)θ + Lg |xt+�t – xt|
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+
CpLgT–αγ



–αγ
(�t)θ + CpLg

∫ t


(t – s)–αγ –|xs+�t – xs| ds

+ r∗Mg
(t + �t)–αγ – t–αγ

–αγ
+ Cp

(t + �t)–q(+αγ ) – t–q(+αγ )

 – q( + αγ )
‖m‖Lp((,T),R+)

+
Lf CpT–αγ



–αγ
(�t)θ + Lf Cp

∫ t


(t – s)–αγ –|xs+�t – xs| ds.

Using the inequality bc – ac ≤ (b – a)c ( < a < b,  < c < ), we have

∥
∥x(t + �t) – x(t)

∥
∥

≤ Cp‖A(ϕ() – g(, x))‖ + r∗Mg

–αγ
(�t)–αγ +

(

Lg +
CpLgT–αγ



–αγ

)

(�t)θ

+ Lg |xt+�t – xt| +
Lf CpT–αγ



–αγ
(�t)θ +

Cp‖m‖Lp((,T),R+)

 – q( + αγ )
(�t)–q(+αγ )

+ Cp(Lg + Lf )
∫ t


(t – s)–αγ –|xs+�t – xs| ds. (.)

Putting

ϑ = min
{

–αγ , θ, θ,  – q( + αγ )
}

> α(γ + ),

M =
Cp‖A(ϕ() – g(, x))‖ + r∗Mg

–αγ
+ Lg +

CpLgT–αγ


–αγ
+

Lf CpT–αγ


–αγ

+
Cp‖m‖Lp((,T),R+)

 – q( + αγ )
,

we can rewrite (.) in the form

∥
∥x(t + �t) – x(t)

∥
∥ ≤ M(�t)ϑ + Lg |xt+�t – xt|

+ Cp(Lg + Lf )
∫ t


(t – s)–αγ –|xs+�t – xs| ds.

Then it follows from the definition of | · | that the inequality

|xt+�t – xt| ≤ M(�t)ϑ + Lg |xt+�t – xt| + Cp(Lg + Lf )
∫ t


(t – s)–αγ –|xs+�t – xs| ds

holds. Then, in view of condition (Hb), we have

|xt+�t – xt| ≤ M
 – Lg

(�t)ϑ +
Cp(Lg + Lf )

 – Lg

∫ t


(t – s)–αγ –|xs+�t – xs| ds. (.)

Applying the generalized Gronwall inequality [] to (.), we get the estimate

|xt+�t – xt| ≤ Q(�t)ϑ (.)

with

Q =
M

 – Lg
E–αγ

(
Cp(Lg + Lf )

 – Lg
�(–αγ )T–αγ



)

. (.)
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It follows from (.) that x(t) is Hölder continuous with an exponent ϑ > α( + γ ) on
[–h, T].

Next, we show that x(t) satisfies problem (.). To do this, let

u(t) =
∫ t


(t – s)α–APα(t – s)g(s, xs) ds. (.)

By the assumption Ag(t, xt) ∈ L∞((, T), X) and Proposition .(i), we have

‖Au‖ ≤
∫ t


(t – s)α–∥∥Pα(t – s)

∥
∥ds

∥
∥Ag

∥
∥

L∞((,T),X) ≤ Cp
t–αγ

–αγ

∥
∥Ag

∥
∥

L∞((,T),X).

This implies that u(t) ∈ D(A) for all t ∈ [, T]. Note that u() = . So by Proposition .(ii)
and Proposition .(v) we get

(C
 Dα

t u
)

(t) =
(

Dα
t u

)

(t) =
d
dt

(

I–α
t u

)

(t)

=
d
dt

(

I–α
t tα–APα(t)(t) ∗ g(t, xt)

)

=
d
dt

(

ASα(t) ∗ g(t, xt)
)

.

Now we need to calculate the first derivative of v(t) := ASα(t) ∗ g(t, xt). Let �t >  and
t + �t ≤ T. Then, by Proposition .(ii) we obtain

v(t + �t) – v(t)
�t

=
∫ t



ASα(t + �t – s) – ASα(t – s)
�t

g(s, xs) ds

+


�t

∫ t+�t

t
ASα(t + �t – s)g(s, xs) ds

= –A
∫ t


(t – s)α–APα(t – s)g(s, xs) ds

+


�t

∫ t+�t

t
ASα(t + �t – s)g(s, xs) ds

= –Au(t) + I,

where

I =


�t

∫ t+�t

t
ASα(t + �t – s)g(s, xs) ds

=


�t

∫ �t


ASα(τ )g(t + �t – τ , xt+�t–τ ) dτ

=


�t

∫ �t


ASα(τ )

(

g(t + �t – τ , xt+�t–τ ) – g(t – τ , xt–τ )
)

dτ

+


�t

∫ �t


ASα(τ )

(

g(t – τ , xt–τ ) – g(t, xt)
)

dτ +


�t

∫ �t


ASα(τ )g(t, xt) dτ

= I + I + I.
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For I, combining Proposition .(i) and relation (.), we have


�t

∥
∥
∥
∥

∫ �t


ASα(τ )

(

g(t + �t – τ , xt+�t–τ ) – g(t – τ , xt–τ )
)

dτ

∥
∥
∥
∥

≤ 
�t

∫ �t



∥
∥Sα(τ )

∥
∥
∥
∥Ag(t + �t – τ , xt+�t–τ ) – Ag(t – τ , xt–τ )

∥
∥dτ

≤ CsLf

�t

∫ �t


τ–α(+γ )((�t)θ + |xt+�t–τ – xt–τ |

)

dτ

≤ CsLf
(�t)θ–α(γ +)

 – α(γ + )
+ CsLf Q

(�t)ϑ–α(γ +)

 – α(γ + )
.

Moreover, since ϑ > α(γ + ) and  – α(γ + ) > , we get I →  as �t → .
Similarly, we can show that I →  as �t → . For I, by Proposition .(vi) we have

lim�t→ I = Ag(t, xt). Hence, we get v′(t) = –Au(t) + Ag(t, xt). It follows that

(C
 Dα

t u
)

(t) = –Au(t) + Ag(t, xt). (.)

Analogously, taking

w(t) =
∫ t


(t – s)α–Pα(t – s)f (s, xs) dt, (.)

we can show that

(C
 Dα

t w
)

(t) = –Aw(t) + f (t, xt). (.)

Combining Proposition .(iv), (.), and (.), we obtain that the mild solution x(t)
satisfies problem (.).

To complete the proof, it remains to show that (C
 Dα

t x)(t) ∈ L((, T), X). In other words,
we need to prove that

∫ T
 |(C

 Dα
t x)(t)|dt < ∞. As before, we have

∥
∥C

 Dα
t x

∥
∥

L((,T),X)

≤ ∥
∥C

 Dα
t g

∥
∥

L((,T),X) +
∫ T



∥
∥Sα(t)

∥
∥dt

∥
∥A

(

ϕ() – g(, x)
)∥
∥

L∞((,T),X)

+
∫ T



∫ t


(t – s)α–∥∥Pα(t – s)

∥
∥ds dt

∥
∥Ag

∥
∥

L∞((,T),X) + ‖Ag‖L((,T),X)

+
∫ T



∫ t


(t – s)α–∥∥Pα(t – s)

∥
∥ds dt‖Af ‖L∞((,T),X) + ‖f ‖L((,T),X)

≤ ∥
∥C

 Dα
t g

∥
∥

L((,T),X) + Cs
T –α(+γ )


 – α( + γ )

∥
∥A

(

ϕ() – g(, x)
)∥
∥

L∞((,T),X)

+
CpT –αγ


–αγ ( – αγ )

(∥
∥Ag

∥
∥

L∞((,T),X) + ‖Af ‖L∞((,T),X)
)

+ ‖Ag‖L((,T),X)

+ ‖f ‖L((,T),X),

which shows that (C
 Dα

t x)(t) ∈ L((, T), X). Hence, the mild solution x(t) is a strong solu-
tion to problem (.). The proof is completed. �
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Corollary . Let A ∈ �
γ
ω with – < γ < – 

 and  < ω < π/, and ϕ(t) ∈ C([–h, ], X).
Suppose that conditions (H∗

), (H∗
), and (Hd) hold. Then the mild solution x to equation

(.) is its unique strong solution, provided that Aϕ() ∈ L∞((, T), X).

Finally, under suitable conditions, we show that the mild solution becomes a classical
solution to problem (.).

Theorem . Let A ∈ �
γ
ω with – < γ < – 

 and  < ω < π/, and ϕ(t) ∈ C([–h, ], X).
Suppose that conditions (H∗

)-(H∗
) hold. In addition, suppose that the following conditions

hold:

(Ha) For all t ∈ [, T] and xt ∈ C([–h, ], X), C
 Dα

t g(t, xt) ∈ C([, T], X).
(Hb) In condition (H∗

 ),  < Lg < .
(Hc) For almost all t ∈ [, T] and xt ∈ C([–h, ], X), Ag(t, xt) ∈ L((, T), X) and Ag(t,

xt) ∈ L∞((, T), X).
(Hd) For almost all t ∈ [, T] and xt ∈ C([–h, ], X), f (t, xt) ∈ L((, T), X) and Af (t, xt) ∈

L∞((, T), X).

Then the mild solution is a classical solution to problem (.), provided that A(ϕ() –
g(, x)) ∈ D(Aβ ) with β >  + γ .

Proof To establish the conclusion, we observe from the proof of Theorem . that it is
sufficient to establish that (C

 Dα
t x)(t) ∈ C([, T], X).

We now define u(t) and w(t) as in (.) and (.). We first prove that (C
 Dα

t u)(t) ∈
C([, T], X). By (.) we only need to prove that –Au(t) + Ag(t, xt) ∈ C([, T], X). Ac-
cording to the assumption, Ag(t, xt) is continuous for all t ∈ [, T] and xt ∈ C([–h, ], X).
So, it remains to prove that I(t) = –Au(t) is continuous for all t ∈ [, T]. For that, we ex-
press I(t) as I(t) = I(t) + I(t), where

I(t) = –A
∫ t


(t – s)α–APα(t – s)

(

g(s, xs) – g(t, xt)
)

ds,

I(t) = A
∫ t


(t – s)α–APα(t – s)g(t, xt) ds.

Using Proposition .(iii), we get I(t) = –(Sα(t) – I)Ag(t, xt). So, by Proposition .(v) and
condition (Hc) we have that I(t) is continuous for t ∈ [, T]. Next, we prove that I(t) is
continuous for t ∈ [, T]. Let �t >  be such that t + �t ≤ T. Then

∥
∥I(t + �t) – I(t)

∥
∥

≤
∥
∥
∥
∥

A
∫ t



(

(t + �t – s)α–APα(t + �t – s) – (t – s)α–

× APα(t – s)
)(

g(s, xs) – g(t, xt)
)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

A
∫ t


(t + �t – s)α–APα(t + �t – s)

(

g(t, xt) – g(t + �t, xt+�t)
)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

A
∫ t+�t

t
(t + �t – s)α–APα(t + �t – s)

(

g(s, xs) – g(t + �t, xt+�t)
)

ds
∥
∥
∥
∥

= h(t) + h(t) + h(t).
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For h(t), on the one hand, we have
∥
∥
∥
∥

A
∫ t


(t + �t – s)α–APα(t + �t – s)

(

g(s, xs) – g(t, xt)
)

ds
∥
∥
∥
∥

≤ Lg
tθ–α(+γ )

θ – α( + γ )
+ LgQ

tϑ–α(+γ )

ϑ – α( + γ )
.

Moreover, since θ > α( + γ ) and ϑ > α( + γ ), we get A(t + �t – s)α–APα(t + �t –
s)(g(s, xs) – g(t, xt)) ∈ L((, t), X). On the other hand, by Proposition .(v) we have

lim
�t→

A(t + �t – s)α–APα(t + �t – s)
(

g(s, xs) – g(t, xt)
)

= A(t – s)α–APα(t – s)
(

g(s, xs) – g(t, xt)
)

,

so that by the Lebesgue dominated convergence theorem we get h(t) →  as �t → .
For h(t), we have the estimate

h(t) ≤
∥
∥
∥
∥

A
∫ t


(t + �t – s)α–APα(t + �t – s)

(

g(t, xt) – g(t + �t, xt+�t)
)

ds
∥
∥
∥
∥

≤ LgCp

∫ t


(t + �t – s)–α–αγ –((�t)θ + Q(�t)ϑ

)

ds

= LgCp
(�t)–α(+γ ) – (t + �t)–α(+γ )

–α( + γ )
(

(�t)θ + Q(�t)ϑ
)

.

Moreover, since θ > α( + γ ) and ϑ > α( + γ ), we get h(t) →  as �t → .
For h(t), by Proposition .(i) and condition (H∗

 ) we have the estimate

h(t) ≤ (�t)–αγ

–αγ

∥
∥Ag

∥
∥

L∞((,T),X),

which implies that h(t) →  as �t → . Hence, –Au(t) + Ag(t, xt) is continuous for all
t ∈ [, T].

By the argument used earlier we have that (C
 Dα

t w)(t) is continuous for all t ∈ [, T].
Combining Proposition .(v) and the assumption A(ϕ() – g(, x)) ∈ D(Aβ ) with β >
 + γ , it follows that (C

 Dα
t x)(t) is continuous for all t ∈ [, T], and the proof is completed.

�

Corollary . Let A ∈ �
γ
ω with – < γ < – 

 and  < ω < π/, and ϕ(t) ∈ C([–h, ], X).
Suppose that conditions (H∗

), (H∗
), and (Hd) hold. Then the mild solution x to equation

(.) is its unique classical solution, provided that Aϕ() ∈ D(Aβ ) with β >  + γ .

4 Application
In this section, we demonstrate the applicability of the obtained results to the following
problem:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

C
 ∂α

t (u(t, y) – 
 e–t sin(y(t – h))) = ∂

y u(t, y) +
∫ t

t–h χ (s – t)u(s, y) ds,
t ∈ [, T], y ∈ [,π ],

u(t, ) = u(t,π ) = , t ∈ [, T],
u(t, y) = (ϕ(t))(y), t ∈ [–h, ], y ∈ [,π ],

(.)
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in the space of Hölder continuous functions X := Cl([,π ],R) ( < l < ), where C
 ∂α

t is the
Caputo fractional partial derivative of order  < α <  with respect to t, that is,

(C
 ∂α

t u
)

(t, y) =


�( – α)

(
∂

∂t

∫ t


(t – s)–αu(s, y) ds – t–αu(, y)

)

.

We now introduce the operator

Ã := –∂
y , D(Ã) =

{

u ∈ C+l([,π ]
)

: u(t, ) = u(t,π ) = 
}

,

in the space Cl([,π ],R) ( < l < ) of Hölder continuous functions. It follows from [] that
there exist ν, ε >  such that Ã + ν ∈ �

l
 –
π
 –ε

(X).
To represent this system in the abstract form (.), we introduce the function f : [, T] ×

C([–h, ], X) → X given by

f (t,�)(y) =
∫ 

–h
χ (s)�(s, y) ds.

If χ ∈ L([, T],R), then f ∈ C([, T], X), and it follows that there exists a function m(t) ∈
L([, T],R) such that

∥
∥f (t, ·)∥∥ ≤ m(t).

It follows from Theorem . that there exists T such that equation (.) has a unique mild
solution on [–h, T].

5 Conclusions
The research on almost sectorial operators has been of significant interest during the past
years. However, it has been found that there is no published material addressing the exis-
tence and uniqueness of solutions for fractional neutral evolution equations with almost
sectorial operators. To enrich the literature on the topic, we have investigated the existence
and uniqueness of mild solutions to fractional neutral evolution equations with almost
sectorial operators in this article. Our study relies on some fixed point theorems. Under
some suitable assumptions, we have shown that a mild solution can become a strong solu-
tion and a classical solution. As an illustration of our work, we have discussed the existence
and uniqueness of a mild solution for a fractional partial differential equation.
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