
Wang et al. Advances in Difference Equations (2016) 2016:207
DOI 10.1186/s13662-016-0929-9

R E S E A R C H Open Access

An efficient parallel algorithm for Caputo
fractional reaction-diffusion equation with
implicit finite-difference method
Qinglin Wang1,2*, Jie Liu1,2, Chunye Gong1,2, Xiantuo Tang1,2, Guitao Fu3 and Zuocheng Xing1,2

*Correspondence:
wangqinglin.thu@gmail.com
1Science and Technology on Parallel
and Distributed Processing
Laboratory, National University of
Defense Technology, Changsha,
410073, China
2College of Computer, National
University of Defense Technology,
Changsha, 410073, China
Full list of author information is
available at the end of the article

Abstract
An efficient parallel algorithm for Caputo fractional reaction-diffusion equation with
implicit finite-difference method is proposed in this paper. The parallel algorithm
consists of a parallel solver for linear tridiagonal equations and parallel vector
arithmetic operations. For the parallel solver, in order to solve the linear tridiagonal
equations efficiently, a new tridiagonal reduced system is developed with an
elimination method. The experimental results show that the parallel algorithm is in
good agreement with the analytic solution. The parallel implementation with 16
parallel processes on two eight-core Intel Xeon E5-2670 CPUs is 14.55 times faster
than the serial one on single Xeon E5-2670 core.

MSC: Primary 34A08; 65Y05

Keywords: fractional reaction-diffusion equation; parallel computing; elimination
method; tridiagonal reduced system

1 Introduction
Fractional differential equations (FDEs) refer to a class of differential equations which use
derivatives of non-integer order [,]. Fractional equations have proved to be very reli-
able models for many scientific and engineering problems [,]. Because it is difficult to
solve complex fractional problems analytically, more and more work focuses on numerical
solutions [,].

Recently, there has been great interest in FDEs [–]. Ahmad et al. [] discussed the
existence of the solution of a Caputo fractional reaction-diffusion equation with various
boundary conditions. Rida et al. [] applied the generalized differential transform method
to solve nonlinear fractional reaction-diffusion partial differential equations. Chen et al.
used the explicit finite-difference approximation [] and implicit difference approximation
[] to solve the Riesz space fractional reaction-dispersion equation.

The numerical methods for FDEs include finite-difference methods [,], finite ele-
ment methods [] and spectral methods [–]. Fractional reaction-diffusion equations
are related to spatial and time coordinates, so the numerical solutions are often time-
consuming. Large scale applications and algorithms in science and engineering such as
neutron transport [–], computational fluid dynamics [–], large sparse systems
[] rely on parallel computing [, ,]. In order to overcome the difficulty, parallel

© 2016 Wang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-016-0929-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-016-0929-9&domain=pdf
mailto:wangqinglin.thu@gmail.com

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 2 of 12

computing has been introduced into the numerical solutions for fractional equations [–
]. Kai Diethelm [] parallelized the fractional Adams-Bashforth-Moulton algorithm for
the first time and the execution time of the algorithm was efficiently reduced. Gong et
al. [] presented a parallel solution for time fractional reaction-diffusion equation with
explicit difference method. In the parallel solver, the technology named pre-computing
fractional operator was used to optimize performance.

In this paper, we address an efficient parallel algorithm for time fractional reaction-
diffusion equation with an implicit finite-difference method. In this parallel algorithm,
the system of linear tridiagonal equations, vector-vector additions and constant-vector
multiplications are efficiently processed in parallel. The linear tridiagonal system is paral-
lelized with a new elimination method, which is effective and has simplicity in computer
programming. The results indicate there is no significant difference between the imple-
mentation and the exact solution. The parallel algorithm with parallel processes on two
eight-core Intel Xeon E- CPUs runs . times faster than the serial algorithm.

This paper focuses on the Caputo fractional reaction-diffusion equation:

⎧
⎪⎨

⎪⎩

C
 Dα

t u(x, t) + μu(x, t) = ∂u(x,t)
∂x + Kf (x, t) (< α <),

u(x,) = φ(x), x ∈ [, xR],
u(, t) = u(xR, t) = , x ∈ [, T],

()

on a finite domain ≤ x ≤ xR and ≤ t ≤ T , where μ and K are constants. If α equals ,
equation () is the classical reaction-diffusion equation. The fractional derivative is in the
Caputo form.

2 Background
2.1 Numerical solution with implicit finite difference
The fractional derivative of f (t) in the Caputo sense is defined as []

C
 Dα

t f (t) =

�(– α)

∫ t

f ′(ξ)
(t – ξ)α

dξ (< α <). ()

If f ′(t) is continuous bounded derivatives in [, T] for every T > , we can get

C
 Dα

t f (t) = lim
ξ→,nξ=t

ξα

n∑

i=

(–)i
(

α

i

)

=
f ()t–α

�(– α)
+

�(– α)

∫ t

f ′(ξ)
(t – ξ)α

dξ . ()

Define τ = T
N , h = xR

M , tn = nτ , xi = + ih for ≤ n ≤ N , ≤ i ≤ M. Define un
i , ϕn

i , and φi

as the numerical approximations to u(xi, tn), f (xi, tn), and φ(xi). We can get []

C
 Dα

t u(x, t)|tn
xi

=

τ�(– α)

[

bun
i –

n–∑

k=

(bn–k– – bn–k)uk
i – bn–u

i

]

+ ©(
τ –α

)
, ()

where ≤ i ≤ M – , n ≥ , and

bl =
τ –α

 – α

[
(l +)–α – l–α

]
, l ≥ . ()

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 3 of 12

Using implicit center difference scheme for ∂u(x,t)
∂x , we can get

∂u(x, t)
∂x

∣
∣
∣
∣

tn

xi

=

h

(
un

i+ – un
i + un

i–
)

+ ©(
h). ()

The implicit finite difference approximation [] for equation () is

τ�(– α)

[

bun
i –

n–∑

k=

(bn–k– – bn–k)uk
i – bn–u

i

]

+ μun
i

=
un

i+ – un
i + un

i–
h + Kϕn

i . ()

Define w = τ�(–α), λ = b +μw + w/h, λ = –w/h, σ = Kw, Un = (un
 , un

, . . . , un
M–)T ,

Fn = (ϕn
 ,ϕn

 , . . . ,ϕn
M–)T , and rl = bl – bl+. Equation () evolves as

AUn =
n–∑

k=

rn––kUk + bn–U + σFn, ()

where the matrix A is a tridiagonal matrix, defined as

A(M–)×(M–) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ λ

λ λ λ
.

λ λ λ

λ λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. ()

3 Parallel algorithm
3.1 Analysis
In order to get Un from equation (), two steps need to be processed. One step performs
the right-sided computation of equation (). Set V n =

∑n–
k= rn––kUk + bn–U + σFn. The

calculation of V n mainly involves the constant-vector multiplications and vector-vector
additions. The other step solves the tridiagonal linear equations AUn = V n. The constant-
vector multiplications and vector-vector additions can easily be parallelized. So we only
analyze the parallel implementation of solving the tridiagonal linear equations.

As |λ| < |λ|, the tridiagonal matrix A is strictly diagonally dominant by rows. The
dominance factor ε can be got by

ε =
|λ|
|λ| =

Nx

Rb
MT�(–α) + x

Rμ

M +
. ()

For strictly diagonally dominant linear systems, one parallel approximation algorithm
has been proposed []. For given α and N , the dominance factor would be very close to
one with big M. The approximation algorithm would decrease the precision of the solu-
tion and even exacerbate the convergence. In other words, applying the algorithm to this
solution of tridiagonal linear equations with fixed M will obviously increase the number
of time steps in order to keep the same precision. Thus, it is necessary to solve tridiagonal
linear equations accurately. Moreover, each iteration on time step involves one system of
tridiagonal linear equations. The right-hand side V n varies while the tridiagonal matrix

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 4 of 12

A keeps constant in all time iterations. In order to avoid the repeated calculations, the
transformation of the tridiagonal matrix is recorded in the parallel solution of tridiagonal
linear equations.

3.2 Parallel solution of tridiagonal linear equations
Based on the analysis above, a parallel implementation of solving the tridiagonal lin-
ear equations is shown in Algorithm . The implementation is based on the divide-and-
conquer principle. The number of parallel processes is p. Set M – = pk and q = p

 . The
matrix A is divided into p blocks as follows:

A(M–)×(M–) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D C

G D C
.

Gp– Dp– Cp–

Gp Dp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

where

Di =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d(i–)k+ c(i–)k+

g(i–)k+ d(i–)k+ c(i–)k+
.

gik– dik– cik–

gik dik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i = , , . . . , p, ()

Gi = g(i–)k+eeT
k , i = , , . . . , p, Cj = cjkekeT

 , j = , , . . . , p – . e and ek are k-dimensional
unit vectors in which the first and last elements are one, respectively. Similarly, U and
V can also have corresponding partitions. Un = (U, U, . . . , UP)T , Ui = (u(i–)k+, . . . , uik)T ,
and V n = (V, V, . . . , VP)T , Vi = (v(i–)k+, . . . , vik)T .

Line allocates Di, g(i–)k+, cjk , Vi to the ith process, i = , . . . , p.
Lines - eliminate the lower and upper diagonal elements of sub-matrix Di and trans-

form diagonal elements to one. For the downward elimination, P and Pp begin with the
first row of Di in line while Pi (< i < p) begins with the second row of Di in line . After
the downward elimination, the equations in all processes can be transformed to

Pi (i =):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 c

 c
.

 ck–

 ck

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u

u
...

uk–

uk

uk+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v

v
...

vk–

vk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

Pi (< i < p):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(i–)k+ d(i–)k+ c(i–)k+

g(i–)k+ c(i–)k+
...

.
gik– cik–

gik dik cik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 5 of 12

Algorithm : Parallel solution for tridiagonal linear equations
input : A, V , p
output: U

 Initiate MPI and get p (MPI Processes Size), Pi (Current Process ID)
 for all MPI processes do
 Distribute task among MPI processes
 if Pi (< i < p) then
 elimit_down_mid_m()
 elimit_up_mid_m()
 transform_mid_v()

 else
 elimit_down_edg_m()

 elimit_up_edg_m()
 transform_edg_v()

// Send equations to P or Pp and form the reduced

system

 com_form()
// Solve the reduced system only with P and Pp

 solve_reduce()
// Rec u(i–)k+ and uik from P or Pp and get the solution

of the system

 com_retrieve()

 Output T – T

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(i–)k

u(i–)k+

u(i–)k+
...

uik–

uik

uik+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(i–)k+

v(i–)k+
...

vik–

vik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

Pi (i = p):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(p–)k+ c(p–)k+

g(p–)k+ c(p–)k+
...

.
gpk– cpk–

gpk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(p–)k

u(p–)k+

u(p–)k+
...

upk–

upk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(p–)k+

v(p–)k+
...

vpk–

vpk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. ()

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 6 of 12

For the upward elimination, P and Pp begin with the last row of Di in line while Pi

(< i < p) begins with the penultimate row of Di in line . The upward elimination makes
the equations in all processes become

Pi (i =):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 c

 c
. . .

...
 ck–

 ck

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u

u
...

uk–

uk

uk+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v

v
...

vk–

vk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

Pi (< i < p):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(i–)k+ d(i–)k+ c(i–)k+

g(i–)k+ c(i–)k+
...

. . .
...

gik– cik–

gik dik cik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(i–)k

u(i–)k+

u(i–)k+
...

uik–

uik

uik+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(i–)k+

v(i–)k+
...

vik–

vik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

Pi (i = p):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(p–)k+
g(p–)k+

...
. . .

g(p–)k–
gpk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(p–)k

u(p–)k+

u(p–)k+
...

upk–

upk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(p–)k+

v(p–)k+
...

vpk–

vpk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. ()

In the elimination, the tridiagonal matrix and the right-hand-side vector are processed
separately.

Line means that Pi (< i ≤ q) and Pi (q + ≤ i < p), respectively, sends the first and
last equations to P and Pp. Those equations, the last one in P and the first one in Pp can
form the reduced system of equations as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 ck

gk+ dk+ ck+

gk dk ck
.

g(p–)k+ d(p–)k+ c(p–)k+

g(p–)k d(p–)k c(p–)k

g(p–)k+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uk

uk+

uk
...

u(p–)k+

u(p–)k

u(p–)k+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

vk

vk+

vk
...

v(p–)k+

v(p–)k

v(p–)k+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. ()

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 7 of 12

Figure 1 Communication in the parallel implementation of
tridiagonal linear equations. The number of parallel processes is
four.

We can find the coefficient matrix in equation () is still a tridiagonal matrix. Line
means the reduced system of equations is solved only with processes P and Pp. P and
Pp deal with the reduced system of equations using the functions in lines - as well. P

and Pp exchange the qkth and qk + th equations after elimination, and both can obtain
u(q+)k and u(q+)k+. In process P, u(i–)k+ and uik are acquired and sent to Pi (< i ≤ q). In
process Pp, u(i–)k+ and uik are got and dispatched to Pi (q + ≤ i < p). After Pi (< i < p)
receives u(i–)k+ and uik from P or Pp, Ui can be solved using equation (). U and Up

can also be figured out by equation () and equation (), respectively.
For the parallel implementation of solving tridiagonal linear equations, there are to-

tally three communications shown in Figure . The first communication means that Pi

(< i < p) sends the first and last equations to P or Pp after the elimination. The second
communication indicates that P and Pp exchange the qkth and qk + th equations in order
to acquire u(q+)k and u(q+)k+ simultaneously in the solution of the reduced system. The
third communication is that Pi (< i < p) receives u(i–)k+ and uik from P or Pp after the
reduced system is solved.

3.3 Implementation
The parallel algorithm for Caputo fractional reaction-diffusion equation with implicit
finite-difference method is proposed as shown in Algorithm . F(,), U(,), V (), A(,) are
evenly distributed among all processes in order to void the load imbalance. Line com-
putes F(,), A(), r() and initializes U(,), V (). Vector r() is stored in all processes and cal-
culated simultaneously. Lines - solve the tridiagonal linear equations AU = V for the
first time. The loop of line represents iterations on time steps. Since there are depen-
dence between the solutions of adjacent time steps, the parallelization of the solution
could be carried out only on space steps. In each iteration on time steps, line solves
V n =

∑n–
k= rn––kUk + bn–U + σFn in parallel, and mainly includes parallel constant-

vector multiplications and vector-vector additions. Lines - solve the tridiagonal linear
equations AUn = V n for the (n +)th time. As the tridiagonal matrix keeps constant in all
time iterations, the solution of lines - does not deal with the tridiagonal matrix and
only processes V n with transform_mid_v() and transform_edg_v(). Particularly, the coeffi-
cient matrix of the reduced system also does not vary with time iterations. The elimination
in line simply involves the right-sided vector of the reduced system as well. Therefore,
the communications in lines - only transfer the right-hand side of the corresponding
equations rather than the entire ones.

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 8 of 12

Algorithm : Parallel solution for Caputo fractional reaction-diffusion equation with
implicit finite-difference method

input : α, M, N , L, T , f (x, t)
 h ← L/M, τ ← T/N
 Initiate MPI and get p (MPI Processes Size), Pi (Current Process ID)
 for all MPI processes do
 Distribute task among MPI processes
 Declare local memory of F(,), U(,), V (), A(,) in each process
 Compute F(), A(), r(), and initialize U(,), V ()
 Record time T

 V () ← K ∗ F(:,)
// solve AU = V

 if Pi (< i < p) then
 elimit_down_mid_m(); elimit_up_mid_m(); transform_mid_v()

 else
 elimit_down_edg_m(); elimit_up_edg_m(); transform_edg_v()

 com_form(); solve_reduce(); com_retrieve()
 for n = → N do
 V () ← K ∗ F(:, n)
 for j = → n do
 V () ← V () + U(:, j –) ∗ r(n – j)

// solve AUn = V n

 if Pi (< i < p) then
 transform_mid_v()

 else
 transform_edg_v()

 com_form(); solve_reduce(); com_retrieve()

 Record time T

 Output T – T

Table 1 The specifications of the experiment’s platform

CPU 2 Intel Xeon E5-2670 CPUs, 8 cores/CPU, 2.6 GHz
Host OS Linux Red Hat 4.4.5-6
Compiler Version Intel v13.0.0
MPI Version Intel v4.0.3

4 Experimental results and discussion
The experiment platform is a service node containing two eight-core Intel Xeon E-
 CPUs with GB of memory. All codes are compiled with Intel C compiler with
level-three optimization and run in double-precision floating-point. The specifications
are listed in Table .

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 9 of 12

The following Caputo fractional reaction-diffusion equation [] is considered, shown
in equation ():

⎧
⎪⎨

⎪⎩

Dα
t u(x, t) + μu(x, t) = ∂u(x,t)

∂x + Kf (x, t),
u(x,) = , x ∈ (,),
u(, t) = u(, t) = ,

()

with μ = , K = , α = ., and

f (x, t) =

�(.)
x(– x)t. + x(– x)t + t. ()

The exact solution of equation () is

u(x, t) = x(– x)t. ()

4.1 Accuracy of parallel solution
For the example in equation (), the parallel solution compares well with the exact ana-
lytic solution to the fractional partial differential equation shown in Figure . �t and h are
.
 and .

 . The maximum absolute error is .× –. The difference between serial and
parallel solution is only . × –. When different �t and h are applied, the maximum
errors between the exact analytic solution and the parallel solution are shown in Table .
The maximum error gradually decreases with the increasing number of time and space
steps. Altogether, our proposed parallel solution and the exact analytic solution have no
noticeable artifacts.

4.2 Performance improvement
The performance comparison between serial solution (SS) and parallel solution (PS) is
shown in Table when different M and N are applied. In PS, processes run in parallel.
With M = N = , PS is a little slower than SS. When M and N are greater than or equal
to , PS is faster than SS. Compared with SS, the speedup of PS increases gradually with

Figure 2 Result comparison between exact
analytic solution with parallel solution at time
t = 1.0 and p = 16, M = N = 65.

Table 2 Result comparison between the exact analytic solution and the parallel solution at
time t = 1.0 and p = 8, where different M and N are applied

M = N 65 129 257 513 1,025 2,049

Max error 7.47E–04 3.07E–04 1.26E–04 5.12E–05 2.08E–05 8.47E–06

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 10 of 12

Table 3 Performance comparison between serial solution (SS) and parallel solution (PS) when
different M and N are applied

M = N 65 129 257 513 1,025 2,049

Runtime (s) SS 5.20E–04 3.31E–03 1.22E–02 7.35E–02 4.93E–01 4.03E+00
PS 6.51E–04 1.42E–03 3.75E–03 1.15E–02 4.56E–02 2.77E–01

Speedup 0.80 2.34 3.26 6.37 10.80 14.55

In PS, the number of processes is set to 16.

Table 4 Performance of parallel solution with M = N = 2,049 when different numbers of
processes are applied

No. of processes 1 2 4 8 16

Runtime (s) 4.03E+00 1.81E+00 9.50E–01 5.29E–01 2.77E–01
Speedup 1.00 2.22 4.24 7.62 14.55

increasing M and N . When M and N increase to ,, the runtime of SS reaches .
seconds and that of PS is only . × – seconds. Therefore, the speedup between PS
and SS rises to ..

4.3 Scalability
With fixed M = N = ,, the performance comparison among the parallel solutions with
a different number of processes is shown in Table . When two parallel processes are used,
the speedup is .. When four processes run in parallel, the speedup reaches .. When
more than one process is adopted, the total communication cost will increase with the
number of parallel processes. However, the speedups in the two situations above outper-
form the corresponding perfect speedups. The main reason is that the solution of Caputo
fractional reaction-diffusion equation with implicit finite-difference method is memory-
intensive, and the decrease of memory overhead by the improvement of data locality is
more than the increase of communication cost in the parallelization of two or four pro-
cesses. When the number of processes grows to , the speedup is about . times and
the scaling efficiency reaches %. Altogether, our proposed parallel solution has good
scalability in performance.

5 Conclusions and future work
In this article, we propose a parallel algorithm for time fractional reaction-diffusion equa-
tion using the implicit finite-difference method. The algorithm includes a parallel solver
for linear tridiagonal equations and parallel vector arithmetic operations. The solver is
based on the divide-and-conquer principle and introduces a new tridiagonal reduced sys-
tem with an elimination method. The experimental results shows the proposed parallel
algorithm is valid and runs much more rapidly than the serial solution. The results also
demonstrate the algorithm exhibits good scalability in performance. In addition, the in-
troduced tridiagonal reduced system can be regarded as a general method for tridiagonal
systems and applied on more applications. In the future, we would like to accelerate the so-
lution of time fractional reaction-diffusion equation on heterogeneous architectures [].

Competing interests
The authors declare that they have no competing interests.

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 11 of 12

Authors’ contributions
Each of the authors contributed to each part of this work equally and read and approved the final version of the
manuscript.

Author details
1Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology,
Changsha, 410073, China. 2College of Computer, National University of Defense Technology, Changsha, 410073, China.
3Beijing Satellite Navigation Center, Beijing, 100094, China.

Acknowledgements
This research work is supported in part by the National Natural Science Foundation of China under Grant Nos. 11175253,
61303265, 61402039, 91430218, 91530324, 61303265, 61170083 and 61373032, in part by Specialized Research Fund for
the Doctoral Program of Higher Education under Grant No. 20114307110001, in part by China Postdoctoral Science
Foundation under Grant Nos. 2014M562570 and 2015T81127, and in part by 973 Program of China under Grant
Nos. 61312701001 and 2014CB430205.

Received: 7 October 2015 Accepted: 28 July 2016

References
1. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
2. Debbouche, A, Baleanu, D: Controllability of fractional evolution nonlocal impulsive quasilinear delay

integro-differential systems. Comput. Math. Appl. 62(3), 1442-1450 (2011)
3. Lenzi, EK, Neto, RM, Tateishi, AA, Lenzi, MK, Ribeiro, HV: Fractional diffusion equations coupled by reaction terms.

Phys. A, Stat. Mech. Appl. 458, 9-16 (2016)
4. Hristov, J: Approximate solutions to time-fractional models by integral balance approach. In: Fractals and Fractional

Dynamics, pp. 78-109 (2015)
5. Bhrawy, AH, Taha, TM, Alzahrani, EO, Baleanu, D, Alzahrani, AA: New operational matrices for solving fractional

differential equations on the half-line. PLoS ONE 10(5), e0126620 (2015)
6. Doha, EH, Bhrawy, AH, Baleanu, D, Ezz-Eldien, SS: On shifted Jacobi spectral approximations for solving fractional

differential equations. Appl. Math. Comput. 219(15), 8042-8056 (2013)
7. Ahmad, B, Alhothuali, MS, Alsulami, HH, Kirane, M, Timoshin, S: On a time fractional reaction diffusion equation. Appl.

Math. Comput. 257, 199-204 (2015)
8. Rida, SZ, El-Sayed, AMA, Arafa, AAM: On the solutions of time-fractional reaction-diffusion equations. Commun.

Nonlinear Sci. Numer. Simul. 15(12), 3847-3854 (2010). doi:10.1016/j.cnsns.2010.02.007
9. Chen, J, Liu, F, Turner, I, Anh, V: The fundamental and numerical solutions of the Riesz space fractional

reaction-dispersion equation. ANZIAM J. 50, 45-57 (2008)
10. Chen, J, Liu, F: Stability and convergence of an implicit difference approximation for the space Riesz fractional

reaction-dispersion equation. Numer. Math. J. Chin. Univ., Engl. Ser. 16(3), 253-264 (2007)
11. Chen, J: An implicit approximation for the Caputo fractional reaction-dispersion equation. J. Xiamen Univ. Natur. Sci.

46(5), 616-619 (2007) (in Chinese)
12. Ding, X-L, Nieto, JJ: Analytical solutions for the multi-term time-space fractional reaction-diffusion equations on an

infinite domain. Fract. Calc. Appl. Anal. 18(3), 697-716 (2015)
13. Wang, H, Du, N: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion

equations. J. Comput. Phys. 258, 305-318 (2014)
14. Ferrás, LL, Ford, NJ, Morgado, ML, Nóbrega, JM, Rebelo, MS: Fractional Pennes’ bioheat equation: theoretical and

numerical studies. Fract. Calc. Appl. Anal. 18(4), 1080-1106 (2015)
15. Jiang, Y, Ma, J: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl.

Math. 235(11), 3285-3290 (2011)
16. Bhrawy, AH, Abdelkawy, MA, Alzahrani, AA, Baleanu, D, Alzahrani, EO: A Chebyshev-Laguerre-Gauss-Radau

collocation scheme for solving a time fractional sub-diffusion equation on a semi-infinite domain. Proc. Rom. Acad.,
Ser. A 16, 490-498 (2015)

17. Bhrawy, AH, Zaky, MA, Baleanu, D, Abdelkawy, MA: A novel spectral approximation for the two-dimensional fractional
sub-diffusion problems. Rom. J. Phys. 60(3-4), 344-359 (2015)

18. Bhrawy, AH, Doha, EH, Baleanu, D, Ezz-Eldien, SS: A spectral tau algorithm based on Jacobi operational matrix for
numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142-156 (2015)

19. Abdelkawy, MA, Zaky, MA, Bhrawy, AH, Baleanu, D: Numerical simulation of time variable fractional order
mobile-immobile advection-dispersion model. Rom. Rep. Phys. 67(3), 1-19 (2015)

20. Bhrawy, AH, Zaky, MA, Baleanu, D: New numerical approximations for space-time fractional Burgers’ equations via a
Legendre spectral-collocation method. Rom. Rep. Phys. 67(2), 1-13 (2015)

21. Rosa, M, Warsa, JS, Perks, M: A cellwise block-Gauss-Seidel iterative method for multigroup SN transport on a hybrid
parallel computer architecture. Nucl. Sci. Eng. 173(3), 209-226 (2013)

22. Gong, C, Liu, J, Chi, L, Huang, H, Fang, J, Gong, Z: GPU accelerated simulations of 3D deterministic particle transport
using discrete ordinates method. J. Comput. Phys. 230(15), 6010-6022 (2011). doi:10.1016/j.jcp.2011.04.010

23. Wang, Q, Liu, J, Gong, C, Xing, Z: Scalability of 3D deterministic particle transport on the Intel MIC architecture. Nucl.
Sci. Tech. 26(5), 50502 (2015)

24. Xu, C, Deng, X, Zhang, L, Fang, J, Wang, G, Jiang, Y, Cao, W, Che, Y, Wang, Y, Wang, Z, Liu, W, Cheng, X: Collaborating
CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer.
J. Comput. Phys. 278, 275-297 (2014)

25. Wang, Y-X, Zhang, L-L, Liu, W, Che, Y-G, Xu, C-F, Wang, Z-H, Zhuang, Y: Efficient parallel implementation of large scale
3D structured grid CFD applications on the Tianhe-1A supercomputer. Comput. Fluids 80, 244-250 (2013)

26. Che, Y, Zhang, L, Xu, C, Wang, Y, Liu, W, Wang, Z: Optimization of a parallel CFD code and its performance evaluation
on Tianhe-1A. Comput. Inform. 33(6), 1377-1399 (2014)

http://dx.doi.org/10.1016/j.cnsns.2010.02.007
http://dx.doi.org/10.1016/j.jcp.2011.04.010

Wang et al. Advances in Difference Equations (2016) 2016:207 Page 12 of 12

27. Bai, Z-Z: Parallel multisplitting two-stage iterative methods for large sparse systems of weakly nonlinear equations.
Numer. Algorithms 15(3-4), 347-372 (1997). doi:10.1023/A:1019110324062

28. Mo, Z, Zhang, A, Cao, X, Liu, Q, Xu, X, An, H, Pei, W, Zhu, S: JASMIN: a parallel software infrastructure for scientific
computing. Front. Comput. Sci. China 4(4), 480-488 (2010). doi:10.1007/s11704-010-0120-5

29. Yang, B, Lu, K, Gao, Y, Wang, X, Xu, K: GPU acceleration of subgraph isomorphism search in large scale graph. J. Cent.
South Univ. 22, 2238-2249 (2015)

30. Gong, C, Bao, W, Tang, G, Jiang, Y, Liu, J: Computational challenge of fractional differential equations and the potential
solutions: a survey. Math. Probl. Eng. 2015, 258265 (2015)

31. Diethelm, K: An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc.
Appl. Anal. 14, 475-490 (2011). doi:10.2478/s13540-011-0029-1

32. Gong, C, Bao, W, Tang, G: A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite
difference method. Fract. Calc. Appl. Anal. 16(3), 654-669 (2013)

33. Gong, C, Bao, W, Tang, G, Yang, B, Liu, J: An efficient parallel solution for Caputo fractional reaction-diffusion equation.
J. Supercomput. 68(3), 1521-1537 (2014). doi:10.1007/s11227-014-1123-z

34. Chi, L, Liu, J, Li, X: An effective parallel algorithm for tridiagonal linear equations. Chinese J. Comput. 22(2), 218-221
(1999) (in Chinese)

35. Liao, X, Xiao, L, Yang, C, Lu, Y: MilkyWay-2 supercomputer: system and application. Front. Comput. Sci. 8(3), 345-356
(2014)

http://dx.doi.org/10.1023/A:1019110324062
http://dx.doi.org/10.1007/s11704-010-0120-5
http://dx.doi.org/10.2478/s13540-011-0029-1
http://dx.doi.org/10.1007/s11227-014-1123-z

	An efﬁcient parallel algorithm for Caputo fractional reaction-diffusion equation with implicit ﬁnite-difference method
	Abstract
	MSC
	Keywords

	Introduction
	Background
	Numerical solution with implicit ﬁnite difference

	Parallel algorithm
	Analysis
	Parallel solution of tridiagonal linear equations
	Implementation

	Experimental results and discussion
	Accuracy of parallel solution
	Performance improvement
	Scalability

	Conclusions and future work
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References

