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Abstract
We study the existence of three positive solutions to a type of three-point boundary
value problems for second-order impulsive and delay differential equations, and we
obtain the result that there exist at least three nonnegative symmetric positive
solutions by means of a generalization of the Leggett-Williams fixed point theorem.
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1 Introduction
Boundary value problems associated with second-order differential equations emerge in
a variety of areas of applied mathematics and physics. In recent years many authors have
paid attention to the research of boundary value problems for differential equations be-
cause of its potential applications. For example, the authors of [–] investigate the ex-
istence of nontrivial solution for the three-point boundary value problem, under certain
growth conditions on the nonlinearity f , and several sufficient conditions for the exis-
tence of nontrivial solution are obtained by using Leray-Schauder nonlinear alternative.
Reference [] discusses the solvability of a three-point nonlinear boundary value problem
for a second-order ordinary differential equation using the Leray-Schauder continuous
theorem. Reference [] studies the existence of three nonnegative solutions to a type of
three-point boundary value problem for second-order impulsive differential equations,
and one obtains the sufficient conditions for existence of three nonnegative solutions by
means of the Leggett-Williams fixed point theorem.

On the other side, there is much current attention focusing on questions of symmetric
positive solutions for second-order three-point boundary value problems.

In [, ], Avery imposed conditions on f to yield at least three symmetric positive so-
lutions applying the Leggett-Williams fixed point theorem. Avery [, ] was concerned
with

{
u′′(t) + f (u(t)) = , t ∈ (, ),
u() = , u′() = ,

()
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and
{

u′′(t) + f (u(t)) = , t ∈ (, ),
u() = u() = ,

()

applying the Leggett-Williams fixed point theorem.
Reference [] is concerned with the existence of positive solutions to a second-order

boundary value problem. By imposing growth conditions on f and using a generalization
of the Leggett-Williams fixed point theorem, one proved the existence of at least three
symmetric positive solutions.

Motivated by the work mentioned above, in this paper we consider the existence of at
least three positive solutions to the following boundary value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′(t) + f (u(t – τ )) = , t ∈ [a, b], t �= tk ,
�u′(tk) = Ik(u(tk)), k = , , . . . , m,
u(a) = μu(η), u′(b) = , μ ∈ (, ),η ∈ [a, a+b

 ],
u(t) = , a – τ ≤ t < a,

()

where a < t < t < · · · < tk < · · · < tm < b, Ik ∈ C[P × P, P], �(u(tk)) denotes the jump of u(t)
at tk , i.e.

�
(
u(tk)

)
= u

(
t+
k
)

– u
(
t–
k
)
, ()

where u(t+
k ) and u(t–

k ) represent the right-hand limit and left-hand limit of u(t) at t = tk ,
respectively. �u′(tk) has a similar meaning for u′(t).

Let I ′ = I \ {t, t, . . . , tk , . . . , tn}, denote PC[I, C(I)] = {u : u is a map from I into C(I)
such that it is continuous in I ′; u(t+

k ), u(t–
k ) exist, and u(t) is right continuous at t =

tk}. PC[I, C(I)] = {u ∈ PC[I, C(I)] : u′(t) is continuous in I ′, and u(t+
k ), u(t–

k ) exist for
k = , , . . . , m}, where f : R → [, +∞) is continuous. A solution u ∈ C()[a, b] of () is
both nonnegative and concave on [a, b]. We impose growth conditions on f to apply the
Leggett-Williams fixed point theorem in finding three positive solutions of ().

2 Preliminaries
In this section, we present some definitions and lemmas which are essential to prove fol-
lowing main results and we then state the generalization of the Leggett-Williams fixed
point theorem.

Definition  Let E be a real Banach space. A nonempty, closed, convex set P ⊂ E is a
cone if it satisfies the following two conditions:

(i) If x ∈P and λ ≥ , then λx ∈P .
(ii) If x ∈P and –x ∈P , then x = . Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y – x ∈P .

Definition  A map ϑ is said to be a nonnegative continuous concave functional on a
cone P in a real Banach space E if ϑ : P → [, +∞) is continuous, and

ϑ
(
tx + ( – t)y

) ≥ tϑ(x) + ( – t)ϑ(y),
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for all x, y ∈ P and  ≤ t ≤ . Similarly, we say the map π is a nonnegative continuous
convex functional on a cone P in a real Banach space E if π : P → [, +∞) is continuous,
and

π
(
tx + ( – t)y

) ≤ tπ (x) + ( – t)π (y),

for all x, y ∈P and  ≤ t ≤ .
Let ς , π , θ be nonnegative continuous convex functional on a cone P , and ϑ , ψ be non-

negative continuous concave functional on a cone P . Then for nonnegative real numbers
f , v, w, d, and c, we define the following convex sets:

K(ς , c) =
{

u ∈P : ς (u) < c
}

,

K(ς ,ϑ , v, c) =
{

u ∈P : v ≤ ϑ(u),ς (u) < c
}

,

L(ς ,π , d, c) =
{

u ∈P : π (u) ≤ d,ς (u) < c
}

,

K(ς , θ ,ϑ , v, w, c) =
{

u ∈P : v ≤ ϑ(u), θ (u) ≤ w,ς (u) < c
}

,

L(ς ,π ,ψ , h, d, c) =
{

u ∈P : h ≤ ψ(u),π (u) ≤ d,ς (u) < c
}

.

Lemma  Let f ∈ L[a, b], the three-point boundary value problem () has a unique solu-
tion

{
u(t) =

∫ b
a G(t, s)f (u(s – τ )) ds –

∑m
i= G(t, ti)Ii(u(ti)), a ≤ t ≤ b,

u(t) = , a – τ ≤ t < a,
()

where the Green’s function G(t, s) is

G(t, s) =


 – μ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s – a, a ≤ s < η ≤ b, a ≤ s < t ≤ b,
μs + ( – μ)t – a, a ≤ t ≤ s ≤ η ≤ b,
μη + ( – μ)s – a, a ≤ η ≤ s ≤ t ≤ b,
μη + ( – μ)t – a, a ≤ η ≤ s ≤ b, a ≤ t ≤ s ≤ b.

()

Proof Assume u(t) is a solution of the three-point boundary value problem (), then we
have

u′′(t) = –f
(
u(t – τ )

)
, ()

u′(t) = u′(a) –
∫ t

a
f
(
u(s – τ )

)
ds, ()

u(t) = u(a) + u′(a)(t – a) –
∫ t

a

∫ ξ

a
f
(
u(s – τ )

)
ds dξ , ()

we obtain

u(t) = u(a) + u′(a)(t – a) –
∫ t

a
(t – s)f

(
u(s – τ )

)
ds, ()

u(t) = u(t) + u′(t)(t – t) –
∫ t

t

(t – s)f
(
u(s – τ )

)
ds, ()
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since

u
(
t–

)

= u(a) + u′(a)(t – a) –
∫ t

a
(t – s)f

(
u(s – τ )

)
ds, ()

u′(t–

)

= u′(a) –
∫ t

a
f
(
u(s – τ )

)
ds, ()

we have

u(t) = u(a) + u′(a)(t – a) –
∫ t

a
(t – s)f

(
u(s – τ )

)
ds, ()

u′(t) = u′(a) –
∫ t

a
f
(
u(s – τ )

)
ds, ()

for ∀t ∈ (t, t], we obtain

u(t) = u(a) + u′(a)(t – a) + I
(
u(t)

)
(t – t) –

∫ t

a
(t – s)f

(
u(s – τ )

)
, ()

for ∀t ∈ (tk , tk+], we have

u(t) = u(a) + u′(a)(t – a) +
k∑

i=

(t – ti)Ii
(
u(ti)

)

–
∫ t

a
(t – s)f

(
u(s – τ )

)
ds, ()

with the three-point boundary value problem (), then we obtain

u′(a) =
∫ b

a
f
(
u(s – τ )

)
ds –

m∑
i=

Ii
(
u(ti)

)
,

u(a) =
μ

 – μ

[∫ b

a
f
(
u(s – τ )

)
ds –

m∑
i=

Ii
(
u(ti)

)
(η – a)

+
∑
ti<η

(η – ti)Ii
(
u(ti)

)
–

∫ η

a
(η – s)f

(
u(s – τ )

)
ds

]
, ()

this shows that
{

u(t) =
∫ b

a G(t, s)f (u(s – τ )) ds –
∑m

i= G(t, ti)Ii(u(ti)), a ≤ t ≤ b,
u(t) = , a – τ ≤ t < a,

()

where

G(t, s) =


 – μ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s – a, a ≤ s < η ≤ b, a ≤ s < t ≤ b,
μs + ( – μ)t – a, a ≤ t ≤ s ≤ η ≤ b,
μη + ( – μ)s – a, a ≤ η ≤ s ≤ t ≤ b,
μη + ( – μ)t – a, a ≤ η ≤ s ≤ b, a ≤ t ≤ s ≤ b.

()

This completes the proof. �
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Lemma  The function G satisfies

min{t – a, s – a,η – a}
 – μ

≤ G(t, s) ≤ s – a
 – μ

.

Proof According to the Green’s function G(t, s), we have:
when s ≤ η, s ≤ t,

s – a
 – μ

≤ G(t, s) =
s – a
 – μ

,

when t ≤ s ≤ η,

t – a
 – μ

≤ G(t, s) =
μs + ( – μ)t – a

 – μ
≤ s – a

 – μ
,

when η ≤ s ≤ t,

η – a
 – μ

≤ G(t, s) =
μη + ( – μ)s – a

 – μ
≤ s – a

 – μ
,

when η < s, t < s,

η – a
 – μ

≤ G(t, s) =
μη + ( – μ)s – a

 – μ
≤ s – a

 – μ
,

then we obtain

min{t – a, s – a,η – a}
 – μ

≤ G(t, s) ≤ s – a
 – μ

. �

Theorem  [] Let P be a cone in a real Banach space E . Assume that there exist pos-
itive numbers c and M, nonnegative continuous concave functionals ϑ and ψ on P , and
nonnegative continuous convex functionals ς , π , and θ on P with

ϑ(u) ≤ π (u), ‖u‖ ≤ Mς (u), ()

for all u ∈ P(ς , c). Suppose that F : P(ς , c) → P(ς , c) is a completely continuous operator
and that there exist nonnegative numbers f , d, v, w, with  < d < v such that

(B) u ∈ K(ς , θ ,ϑ , v, w, c) : ϑ(u) > v �= ∅ and ϑ(Fu) > v for u ∈K(ς , θ ,ϑ , v, w, c);
(B) u ∈ L(ς ,π ,ψ , f , d, c) : π (u) < d �= ∅ and π (Fu) < d for u ∈ L(ς ,π ,ψ , f , d, c);
(B) ϑ(Fu) > v for u ∈K(ς ,ϑ , v, c) with θ (Fu) > w;
(B) π (Fu) < d for u ∈ L(ς ,π , d, c) with ψ(Fu) < f .
Then F has at least three fixed points u, u, u ∈P(ς , c) such that

π (u) < d, v < ϑ(u) and d < π (u) with ϑ(u) < v.

3 Main results
In this section, we utilize the growth conditions on f in order to apply the generalization
of the Leggett-Williams fixed point theorem in a study of the existence of at least three
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symmetric positive solutions of (). Now we give some properties of the Green’s function
G(t, s) which include the following.

For any b ≥ t > η ≥ a, we have

∫ b

a
G(t, s) ds =


( – μ)

[
a – t – μη + μt + (μηb – μtb – ab + tb)

]
,

and we have

∫ 
r

a
G

(
a + b


, s

)
ds =


( – μ)

(
 + ar – ar

r

)
, r >


η

>


a + b
,

∫ b

a+b– 
r

G
(

a + b


, s
)

ds

=


( – μ)

[
( – ar)((μη – a) + ( – μ)(a + b))

r

]
, r >


η

>


a + b
,

∫ a+b



r

G
(

a + b


, s
)

ds =


( – μ)

[
ηr –  + ar + μη(a + b – η)r

r

+
( – μ)(a + b – η) – a(a + b)



]
, r >


η

>


a + b
,

∫ η


r

G
(

a + b


, s
)

ds =


( – μ)
ηr – aηr + ar – 

r , r >

η

>


a + b
,

∫ a+b


η

G
(

a + b


, s
)

ds

=


( – μ)

[
μη(a + b – η) + ( – μ)

a + b + ab – η


– a(a + b – η)

]
,

∫ a+b– 
r

a+b


G
(

a + b


, s
)

ds

=


( – μ)
( + ar + br)[( – μ)(a + b) – a + μη]

r
, r >


η

>


a + b
,

∫ ι

ι

G(t, s) ds +
∫ a+b–ι

a+b–ι

G(t, s) ds

=


( – μ)
[
ι
 – ι

 + (ι – ι)
(
( – μ)ι + μη – a

)]
, a < ι < ι < η <

a + b


,

min
r∈[a,b]

G(ι, r)
G(ι, r)

= , a < ι < ι < η <
a + b


,

max
r∈[a,b]

G( a+b
 , r)

G(t, r)
= , a < η < t ≤ a + b


.

Denote E = C[a, b] endowed with the maximum norm, ‖u‖ = maxt∈[a,b] |u(t)|. Then for
a < ι ≤ a+b

 , we define the cone P ⊂ E by

P =
{

u ∈ E : u is concave, symmetric, nonnegative valued, min
t∈[ι,a+b–ι]

u(t) ≥ ι‖u‖
}

.
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Define the nonnegative, continuous concave functionals ϑ , ψ and nonnegative, contin-
uous convex functionals π , θ , ς on the cone P by

ϑ(u) = min
t∈[ι,ι]∪[a+b–ι,a+b–ι]

u(t) = u(ι),

π (u) = max
t∈[ 

r ,a+b– 
r ]

u(t) = u
(

a + b


)
,

ς (u) = max
t∈[a,ι]∪[a+b–ι,b]

u(t) = u(ι),

θ (u) = max
t∈[ι,ι]∪[a+b–ι,a+b–ι]

u(t) = u(ι),

ψ(u) = min
t∈[ 

r ,a+b– 
r ]

u(t) = u
(


r

)
,

where ι, ι, and r are nonnegative numbers such that

a < ι < ι < η ≤ a + b


and

r

≤ ι.

We see that, for all u ∈P ,

ϑ(u) = u(ι) ≤ u
(

a + b


)
= π (u), ()

‖u‖ = u
(

a + b


)
≤ a + b

ι
u(ι) =

a + b
ι

ς (u), ()

and also that u ∈P is a solution of () if and only if

u(t) =
∫ b

a
G(t, s)f

(
u(s – τ )

)
ds –

m∑
i=

G(t, ti)Ii
(
u(ti)

)
, for t ∈ [a, b]. ()

We will show our main result of the paper.
In this paper, we assume that (A)-(A) hold:
(A) f : [a, b] × [, +∞] → [, +∞] is continuous;
(A) Ii : [, +∞] → R is continuous;
(A) there exist li, Li, such that li ≤ Ii(u(t)) ≤ Li for any t ∈ [a, b].
For convenience, let

 = a – ι
 – μη + μι

 + μηb – μbι – ab + bι,

� = ι
 – ι

 + (ι – ι)
(
( – μ)ι + μη – a

)
,

� = η –

r – a

(
η –


r

)
+ μη(a + b – η) + ( – μ)

[(
a + b



)

– η
]

– a(a + b – η),

� =


 – μ

[

r + a –

a
r

]
,

� = 

(
c –

mμmin{t – a, s – a,η – a}
 – μ

m∑
i=

li

)
( – μ).
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Theorem  Assume that there exist nonnegative numbers v, w, and c, such that  < v <
w ≤ cι

ι
, and suppose that f satisfies the following growth conditions:

(C) f (ω) ≤ 

(
v –

mμmin{t – a, s – a,η – a}
 – μ

m∑
i=

li –
�


�

)
( – μ)


�

,
v
r

< ω < v;

(C) f (ω) > 

(
ω +

mwbι

( – μ)ι

m∑
i=

Li

)
( – μ)


�

, w < ω <
wι

ι
;

(C) f (ω) ≤ 

(
c –

mμv
( – μ)r

m∑
i=

li

)
( – μ)




, a < ω <
c(a + b)

ι
.

Then the boundary value problem () has three symmetric positive solutions u, u, u sat-
isfying

max
t∈[a,ι]∪[a+b–ι,b]

ui(t) ≤ c, i = , , ,

min
t∈[ι,ι]∪[a+b–ι,a+b–ι]

ι(t) > w, max
t∈[ 

r ,a+b– 
r ]

ι(t) < v,

min
t∈[ι,ι]∪[a+b–ι,a+b–ι]

ι(t) < w, with max
t∈[ 

r ,a+b– 
r ]

ι(t) > v.

Proof Let us define the completely continuous operator F by

(Fu)(t) =

{∫ b
a G(t, s)f (u(s – τ )) ds –

∑m
i= G(t, ti)Ii(u(ti)), a ≤ t ≤ b,

, a – τ ≤ t < a.

We will seek fixed points of F in the cone. We note that, if u ∈P , and from some properties
of G(t, s), then Fu(t) ≥ , and (Fu)′′(t) = –f (u(s – τ )) ≤ , a < t < b, Fu(ι) ≥ a+b

 ιFu( a+b
 ),

and Fu(t) = Fu(b + a – t), a < t < a+b
 , and this implies that Fu ∈P , and so F : P →P .

Now, for all u ∈ P , from (), we get ϑ(u) ≤ π (u), and from (), we also get ‖u‖ ≤
a+b
ι

ς (u).
If, u ∈P(ς , c), then ‖u‖ ≤ a+b

ι
ς (u) < a+b

ι
c and from assumption (C), we get

ς (Fu) = max
t∈[a,ι]∪[a+b–ι,b]

[∫ b

a
G(t, s)f

(
u(s – τ )

)
ds –

m∑
i=

G(t, ti)Ii
(
u(ti)

)]

=
∫ b

a
G(ι, s)f

(
u(s – τ )

)
ds – min

m∑
i=

G(t, ti)Ii
(
u(ti)

)

≤ c.

Thus, F : P(ς , c) →P(ς , c), and it is immediate that

{
u ∈K

(
ς , θ ,ϑ , w,

wι

ι
, c

)
: ϑ > w

}
�= ∅ and

{
u ∈ L

(
ς ,π ,ψ ,

v
(a + b)c

, v, c
)

: π (u) < v
}

�= ∅.
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We will show the remaining conditions of Theorem .
() If u ∈ L(ς ,π , v, c) with ψ(Fu) < v

(a+b)c , then π (Fu) < v. We have

π (Fu) = max
t∈[ 

r ,a+b– 
r ]

[∫ b

a
G(t, s)f

(
u(s – τ )

)
ds –

m∑
i=

G(t, ti)Ii
(
u(ti)

)]

=
∫ b

a
G

(
a + b


, s

)
f
(
u(s – τ )

)
ds – min

m∑
i=

G(t, ti)Ii
(
u(ti)

)

=
∫ b

a

G( a+b
 , s)

G( 
r , s)

G
(


r

, s
)

f
(
u(s – τ )

)
ds – min

m∑
i=

G(t, ti)Ii
(
u(ti)

)

≤
∫ b

a
G

(

r

, s
)

f
(
u(s – τ )

)
ds – min

m∑
i=

G(t, ti)Ii
(
u(ti)

)
= ψ(Fu) < v.

() If u ∈ L(ϑ ,π ,ψ , v
c , v, c), then π (Fu) < v. We have

π (Fu) = max
t∈[ 

r ,a+b– 
r ]

[∫ b

a
G(t, s)f

(
u(s – τ )

)
ds –

m∑
i=

G(t, ti)Ii
(
u(ti)

)]

=
∫ b

a
G

(
a + b


, s

)
f
(
u(s – τ )

)
ds – min

m∑
i=

G(t, ti)Ii
(
u(ti)

)

= 
∫ 

r

a
G

(
a + b


, s

)
f
(
u(s – τ )

)
ds + 

∫ a+b



r

G
(

a + b


, s
)

f
(
u(s – τ )

)
ds

– min
m∑

i=

G(t, ti)Ii
(
u(ti)

) ≤ v.

() If u ∈ L(ς ,ϑ , w, c) with θ (Fu) > wι
ι

, then ϑ(Fu) > w. We have

ϑ(Fu) = min
t∈[ι,ι]∪[a+b–ι,a+b–ι]

[∫ b

a
G(t, s)f

(
u(s – τ )

)
ds –

m∑
i=

G(t, ti)Ii
(
u(ti)

)]

=
∫ b

a
G(ι, s)f

(
u(s – τ )

)
ds – max

m∑
i=

G(t, ti)Ii
(
u(ti)

)

=
∫ b

a

G(ι, s)
G(ι, s)

G(ι, s)f
(
u(s – τ )

)
ds – max

m∑
i=

G(t, ti)Ii
(
u(ti)

)

≥
∫ b

a
G(ι, s)f

(
u(s – τ )

)
ds – max

m∑
i=

G(t, ti)Ii
(
u(ti)

)
= θ (Fu) > w.

() If u ∈ L(ς , θ ,ϑ , w, wι
ι

, c), then ϑ(Fu) > w. We have

ϑ(Fu) = min
t∈[ι,ι]∪[a+b–ι,a+b–ι]

[∫ b

a
G(t, s)f

(
u(s – τ )

)
ds – max

m∑
i=

G(t, ti)Ii
(
u(ti)

)]

=
∫ b

a
G(ι, s)f

(
u(s – τ )

)
ds – max

m∑
i=

G(t, ti)Ii
(
u(ti)

)



Xu and Ding Advances in Difference Equations  (2016) 2016:239 Page 10 of 11

>
∫ ι

ι

G(ι, s)f
(
u(s – τ )

)
ds +

∫ a+b–ι

a+b–ι

G(ι, s)f
(
u(s – τ )

)
ds

– max
m∑

i=

G(t, ti)Ii
(
u(ti)

) ≥ w.

Since all the conditions of the generalized Leggett-Williams fixed point theorem are sat-
isfied, () has three positive solutions u, u, u ∈P(ς , c) such that

ϑ(u) > w, π (u) < v, ϑ(u) < w with π (u) > v.

This completes the proof. �

Remark  For the case t ≥ η, the method in Theorem  is similar, it is unnecessary to go
into details here.

Remark  For the case u(t) �= , a – τ ≤ t < a, it is clear to see, and it is unnecessary to go
into details here.

4 Example
In this section, we present a simple example to explain our results.

Example  Consider the following second-order impulsive differential equations with de-
lay and three-point boundary value problem,⎧⎪⎨

⎪⎩
u′′(t) + u(t – τ ) = , t ∈ [, ], t �= 

 ,
�u′( 

 ) = 
 u( 

 ),
u() = 

 u( 
 ), u′() = ,

()

where f (u(t – τ )) = u(t – τ ), [a, b] = [, ], tk = 
 , μ = 

 , η = 
 , then u(t), u(t – τ ) satisfy the

assumptions (C)-(C).
We choose v = 

 , w = 
 , c = , so we obtain

 = –



ι
 +



ι +




,

� = ι
 –



ι
 +



ιι +




(ι – ι),

� =



–

r ,

� =


r ,

� = .

Moreover,

(C) f (ω) ≤ 
(




–
�


�

)

�

,

r

< ω <



;

(C) f (ω) > 
(




+
ι

ι

)


�
,




< ω <
ι

ι
;

(C) f (ω) ≤ 


,  < ω <

ι

.
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Let ω = u(t), f = u(t), obviously, we can find




≤ 
(




–
�


�

)

�

;




> 
(




+
ι

ι

)


�
;


ι

≤ 


,  < ω <

ι

.

By Theorem , we know the BVP () has at least three symmetric positive solutions.
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