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Abstract
An efficient parallel algorithm for Caputo fractional reaction-diffusion equation with
implicit finite-difference method is proposed in this paper. The parallel algorithm
consists of a parallel solver for linear tridiagonal equations and parallel vector
arithmetic operations. For the parallel solver, in order to solve the linear tridiagonal
equations efficiently, a new tridiagonal reduced system is developed with an
elimination method. The experimental results show that the parallel algorithm is in
good agreement with the analytic solution. The parallel implementation with 16
parallel processes on two eight-core Intel Xeon E5-2670 CPUs is 14.55 times faster
than the serial one on single Xeon E5-2670 core.
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1 Introduction
Fractional differential equations (FDEs) refer to a class of differential equations which use
derivatives of non-integer order [, ]. Fractional equations have proved to be very reli-
able models for many scientific and engineering problems [, ]. Because it is difficult to
solve complex fractional problems analytically, more and more work focuses on numerical
solutions [, ].

Recently, there has been great interest in FDEs [–]. Ahmad et al. [] discussed the
existence of the solution of a Caputo fractional reaction-diffusion equation with various
boundary conditions. Rida et al. [] applied the generalized differential transform method
to solve nonlinear fractional reaction-diffusion partial differential equations. Chen et al.
used the explicit finite-difference approximation [] and implicit difference approximation
[] to solve the Riesz space fractional reaction-dispersion equation.

The numerical methods for FDEs include finite-difference methods [, ], finite ele-
ment methods [] and spectral methods [–]. Fractional reaction-diffusion equations
are related to spatial and time coordinates, so the numerical solutions are often time-
consuming. Large scale applications and algorithms in science and engineering such as
neutron transport [–], computational fluid dynamics [–], large sparse systems
[] rely on parallel computing [, , ]. In order to overcome the difficulty, parallel
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computing has been introduced into the numerical solutions for fractional equations [–
]. Kai Diethelm [] parallelized the fractional Adams-Bashforth-Moulton algorithm for
the first time and the execution time of the algorithm was efficiently reduced. Gong et
al. [] presented a parallel solution for time fractional reaction-diffusion equation with
explicit difference method. In the parallel solver, the technology named pre-computing
fractional operator was used to optimize performance.

In this paper, we address an efficient parallel algorithm for time fractional reaction-
diffusion equation with an implicit finite-difference method. In this parallel algorithm,
the system of linear tridiagonal equations, vector-vector additions and constant-vector
multiplications are efficiently processed in parallel. The linear tridiagonal system is paral-
lelized with a new elimination method, which is effective and has simplicity in computer
programming. The results indicate there is no significant difference between the imple-
mentation and the exact solution. The parallel algorithm with  parallel processes on two
eight-core Intel Xeon E- CPUs runs . times faster than the serial algorithm.

This paper focuses on the Caputo fractional reaction-diffusion equation:

⎧
⎪⎨

⎪⎩

C
 Dα

t u(x, t) + μu(x, t) = ∂u(x,t)
∂x + Kf (x, t) ( < α < ),

u(x, ) = φ(x), x ∈ [, xR],
u(, t) = u(xR, t) = , x ∈ [, T],

()

on a finite domain  ≤ x ≤ xR and  ≤ t ≤ T , where μ and K are constants. If α equals ,
equation () is the classical reaction-diffusion equation. The fractional derivative is in the
Caputo form.

2 Background
2.1 Numerical solution with implicit finite difference
The fractional derivative of f (t) in the Caputo sense is defined as []

C
 Dα

t f (t) =


�( – α)

∫ t



f ′(ξ )
(t – ξ )α

dξ ( < α < ). ()

If f ′(t) is continuous bounded derivatives in [, T] for every T > , we can get

C
 Dα

t f (t) = lim
ξ→,nξ=t

ξα

n∑

i=

(–)i
(

α

i

)

=
f ()t–α

�( – α)
+


�( – α)

∫ t



f ′(ξ )
(t – ξ )α

dξ . ()

Define τ = T
N , h = xR

M , tn = nτ , xi =  + ih for  ≤ n ≤ N ,  ≤ i ≤ M. Define un
i , ϕn

i , and φi

as the numerical approximations to u(xi, tn), f (xi, tn), and φ(xi). We can get []

C
 Dα

t u(x, t)|tn
xi

=


τ�( – α)

[

bun
i –

n–∑

k=

(bn–k– – bn–k)uk
i – bn–u

i

]

+ ©(
τ –α

)
, ()

where  ≤ i ≤ M – , n ≥ , and

bl =
τ –α

 – α

[
(l + )–α – l–α

]
, l ≥ . ()
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Using implicit center difference scheme for ∂u(x,t)
∂x , we can get

∂u(x, t)
∂x

∣
∣
∣
∣

tn

xi

=


h

(
un

i+ – un
i + un

i–
)

+ ©(
h). ()

The implicit finite difference approximation [] for equation () is


τ�( – α)

[

bun
i –

n–∑

k=

(bn–k– – bn–k)uk
i – bn–u

i

]

+ μun
i

=
un

i+ – un
i + un

i–
h + Kϕn

i . ()

Define w = τ�( –α), λ = b +μw + w/h, λ = –w/h, σ = Kw, Un = (un
 , un

, . . . , un
M–)T ,

Fn = (ϕn
 ,ϕn

 , . . . ,ϕn
M–)T , and rl = bl – bl+. Equation () evolves as

AUn =
n–∑

k=

rn––kUk + bn–U + σFn, ()

where the matrix A is a tridiagonal matrix, defined as

A(M–)×(M–) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ λ

λ λ λ
. . . . . . . . .

λ λ λ

λ λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. ()

3 Parallel algorithm
3.1 Analysis
In order to get Un from equation (), two steps need to be processed. One step performs
the right-sided computation of equation (). Set V n =

∑n–
k= rn––kUk + bn–U + σFn. The

calculation of V n mainly involves the constant-vector multiplications and vector-vector
additions. The other step solves the tridiagonal linear equations AUn = V n. The constant-
vector multiplications and vector-vector additions can easily be parallelized. So we only
analyze the parallel implementation of solving the tridiagonal linear equations.

As |λ| < |λ|, the tridiagonal matrix A is strictly diagonally dominant by rows. The
dominance factor ε can be got by

ε =
|λ|
|λ| =


Nx

Rb
MT�(–α) + x

Rμ

M + 
. ()

For strictly diagonally dominant linear systems, one parallel approximation algorithm
has been proposed []. For given α and N , the dominance factor would be very close to
one with big M. The approximation algorithm would decrease the precision of the solu-
tion and even exacerbate the convergence. In other words, applying the algorithm to this
solution of tridiagonal linear equations with fixed M will obviously increase the number
of time steps in order to keep the same precision. Thus, it is necessary to solve tridiagonal
linear equations accurately. Moreover, each iteration on time step involves one system of
tridiagonal linear equations. The right-hand side V n varies while the tridiagonal matrix
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A keeps constant in all time iterations. In order to avoid the repeated calculations, the
transformation of the tridiagonal matrix is recorded in the parallel solution of tridiagonal
linear equations.

3.2 Parallel solution of tridiagonal linear equations
Based on the analysis above, a parallel implementation of solving the tridiagonal lin-
ear equations is shown in Algorithm . The implementation is based on the divide-and-
conquer principle. The number of parallel processes is p. Set M –  = pk and q = p

 . The
matrix A is divided into p blocks as follows:

A(M–)×(M–) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D C

G D C
. . . . . . . . .

Gp– Dp– Cp–

Gp Dp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

where

Di =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d(i–)k+ c(i–)k+

g(i–)k+ d(i–)k+ c(i–)k+
. . . . . . . . .

gik– dik– cik–

gik dik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i = , , . . . , p, ()

Gi = g(i–)k+eeT
k , i = , , . . . , p, Cj = cjkekeT

 , j = , , . . . , p – . e and ek are k-dimensional
unit vectors in which the first and last elements are one, respectively. Similarly, U and
V can also have corresponding partitions. Un = (U, U, . . . , UP)T , Ui = (u(i–)k+, . . . , uik)T ,
and V n = (V, V, . . . , VP)T , Vi = (v(i–)k+, . . . , vik)T .

Line  allocates Di, g(i–)k+, cjk , Vi to the ith process, i = , . . . , p.
Lines - eliminate the lower and upper diagonal elements of sub-matrix Di and trans-

form diagonal elements to one. For the downward elimination, P and Pp begin with the
first row of Di in line  while Pi ( < i < p) begins with the second row of Di in line . After
the downward elimination, the equations in all processes can be transformed to

Pi (i = ):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 c

 c
. . . . . .

 ck–

 ck

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u

u
...

uk–

uk

uk+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v

v
...

vk–

vk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

Pi ( < i < p):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(i–)k+ d(i–)k+ c(i–)k+

g(i–)k+  c(i–)k+
...

. . . . . .
gik–  cik–

gik dik cik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Algorithm : Parallel solution for tridiagonal linear equations
input : A, V , p
output: U

 Initiate MPI and get p (MPI Processes Size), Pi (Current Process ID)
 for all MPI processes do
 Distribute task among MPI processes
 if Pi ( < i < p) then
 elimit_down_mid_m()
 elimit_up_mid_m()
 transform_mid_v()

 else
 elimit_down_edg_m()

 elimit_up_edg_m()
 transform_edg_v()

// Send equations to P or Pp and form the reduced

system

 com_form()
// Solve the reduced system only with P and Pp

 solve_reduce()
// Rec u(i–)k+ and uik from P or Pp and get the solution

of the system

 com_retrieve()

 Output T – T

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(i–)k

u(i–)k+

u(i–)k+
...

uik–

uik

uik+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(i–)k+

v(i–)k+
...

vik–

vik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

Pi (i = p):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(p–)k+  c(p–)k+

g(p–)k+  c(p–)k+
...

. . . . . .
gpk–  cpk–

gpk 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(p–)k

u(p–)k+

u(p–)k+
...

upk–

upk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(p–)k+

v(p–)k+
...

vpk–

vpk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. ()
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For the upward elimination, P and Pp begin with the last row of Di in line  while Pi

( < i < p) begins with the penultimate row of Di in line . The upward elimination makes
the equations in all processes become

Pi (i = ):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 c

 c
. . .

...
 ck–

 ck

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u

u
...

uk–

uk

uk+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v

v
...

vk–

vk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

Pi ( < i < p):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(i–)k+ d(i–)k+ c(i–)k+

g(i–)k+  c(i–)k+
...

. . .
...

gik–  cik–

gik dik cik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(i–)k

u(i–)k+

u(i–)k+
...

uik–

uik

uik+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(i–)k+

v(i–)k+
...

vik–

vik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ()

Pi (i = p):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(p–)k+ 
g(p–)k+ 

...
. . .

g(p–)k– 
gpk 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(p–)k

u(p–)k+

u(p–)k+
...

upk–

upk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(p–)k+

v(p–)k+
...

vpk–

vpk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. ()

In the elimination, the tridiagonal matrix and the right-hand-side vector are processed
separately.

Line  means that Pi ( < i ≤ q) and Pi (q +  ≤ i < p), respectively, sends the first and
last equations to P and Pp. Those equations, the last one in P and the first one in Pp can
form the reduced system of equations as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 ck

gk+ dk+ ck+

gk dk ck
. . . . . . . . .

g(p–)k+ d(p–)k+ c(p–)k+

g(p–)k d(p–)k c(p–)k

g(p–)k+ 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uk

uk+

uk
...

u(p–)k+

u(p–)k

u(p–)k+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

vk

vk+

vk
...

v(p–)k+

v(p–)k

v(p–)k+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. ()
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Figure 1 Communication in the parallel implementation of
tridiagonal linear equations. The number of parallel processes is
four.

We can find the coefficient matrix in equation () is still a tridiagonal matrix. Line 
means the reduced system of equations is solved only with processes P and Pp. P and
Pp deal with the reduced system of equations using the functions in lines - as well. P

and Pp exchange the qkth and qk + th equations after elimination, and both can obtain
u(q+)k and u(q+)k+. In process P, u(i–)k+ and uik are acquired and sent to Pi ( < i ≤ q). In
process Pp, u(i–)k+ and uik are got and dispatched to Pi (q +  ≤ i < p). After Pi ( < i < p)
receives u(i–)k+ and uik from P or Pp, Ui can be solved using equation (). U and Up

can also be figured out by equation () and equation (), respectively.
For the parallel implementation of solving tridiagonal linear equations, there are to-

tally three communications shown in Figure . The first communication means that Pi

( < i < p) sends the first and last equations to P or Pp after the elimination. The second
communication indicates that P and Pp exchange the qkth and qk + th equations in order
to acquire u(q+)k and u(q+)k+ simultaneously in the solution of the reduced system. The
third communication is that Pi ( < i < p) receives u(i–)k+ and uik from P or Pp after the
reduced system is solved.

3.3 Implementation
The parallel algorithm for Caputo fractional reaction-diffusion equation with implicit
finite-difference method is proposed as shown in Algorithm . F(, ), U(, ), V (), A(, ) are
evenly distributed among all processes in order to void the load imbalance. Line  com-
putes F(, ), A(), r() and initializes U(, ), V (). Vector r() is stored in all processes and cal-
culated simultaneously. Lines - solve the tridiagonal linear equations AU = V for the
first time. The loop of line  represents iterations on time steps. Since there are depen-
dence between the solutions of adjacent time steps, the parallelization of the solution
could be carried out only on space steps. In each iteration on time steps, line  solves
V n =

∑n–
k= rn––kUk + bn–U + σFn in parallel, and mainly includes parallel constant-

vector multiplications and vector-vector additions. Lines - solve the tridiagonal linear
equations AUn = V n for the (n + )th time. As the tridiagonal matrix keeps constant in all
time iterations, the solution of lines - does not deal with the tridiagonal matrix and
only processes V n with transform_mid_v() and transform_edg_v(). Particularly, the coeffi-
cient matrix of the reduced system also does not vary with time iterations. The elimination
in line  simply involves the right-sided vector of the reduced system as well. Therefore,
the communications in lines - only transfer the right-hand side of the corresponding
equations rather than the entire ones.
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Algorithm : Parallel solution for Caputo fractional reaction-diffusion equation with
implicit finite-difference method

input : α, M, N , L, T , f (x, t)
 h ← L/M, τ ← T/N
 Initiate MPI and get p (MPI Processes Size), Pi (Current Process ID)
 for all MPI processes do
 Distribute task among MPI processes
 Declare local memory of F(, ), U(, ), V (), A(, ) in each process
 Compute F(), A(), r(), and initialize U(, ), V ()
 Record time T

 V () ← K ∗ F(:, )
// solve AU = V 

 if Pi ( < i < p) then
 elimit_down_mid_m(); elimit_up_mid_m(); transform_mid_v()

 else
 elimit_down_edg_m(); elimit_up_edg_m(); transform_edg_v()

 com_form(); solve_reduce(); com_retrieve()
 for n =  → N do
 V () ← K ∗ F(:, n)
 for j =  → n do
 V () ← V () + U(:, j – ) ∗ r(n – j)

// solve AUn = V n

 if Pi ( < i < p) then
 transform_mid_v()

 else
 transform_edg_v()

 com_form(); solve_reduce(); com_retrieve()

 Record time T

 Output T – T

Table 1 The specifications of the experiment’s platform

CPU 2 Intel Xeon E5-2670 CPUs, 8 cores/CPU, 2.6 GHz
Host OS Linux Red Hat 4.4.5-6
Compiler Version Intel v13.0.0
MPI Version Intel v4.0.3

4 Experimental results and discussion
The experiment platform is a service node containing two eight-core Intel Xeon E-
 CPUs with  GB of memory. All codes are compiled with Intel C compiler with
level-three optimization and run in double-precision floating-point. The specifications
are listed in Table .
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The following Caputo fractional reaction-diffusion equation [] is considered, shown
in equation ():

⎧
⎪⎨

⎪⎩

Dα
t u(x, t) + μu(x, t) = ∂u(x,t)

∂x + Kf (x, t),
u(x, ) = , x ∈ (, ),
u(, t) = u(, t) = ,

()

with μ = , K = , α = ., and

f (x, t) =


�(.)
x( – x)t. + x( – x)t + t. ()

The exact solution of equation () is

u(x, t) = x( – x)t. ()

4.1 Accuracy of parallel solution
For the example in equation (), the parallel solution compares well with the exact ana-
lytic solution to the fractional partial differential equation shown in Figure . �t and h are
.
 and .

 . The maximum absolute error is .× –. The difference between serial and
parallel solution is only . × –. When different �t and h are applied, the maximum
errors between the exact analytic solution and the parallel solution are shown in Table .
The maximum error gradually decreases with the increasing number of time and space
steps. Altogether, our proposed parallel solution and the exact analytic solution have no
noticeable artifacts.

4.2 Performance improvement
The performance comparison between serial solution (SS) and parallel solution (PS) is
shown in Table  when different M and N are applied. In PS,  processes run in parallel.
With M = N = , PS is a little slower than SS. When M and N are greater than or equal
to , PS is faster than SS. Compared with SS, the speedup of PS increases gradually with

Figure 2 Result comparison between exact
analytic solution with parallel solution at time
t = 1.0 and p = 16, M = N = 65.

Table 2 Result comparison between the exact analytic solution and the parallel solution at
time t = 1.0 and p = 8, where different M and N are applied

M = N 65 129 257 513 1,025 2,049

Max error 7.47E–04 3.07E–04 1.26E–04 5.12E–05 2.08E–05 8.47E–06
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Table 3 Performance comparison between serial solution (SS) and parallel solution (PS) when
different M and N are applied

M = N 65 129 257 513 1,025 2,049

Runtime (s) SS 5.20E–04 3.31E–03 1.22E–02 7.35E–02 4.93E–01 4.03E+00
PS 6.51E–04 1.42E–03 3.75E–03 1.15E–02 4.56E–02 2.77E–01

Speedup 0.80 2.34 3.26 6.37 10.80 14.55

In PS, the number of processes is set to 16.

Table 4 Performance of parallel solution with M = N = 2,049 when different numbers of
processes are applied

No. of processes 1 2 4 8 16

Runtime (s) 4.03E+00 1.81E+00 9.50E–01 5.29E–01 2.77E–01
Speedup 1.00 2.22 4.24 7.62 14.55

increasing M and N . When M and N increase to ,, the runtime of SS reaches .
seconds and that of PS is only . × – seconds. Therefore, the speedup between PS
and SS rises to ..

4.3 Scalability
With fixed M = N = ,, the performance comparison among the parallel solutions with
a different number of processes is shown in Table . When two parallel processes are used,
the speedup is .. When four processes run in parallel, the speedup reaches .. When
more than one process is adopted, the total communication cost will increase with the
number of parallel processes. However, the speedups in the two situations above outper-
form the corresponding perfect speedups. The main reason is that the solution of Caputo
fractional reaction-diffusion equation with implicit finite-difference method is memory-
intensive, and the decrease of memory overhead by the improvement of data locality is
more than the increase of communication cost in the parallelization of two or four pro-
cesses. When the number of processes grows to , the speedup is about . times and
the scaling efficiency reaches %. Altogether, our proposed parallel solution has good
scalability in performance.

5 Conclusions and future work
In this article, we propose a parallel algorithm for time fractional reaction-diffusion equa-
tion using the implicit finite-difference method. The algorithm includes a parallel solver
for linear tridiagonal equations and parallel vector arithmetic operations. The solver is
based on the divide-and-conquer principle and introduces a new tridiagonal reduced sys-
tem with an elimination method. The experimental results shows the proposed parallel
algorithm is valid and runs much more rapidly than the serial solution. The results also
demonstrate the algorithm exhibits good scalability in performance. In addition, the in-
troduced tridiagonal reduced system can be regarded as a general method for tridiagonal
systems and applied on more applications. In the future, we would like to accelerate the so-
lution of time fractional reaction-diffusion equation on heterogeneous architectures [].
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