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Abstract

This paper deals with stochastic nonautonomous Gompertz model with Lévy jumps.
To begin with, the existence of a global positive solution and an explicit solution have
been derived. In addition, asymptotic moment properties are discussed. Besides,
sufficient conditions for extinction, persistence in mean, and weak persistence are
obtained. It is proved that the variability of Lévy jumps can affect the asymptotic
property of the system.
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1 Introduction

In mathematical ecology, the Gompertz model is one of the most important models, and
it is considered to be one of best fitted to describe growth of certain types of tumor. On the
other hand, the Gompertz model is another important type of mathematical models; for
example, the growth of the industrial production, the life cycle of a product, and popula-
tion growth over a certain period all comply with this model [1]. However, environmental
noise has very important effects on dynamics of populations in real world. For this reason,
in [2], the authors assumed that the growth deceleration factor b did not change while the
variability of environmental conditions induced fluctuations in the intrinsic growth rate a.
Then they proposed a stochastic Gompertz model of the form

dx(2) = x(2) (a —bln x(t)) dt + ox(¢) dB(¢),

where x(¢) is the number of cells or population size at time £, a represents the intrinsic
growth rate, and b is the growth deceleration factor. Due to the importance both in theory
and in applications, the stochastic Gompertz model perturbed by Brownian motion has
been studied extensively by many authors, and there is a great amount of literature on this
topic; see, for example, [1-6]. Jovanovic and Krstic [4] considered a stochastic Gompertz
model with time delay and gave sufficient conditions for the persistence in mean and ex-
tinction; Hu [1] discussed the asymptotic behaviors of a stochastic Gompertz model with
Markovian switching. Furthermore, from the viewpoint of biology, large and sudden en-
vironmental disturbance, such as earthquakes, tsunamis, hurricanes, floods, or droughts
may have important consequences on the system. These phenomena cannot be exactly
depicted by Brownian motion. To explain these phenomena, introducing a jump process
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into this system may be one of the most effective methods. There are a large number of
literature on this topic, for example, Bao et al. [7-13], Hou-Bao [14], Liu [15, 16], and the
references therein. As a result of the mentioned themes, this paper puts forward a stochas-
tic nonautonomous Gompertz model driven by Lévy jumps of the form

dx(t) = a(t)x(t) 1n(%) de + o (£)x(t) dB(¢) + _/Yx(t_)h(t, w)N (dt, du) (1.1)
with x(0) = xo > 0, where a(-) represents the intrinsic growth rate, b(-) is the plateau num-
ber of cells or population size, x(t ) is the left limit of x(¢), {B(¢), £ > 0} is a real-valued stan-
dard Brownian motion, and N is a Poisson counting measure with characteristic measure
2 on a measurable subset Y of [0, 00) with A(Y) < co and N(d¢, du) := N(dt, du) — A(dw) dt.
Throughout this paper, the process {B(t),t > 0} is defined on a complete probability space
(22, #,P) with a filtration {.%,},> satisfying the usual conditions (i.e., it is right continuous
and increasing, and .%; contains all P-null sets) and is independent of N. The parameters
a(-) and b(-) are positive functions on R, and the function /z: Y x (0, 00) — R is bounded
and continuous with respect to A and is B(Y) x .%;-measurable.

Although there have been many excellent works on the stochastic Gompertz model,
studies on a stochastic Gompertz model with jumps have not been done yet to the best of
our knowledge. Therefore, this study has some practical significance. First, we introduce
the following technique result from Bao et al. [9] for the jump-diffusion coefficient.

Assumption A.1 Forany ¢ >0, a(t) >0, b(t) >0, o(¢) > 0, and (¢, u) are bounded func-
tions, and &(t,u) > -1, u € Y.

Assumption A.2 There exist a constant C > 0 such that

sup|c(t)| <C,
20

where

2
c(t) :=a(t)Inb(t) - o’ (t) - / [h(t, u) — ln(l + h(t, u))]k(du).
2 Y

Assumption A.3 There exist a constant L > 0 such that, for any ¢ > 0,

/ (In(1 + h(t,1))) " A(dw) < L.
Y

For notational simplicity, we introduce the following symbols:

@ := inf @(¢), @ :=sup ¢(t).
£20 =0

2 Global positive solution
To get the conclusion about a global positive solution, we need the following useful lemma.

Lemma 2.1 Let Assumption A.1 hold. Then, for all initial values xo € R,,

P{x(t) >0 fort > O} =1 (2.1)
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Proof Denote t := inf{t > 0;x(t) < 0}. If (2.1) were false, there would exist some xy > 0
such that P{t < oo} > 0. So here is a pair of constants T > 0 and K > 0 sufficiently large for
P(A) > 0, where

A= {r <T,0<x(t)<KforalO<t< ‘C}.

Now, for any ¢ € (0, %), define the stopping time

T, = inf{t > 0;x(t) ¢ (e, K + 1)}.

Thenfor0<¢<T,0<x(¢) < K+1,byltd’s formula, for p > 0 such that —pa Inb+ p(1”2+1) 52+
Syl + h(u)) -1 + ph(u)]A(dx) > 0, we deduce

N7
xP(TAT,) = xap + /0 x7P(s) {pa(s)(lnx(s) —1In b(s)) + @az(s)
TATe
+ /Y[(l + h(s, u))_p -1+ phs, u)]k(du)} ds + /0 —pxP(s)o(s) dB(s)
TATe -
+ / x‘P(s)[(l + h(s, u))_p - l]N(ds, du)
0 Y
N7
§x5p+/ x_"(s){péln([(+l)—p&lnl;+@&2
0
TATe
+ /Y[(l + fz(u))_p -1 +piz(u)])»(du)} ds + /0 —pxP(s)o (s) dB(s)
TATe -
+ / x_”(s)[(l + h(s, u))_p - l]N(ds, du).
0 Y

Taking the expectation of both sides and applying Gronwall’s inequality yield that

plp+1) .,
o

Ex?(T At.) < x” exp{ |:pZtln(K +1) —p&lnl; + 5

+ / [@+h@w)™ -1+ pljz(u)])»(du)] T}.
Y
On the other hand, for any w € A, 7. < T and x(t.) = ¢. Then, for any ¢ € (0, %),

0<PA) < 8pE[x"p(T A re)IA] < SPIE[x"P(T A rs)]

pp+1) .,
o
2

< elxy’ exp{ [plz In(K +1) - palnb +

+ / [(1 + }Az(u))_p -1 +piz(u)]k(du)] T}.
Y

Letting ¢ |, 0 yields P(A) = 0. We get a contradiction. The proof is complete. O

Remark 2.1 Since x(¢) in (1.1) is the number of cells or population size at time ¢, we are
only interested in the positive solutions. Lemma 2.1 ensures this point from the angle of
theory, and it reveals that almost all sample paths of any solution starting from a positive
state will never be nonpositive.
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Theorem 2.1 Under Assumptions A.1 and A.2, for any initial value xy € R, there is a
unique global solution x(t) € R, on t > 0 almost surely. The unique positive solution can
be expressed as

1 = - ds )1 d ds
nx(t) exp( /Oa(s) s)[nxo+/0 exp(/o a(r) r)c(s)
+ /texp(/sa(r) dr>a(s) dB(s)
0 0
+ ftexp</sﬂ(’") dr) f ln(l + ks, u))j\?(ds, du)i| (2.2)
0 0 Y

Proof We divide the proof into two steps.
Step 1. We first claim that there exists a unique global solution x(¢) € R, by means of
the transform X (¢) = Inx(¢). By Lemma 2.1 this transform makes sense for all £ > 0 almost

everywhere. Then X(¢) satisfies the following equation:

dX(2) = [c(t) - a®)X(t)] dt + o () dB(2) + f In(1+A(z, u))Kl (d¢, du) (2.3)
Y

on t > 0 with initial value X(0) = Inxg, where c(¢) is introduced in Assumption A.2. It is
easy to find that if the coefficients of (2.3) satisfy the global Lipschitz condition and linear
growth condition, then for any initial value X(0) € R,, there is a unique global solution
X(t) on t > 0. Therefore, by Itd’s formula, x(£) = eX¥) is a unique positive global solution
of (1.1) with initial value xg € R,.

Step 2. We first investigate the explicit solution of Eq. (2.3), and by making the change
of variable, we will get that Eq. (1.1) has an explicit solution, which can be expressed as
Eq. (2.2). By the variation-of-constants formula ([9], Lemma 4.1) Eq. (2.3) has a unique
solution X(¢), ¢ > 0, which can be expressed as

X(t):exp(— /0 a(s)ds) [X(0)+ /0 exp< /0 a(r)dr)c(s)ds
. exp( | a(r)dr)G(S)dB(S)
R /0 exp( /0 u(r)dr) [Y 1n(1+h(s,u))ﬁ(ds,du)i|.
From this it follows immediately that, for any ¢ > 0,
lnx(t):exp(— /0 a(s)ds) |:lnx0+ /0 exp( /0 a(r)dr)c(s)ds
o exp( | a(r)dr)G(S)dB(S)
N fo exp( /O u(r)dr) fY 1n(1+h(s,u))ﬁ(ds,du)i|. 0

Next, we show that the positive solution satisfies the following result if the jump-
diffusion coefficient is controlled under a certain range.
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Theorem 2.2 Let Assumptions A.1 and A.2 hold, and assume further that e —1 < h(t, u) <
e —1 for any initial value xy € R, .Then the solution x(t) € R, to Eq. (1.1) satisfies

t -1 t
d>‘1(t)(i + / D7 (s)al(s) ds) <x(t) <WY(p) <x0 + / W (s)als)b(s) ds),
X0 0 0

where

o(t)

D(t) := exp{ft[—a(t)(l + lnb(t)) +
0
+ / (h(s, u) + ln(l - ln(l + ks, u))))k(du)] ds
Y

_ / o) dB(s) + f t f 1n(1-1n(1+h(s,u)))ﬁ(ds,du)}
0 0 Y

and

W(t) := exp{— fot[cz(t) +02(8) + /Y(h(s, u) — ln(l + ln(l + h(s, u))))k(du):| ds

+/0 a(s)dB(s)+/0 /Yln(l+1n(l+h(s,u)))N(ds,du)}.

Proof Using Itd’s formula, we have

Inx(¢) = Inxg + /Ot[a(s)ln % - 622(5) — /Y(h(s, ) —ln(l + h(s, u)))k(du)] ds

+/0 (r(s)dB(s)+/0 /Yln(1+h(s,u))N(ds,du)

t b 2
<Inxg +/0 [a(s)% —a(s) — crz(s)

- / (h(s, ) —In(1 + h(s, u)))k(du)] ds + /ta(s) dB(s)
Y

0
+f0 /Yln(1+h(s,u))N(ds,du).

Here we have used the inequality In(x + 1) < x, x > 0. Now consider the following auxiliary
process with jumps:

t b 2
Iny(£) = Iny(0) + fo [a(s))% —als) - ”2(3) _ fY (h(s, )

—1In(1 + A(s, u)))k(du)] ds + /t o (s)dB(s)
0 (2.4)

+ /O /Yln(l + h(s,u))N(ds, du),
Iny(0) = Inxy.

Then by comparison theorem [17], Inx(t) < Iny(¢) a.s. forall £ > 0. In what follows, we shall
get an explicit solution of Eq. (2.4). Making change of variable z(¢) = Iny(¢) and multiplying
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both sides by e*® yield that

o(t)

de®? = [a(t)b(t) — e (a(t) + + / (h(t, u) —In(1 + h(t, u))),\(du)>] de
Y

+ea()dB(t) + / et ln(l + h(t, u))ﬁ(dt, du).
Y

Using the same method to the above equation yields that

o(1)

dX(¢) = |:a(t)b(t) -X(@) (a(t) + + / (h(t, u) — ln(l + h(t, u)))k(du))] det
Y
+ X(t)o (t) dB(t) + / X(¢) ln(l + h(t, u))f\?(dt, du),
Y

which has a solution of the form

X(@) =w(r) (X(O) + /t U (s)als)b(s) ds),

0

where

W(t):= exp{— /ot[a(t) +o2@t) + /Y(h(s, u) —In(1+In(1 + A(s, u)))))\(du)i| ds

+/Ota(s)dB(s)+/(;tfyln(1+ln(1+h(s,u)))ﬁ(ds,du)}.

Consequently, from the above arguments we get x(¢) < y(¢) and y(¢) = X(¢), t > 0, a.s. On
the other hand,

o?(s)
2

Inx(¢) > Inxg + /t|:a(s)(ln b(s) + 1) —a(s)x(s) —
0
. / (h(s, ) — In(1+ K, u)))k(du)] ds + / (9 dB()
Y 0

t
+ / / In(1 + A(s, ) )N(ds, du).
o Jy
Using the same arguments as those used to obtain x(¢) < y(t), we have

t -1
x(t) > <I>_1(t)<i +/ &7 1(s)a(s) ds) ,
0

X0
where

o?(t)

O(t) := exp{/t[—a(t)(l + lnb(t)) +
0
+ / (h(s, 1) +In(1 - In(1 + ks, u)))))»(du)] ds
Y

_fta(s)dB(s)+/£f ln(l—ln(l+h(s,u)))f\7(ds,du)}. N
0 o Jy
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Remark 2.2 Theorem 2.2 shows that a Lévy noise can suppress a potential explosion, but
with weaker conditions imposed on the diffusion coefficient o (-). Under Assumption A.1,
when -1 < k(-) < 0, the disturbance denotes decreasing of the community, whereas when
h(-) > 0, it respects increasing.

3 Asymptotic moment properties

From the previous result we know that for any initial value, Eq. (1.1) has a unique solution,
which can be expressed as Eq. (2.2). In the following, by its explicit solution we first aim

to find the pth moment of the solution and discuss the long-term behavior.

Theorem 3.1 Let the conditions of Theorem 2.1 hold. Assume further that, for any p > 0,

t t
sup/ / [(1 + h(s, u))pexP(_fx an)dn _q
=0 Jo Jy

t
— pexp (—/ a(r) dr) In(1 + h(s, u)):|k(du) ds < 0o. (3.1)
S
Then there is a constant K (p) > 0 such that

limsup Ex?(t) < K(p) < 00.

t—>00

Proof Noting that Eq. (2.2) is an explicit solution to Eq. (1.1), we derive that

Ina?(£) :pexp<_/ota(s)ds> 1nx0+p/0texp(_/sta(r)dr>c(s)ds
+p [O texp(— / ) dr)o(s) dB(s)
+p /0 t /Y exp(— / ta(r) dr) In(1 + h(s, u) )N (ds, du)
Spexp<—/:a(s)ds> lnxo+p/0texp(—/sta(r)dr>c(s)ds

t
+p/ e“cD & dB(s)
0

+p /0 t /Y exp<- / ta(r) dr> In(1 + (s, u) )N (ds, du),
which means that
®(t) < exp{p exp(— /0 ta(s) ds> lnxo}exp{ /0 t petsis dB(s)}
x exp{p | p( [ o) dr) € ds}

X exp{p/otfyexp<—/ta(r) dr) ln(l + h(s, u))ﬁ(ds, du)}. (3.2)
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Let My (t) = fot pe?s95 dB(s). Then M, (¢) is a real-valued continuous martingale, and the

quadratic variation of M (¢) is

t
[M](2) = / p252e2“(5‘t) ds = po (1 _ e—2at).
0

Taking expectations on both sides of Eq. (3.2), we deduce

25_2

Ex’(t) < eXp{peXp(— /0 ta(s) ds) lnxo}exp{p P (1—e2?“)}

X exp{p/(;texp(—/ta(r) dr)c(s) ds}

X exP{/t/ |:(1 + ks, u))PﬁXp(_fStu(r)dr) B
0 JY
—pexp <_ /ta(r) dV> In(1 + hs, u))}k(du) ds}, .

Here we have used the fact that, by the Gardiner relation,
M; (£) 1 2 L[t 2v2 24(s—t)
E[e 1 ]:exp EE[Ml(t)] =exp 2 p e ds
0
2x2
po —2at
= — (1-
exp{ v (1-e) }

and that, by Theorem 2.3.7(1) in [18],

E[exp{p/ot/;exp<—/ta(r) dr) ln(l + h(s, u))ﬁ(ds, du)”

! 't
= exp{/ / |:(1 + ks, u))PeXp(—jS a(dr) 1
o Jy

-p exp(— /ta(r) dr) ln(l + h(s, u)):|k(du) ds}.

By Assumptions A.1 and A.2 and by (3.1) we can deduce that there exists a constant K(p) >
0 such that

limsup Ex?(t) < K(p) < oo. (3.4)

t—00
0

Remark 3.1 Under a suitable condition, we have shown that, for any p > 0, the pth mo-
ment of the solution x(£) to Eq. (1.1) is bounded. The conclusion reveals the important fact

that a Brownian motion noise and a Lévy noise can suppress a potential explosion.

Remark 3.2 If g, b, 0, h are time independent, then Eq. (1.1) reduces to

b ~ ~
dx(t) = ax(t) IH<M) dt + ox(t) dB(¢t) + /;{x(t )h(u)N(dt, du) (3.5)
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with initial value x > 0. It is obvious that the solution of Eq. (3.3) is a time-homogeneous
Ito diffusion process. In view of the proof of Theorem 3.1, we can get the population mean.
Making use of the expression of the solution of Eq. (1.1) in Theorem 2.1, we show that the

solution of Eq. (3.5) can be explicitly expressed by

t
)= exp{eut Ingo + (1-e™)+ f e““5 dB(s)
a 0

! a(s—t) N
+/0 /Ye 1n(1+h(u))N(dt,du)},

where c:=alnb - "2—2 = Jy[h(w) = In(1 + h(w))]2(du).

By the same argument as in Theorem 3.1 we have

alnb-0.502 - [, [h(u) - In(1 + h(u))] 1 (dw)
a

Ex(t)=x§ " exp{ (1= )
2

‘ 69 a(s—t
+Z—a(l—e‘2‘”)+/0 /Y[(Hh(u)) —1-e% )ln(1+h(u))]k(du)ds}.

Therefore, we can control the mean value of the population in view of the representation
of the above equality, for example, we can increase the number b to increase the mean

value of the population under fixed Brownian motion noise and Lévy noise.

Another important property of the solution is that it is pth moment exponentially stable.
To be precise, let us give the definition.

Definition 3.1 The solution of (1.1) is said to be pth moment exponentially stable if
. 1 »
limsup - In(E|x(t)|") < 0
tsoo L
forall xy € R,.

Theorem 3.2 Let the conditions of Theorem 3.1 hold. The pth moment of the solution x(t)
has the property

—>00 t—00

1 t t
lim sup - 1n(E|x(t) |p) <lim suplg / exp (— / a(r) dr) c(s)ds.
0 s

Therefore, the solution of (1.1) is pth moment exponentially stable if and only if

1 t t
lim sup - / exp (—/ a(r) dr) c(s)ds <0,
tsoo Lt Jo s

where, for any t > 0,

2
o(0) = a(®) b - 2 _ / [A(t, 1) - In(1 + h(t, w)) |2(du).
2 Y
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Proof Observe that (3.3) can be rewritten in the form

t ; ;
In Ex?(t) SPexp(—/ a(s) ds) Inxg +p/ exp(—/ a(r) dr)c(s) ds
0 o :
2x2 ¢ ,
PO (1-e?) 4 / / [(1+h(s,u))mp<La(mm_l
4a o Jy

— pexp (— /t a(r) dr) ln(l + ks, u))])»(du) ds

and further that

%lnEx"(t) < éexp —/Ota(s) ds) Inxg + ‘? /Otexp<— /Sta(r) dr)c(s) ds

I;P ’ (1 efzin)

44
+—/ /[ (1+ h(s, )PP 40D g
—pexp( / (r)dr) ln(1+h(s,u)):|)»(du)ds.

Combining this with Assumption A.1 and (3.1), we then get

1 L L
limsup - In Ex?(£) < lim suplg / exp <— / a(r) dr> c(s)ds.
0 s

t—00 t—00

The desired result then follows.

Page 10 of 21

O

Theorem 3.3 Let the conditions of Theorem 2.1 hold. Then, for any initial value x1,x, € R,

and compact subset K of R, the solution x(t) of Eq. (1.1) has the property
tlim E‘x(t,xl) —x(t,xg)’ =0 wuniformly in (x1,x;) € K x K.
—00

Proof By (2.2) we derive that

t
[Inx(t, %)) — Inx(t,x0)| = exp(—f a(s) ds) [Inx; — Inw,|.
0

Since a(-) is bounded, we get

e | 1Inx; — Inx,y| < llnx(t,xl) - lnx(t,x2)| <e ™|Inx; —Inuxy|.
This implies that

lim |lnx(t,x1) - lnx(t,x2)| =0

t—00
Therefore, for any compact subset K of R,

tlim E|x(t,x1) —x(t,x2)| =0 uniformly in (x1,%;) € K x K.



Zhu et al. Advances in Difference Equations (2016) 2016:210 Page 11 of 21

Remark 3.3 Theorem 3.3 indicates that any two solutions with different initial values
attract each other in the sense of mean.

4 Extinction and persistence

Extinction and persistence are important properties in population dynamics, which mean
that every species will survive or not. In what follows, we will discuss the extinction and
persistence of system (1.1).

Theorem 4.1 Let the conditions of Theorem 2.1 hold. Assume further that, for any t > 0,

sup/0 Aexp{—/s‘ d(r)dr}[h(s,u)—1n(1+h(s,u))]k(du)ds<oo. (4.1)

t>0

Then, for any initial value xy € R, the solution x(t) of (1.1) has the property

Inx(t
lim sup nx(t) <1 as.
t—00 n
and therefore
Inx(¢
lim sup HL() <0 a.s.
t—00 t

Proof From the explicit solution (2.2) of Eq. (1.1) we get that

exp(/ota(s) ds) Inx(t)
=1Inxg + Atexp(/osa(r)dr)c(s) ds + /Otexp(/osa(r) dr)a(s) dB(s)
+ /:exp (/OS a(r) dr) /;{ln(l + h(s, u))K[(ds, du)
t s 02(5)
<Inxg +/0 exp(/o a(r) dr) <a(s)b(s) -1- 5 )ds
d dB
+/0 exp(/o a(r) r)a(s) (s)

+ /0 texp( /0 Sa(r)dr) L In(1 + h(s, u))N(ds, du). (4.2)

Here, in the last step, we have utilized the inequality Inx < x — 1 (x > 0). Using the ex-

ponential martingale inequality with jumps (i.e., Lemma 4.3 in [9]), we get that, for any
positive numbers o, 8, T,

o [ [/ wo( [ arar)oto a9
Lot s ,
2fo exp(/o Za(r)dr>a (s)ds
+/Ot/Yexp</osg(r)dr> In(1 + h(s, u))N (ds, du)
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1 [t s
_ E/o A[exp{a exp</0 a(r) dr) In(1 + h(s, u))}

—-1-aexp (/Sa(r) dr) ln(l + h(s, u)):|)\(du) dsi| > ,3} <e P,
0

ny
Choose T = ny, a = eexp(— fO"V a(s)ds), and B = fexply” als)dg)inn

y >0, and 6 > 1. An application of the Borel-Cantelli lemma then yields that there exists

- ,whereneN,0<e <1,

Q; € Q with P(€2;) =1 such that for any w € €, there is an integer ny = ng(w) such that

[)%xp(/(ja(r) dr)o(s) dB(s) + fot /Yexp (fos a(r) dr) ln(l + h(s, u))]\?(ds, du)

€exp(— O"V a(s)ds) [! s ) 1
=< 9 /o exp </(‘) 2a(r) dr)a (s)ds + J—g f()ny D)

t ny s ny
" / / [(1 + h(s,u)) PG AR a1 _1_€exp<_ / a(s) ds)
0 Y 0
S

ny
x exp(f a(r) dr) In(1 + hs, M))i|)»(du) ds + G exp(f,” al(s)ds) lnn,
0

€

where n > ny, 0 <t < ny. Furthermore, by the Young inequality we get

1
eexp(— [y a(s)ds) exp(fot a(s) ds)

¢ y )
X / / [(1 + h(s, u))eexp(—fo als)ds)exp(fg alr) dr) )
0 JY

ny s
—eexp (—/ a(s) ds) exp (/ a(r) dr) In(1 + As, u))]k(du) ds
0 0
1 ¢ ny
< eexp(- fonV a(s)ds) exp(fota(s) ds)/o /Y|:€ exp(_/o als) ds)

X exp(/s a(r) dr> [h(s, u) — ln(l + ks, u))]])\(du) ds
0

= ft/ exp(— /ta(r) dr) [h(s, u) —ln(l + h(s, u))]k(du) ds.
0 JY s

Substituting this inequality into (4.2) yields

Inx(t) < exp(—/ta(s) ds) Inxg
0

+ /Otexp<— /Sta(r) dr) (a(s)b(s) -1- %02(5)) ds

L ads) s
+EeXP( f;ya(s) S)/O exp(/o Za(r)d’")az(s)ds

+/0 /Yexp<—/; a(r)dr)[h(s,u)—1n(1+h(s,u))])»(du)ds

0 exp(- fnty a(s)ds)Inn
+ .

€
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Then, for any w € Q; and (n — 1)y <t <ny with n > ny +1, we get

Inx(¢ ¢ 1 1 [t t
na(t) < exp —/ a(s)ds % +— | exp —/ a(r)dr
Int 0 Int Int J s

eexp(— fnty a(s) ds)
2Int

t ' gexp(- [ a(s)ds)
[ s [ ) L2 e
0

e€lnt

X (a(s)b(s) -1- %az(s)) ds +

0
1 t t
+ E/o /Yexp(—/s a(r) dr) [h(s,u)—ln(l+h(s,u))]k(du)ds
< exp(—/ota(s) ds)llnn—xt0 + ﬁ Otexp(—/ta(r) dr)
X ol(s)b(s)—l 1-cex fs a(r)dr) )o?(s) ) ds
2 P,

2 exp(j;’:,):l)y a(s)ds)lnn 1
+ _
eln(n-1)y Int

X/Ot/YGXp(—/Stﬂ(’")d’)[h(S’u)—ln(l+h(5»u))])»(du)ds.

Taking n 1 oo, together with (4.1), leads to

Inx(t) _ 0e™
lim sup n () <

t—00 nt = €

Setting y | 0,€ 1 1,and 6 1 1 leads to

Inx(t
lim sup nxi) <l1.

t—00 n

Using the limit lim;_, o, I“Tt =0, we obtain that limsup,_, lnf(t) <0. O

Theorem 4.2 Let the conditions of Theorem 2.1 and Assumption A.3 hold. Assume further
that

a*(s)

2

f (h(s, u) — ln(l + h(s, u))))»(du) ds>0.
Y

t—>oo

1 t
liminf - f u(s)(l +1In b(s)) -
0
Then the population (x(t)) is persistent in mean, that is,
1 t
liminf—/ x(s)ds>0 as.
t—>oo 0
Proof Applying It6’s formula, we obtain

Inx(¢) + /ota(s)lnx(s) ds = Inxg + /Otc(s)ds + /:o(s) dB(s)

+/0 /Yln(1+h(s,u))N(ds,du). (4.3)
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Using the inequality Inx < x — 1 for x > 0 yields that

Inx(¢) +/ta(s) Inx(s)ds §x(t)—1+/ta(s)(x(s)—1)ds
0 0
At det t ds - t ds—1.
<e e /Ox(s) /Oa(s) s

Combining (4.3) and (4.4) leads to

e_‘v’tde‘vlt/O x(s)ds > Inxg +/0 c(s) ds+/0 o (s)dB(s)

+‘/o /Yln(1+h(s,u))N(ds,du)+/(; a(s)ds + 1.

Multiplying both sides of the last inequality by e? yields that

t t t
de‘v”/‘ x(s)ds > e Inxg + e‘v’t/ c(s)ds + e‘v‘t/‘ o (s) dB(s)
0 0 0
v t ~ v t v
+e / f In(1 + h(s, u))N(ds, du) + e“t/ a(s)ds + e,
o Jy 0

Integrating both sides of the inequality from 0 to ¢, we deduce

t t t s t
eét/ x(s) dszlnxof e ds+/ e ds/ c(r) dr+/ e ds
0 0 0 0 0
s t s
x / o (r) dB(r) + / e® ds / f In(1 + h(r,u))N(dr, du)
0 0 0o Jy
t . s t .
+f e“sds/ a(r)dr+/ e™ ds.
0 0 0
This further gives that
¢ 1+1 y 1 [t 1 [t
/ x(s)ds > M(l—e_‘”) + 7/ c(s)ds — 7/ e“=0¢(s) ds
0 a aJo aJo
1 [t 11t
+ < / o (s)dB(s) — < / g (s) dB(s)
a Jo a Jo
1t ~
+ 7/ /ln(l+h(s, u))N(ds, du)
alJo Jy

1 [t . ~
- / / e 1n(1 + h(s, u))N(ds, du)
aJjo Jy

1 [t 1 [t .
+ 7/ a(s)ds — 7/ e q(s) ds.
0 aJo

a

On the other hand, let

M (t) = /Oto(s) dB(s), M;3(t) = /(;t‘/Yln(l + h(s, u))ﬁ(ds, du),

Page 14 of 21

(4.4)

(4.5)
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Ma(t) = / t /Y e““No(s)dBs),  Ms(t) = f t fY e D n(1 + h(s, u))N(ds, du).
0 0

Compute by the boundedness of o that
t
(6= 0 - [ o*6)ds =%
0
t v
(Ma)(2) = [Ma](2) = / e Vo%(s)ds < 571,
o Jy

where (M)(t) := (M, M)(t) is Meyer’s angle bracket process.
Moreover, by Assumption A.3 we have

(M3)(t) = /0 t /Y (In(1 + ks, u)))*A(du) ds < Lt

and
(M5)(t) = /t/ g2l (In(1 + A(s, u)))z)»(du) ds < Lt.
o Jy

Using a strong law of large numbers for local martingales (see [19]), we get

M;(t
lim ;( ) =0 as,i=2,3,4,5. (4.6)
— 00
From this we see that
t
x(s)ds 1+1 . 1 [t
liming 20O 4 > liminfw(l—e’“‘) + liminf < / c(s)ds
t—00 t t—00 ta t=oo gt Jo
1 [t My (¢t
—liminf — f e““=9¢(s)ds + liminf lv( )
t—>o0o at 0 t— 00 at
M;(t M (¢t My (¢t
timinf 229 4 imint 29 i ing j*( )
t—00 at t—00 at t—00 at
1 [t 1 [t
+liminf — | a(s)ds—liminf— | e a(s)ds
t—oo gt 0 t—o00 gt 0
1 t 1 t .
= liminf — | c(s)ds—liminf— [ e®¢(s)ds
—oo at J, t—oo at J,
1 t 1 t .
+liminf — | a(s)ds—liminf— [ e**Pa(s)ds. (4.7)
=00 at Jg t—oo at J,

Moreover, by Assumption A.2 we have

1 .
lim = <lim —C(l-e*)=0
t—oo f t—oo gt

1| rt .
/ e“De(s)ds
0

and, together with

t—>o00

1 [t 1 .
liminf — / e g(s)ds < lim - (1-e™) =0,
t o t—oo t
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we then obtain that

t
d 1 t 2
timinf 270 S i e / a()(1+ Inb(s)) - 2
t—>00 t t—00 0 2
- / (h(s, u) — ln(l + h(s, u)))k(du) ds>0 as. O
¢
Theorem 4.3 Let the conditions of Theorem 2.1 and Assumption A.3 hold. Assume further
that
1 t
lim sup - / c(s)ds < 0. (4.8)
t—00 t 0

Then the population (x(t)) goes to extinction, that is,

lim x() =0 a.s.
t—00

Proof According to (3.2) in the proof of Theorem 3.1, we have

x(t) = exp{exp(— /Ota(s) ds) lnxo} exp{t{%/otexp(—/ta(r) dr)c(s) ds
+ %/:exp(—/;a(r) dr)a(s) dB(s)
+ %/Ot'/yexp<—/sta(r) dr) ln(l + h(s, u))]\?(ds, du)} }

Let

My(2) = /Otfyexp(—/sta(r)dr)o(s) dB(s)

and

Ms(t) = /0 t /Y exp(— / ta(r) dr) In(1 + h(s, u))N(ds, du).

Using the same arguments as for (4.6), it is easy to see that we now have the following

result:
M;(t
lim ‘()=o a.s.,i=4,5.
t—00 t

Furthermore, in view of condition (4.8), we conclude that lim;_, », x(¢) = 0 a.s. The proof

is complete. O

Remark 4.1 Theorems 4.2 and 4.3 show that the extinction and persistence of this model
both depend on the values of lim,_, % fot ¢(s)ds and lim;_, o, % fot a(s)ds. If liminf;_, o, % X
fot (a(s) + c(s))ds > 0, then the population (x(¢)) is persistent in mean; If limsup,_, ., % X
fot c(s)ds < 0, then the population (x(t)) goes to extinction. Therefore, lim;_, » % fot c(s)ds
is the threshold between the extinction and persistence in mean.
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Remark 4.2 For c(t) = a(t) Inb(¢) — 10(t) — [, [h(t, u) = In(1 + h(t, w))A(dw), if [y, [h(t, u) -
In(1 + A(¢, 1)) (du) > a(t) In b(¢), then (4.8) holds. By Theorem 4.3 we can find that a Lévy
noise can suppress a potential explosion and make the population extinct. This is reason-
able since, as large and sudden environmental disturbance happens, the population has

little time to adapt to the sudden changes, which leads to an increase in mortality.

Remark 4.3 There are many papers on the persistence in mean and extinction for
stochastic models, and a common means to do this is by using the stochastic compari-
son theorem and the sample Lyapunov exponent; see [7, 20]. In this paper, we use a new
method to study the persistence in mean without using stochastic comparison theorem

and Lyapunov exponent.

Remark 4.4 Assumption A.3 imposed on the jump-diffusion coefficient plays a vital role

in the process of proof, but it is not unique. Here, we provide another assumption.
Assumption A.4 There are constants § > —1 and C; > 0 such that, for any ¢ > 0,
h(t,u)>68, wuey,
and
/ (h(t, w))*1(dw) < C;.
Y
This assumption and the fact Inx <x -1 (x > 0) give, for -1 <5 <0 and any ¢ > 0,

’1n(1 + h(t, u))| < |ln(1 + h(t, M))Isfh(t,u)fo‘ + ‘ln(l +h(t, M))Ih(t,u)zo|

<-In(1+8) + |t u)|.
It now follows that

/ (In(1+ h(t, w)))*A(dw) < 2(=1In(1 + 8))*A(Y) + 2 / K2 (¢, 1)(du)
Y

Y

< 2(=In(1+8))*A(Y) +2C; =: C.

Consequently, using Assumption A.4 in lieu of Assumption A.3 yields that the results of
Theorem 4.2 and 4.3 are still tenable.

Theorem 4.4 Under the conditions of Theorem 4.1, assume further that

t—>00

R Y o>(s)

lim sup P a(s)(l +1In b(s)) - (h(s, u) — ln(l + h(s, u)))k(du) ds > 0.
0 ¢

Then the population (x(t)) is weakly persistent, that is,

limsupx(¢) >0 a.s.

t—00
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Proof If P(lim;_, » x(¢) = 0) > 0, there exists a measurable subset Q' of € such that P(2') >
0 and lim;_, o, %(¢, w) = 0 for any w € '. Then by Itd’s formula,

Inx(¢) = Inxg + /t[c(s) —a(s)lnx(s)] ds + /tcr(s) dB(s)
0 0
In(1 + h(s, u))N(ds,d
+/0/§{n(+(su))(s 1)
> Inxg + /t[c(s) + af(s) —a(s)x(s)] ds + /ta(s) dB(s)
0 0

. fo /Y In(1 + h(s, 1)) N (ds, dus).

Combining this with (4.6), for all ® € ', we then obtain

o(s)

Inx(t 1 [t
lim sup na(?) :limsupzf |:a(s)(1+lnb(s))—
0

- / [h(s, u) — ln(l + h(s, u))]k(du)] ds > 0.
Y

Inx(¢)
t

persistent. g

This contradicts with the fact that limsup,_, ., < 0in Theorem 4.1. So (x(£)) is weakly

5 Numerical simulations
In this section, in order to testify the validity of the main results, we introduce the following
examples and simulations.

Example 5.1 Let xq = 2.0, a(t) = 0.2, b(t) = e, o(t) = 0.03, A(Y) = 1, and the step size
At = 0.01. The only difference between of Figure 1 and Figure 2 is that the value of jump-
diffusion 4 are different. In Figure 1, we choose /(¢, u) = 0.2406. Then by a simple calcu-
lation we have

f [711(u, ) = In(1 + 1y (, £)) | 2(dee) = 0.025
Y

and

(8

a(t)(l +1In b(t)) -

- / [711(u, ) = In(1 + 1y (u, £)) | A(de) = 0.3732 > 0.
Y

Figure 1 Solutions of system (1.1) for xo = 2.0,
a(t)=0.2, b(t) = e, o (t) =0.03, h(t, u) = 0.2406,
A(Y) =1, and the step size At =0.01.
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Figure 2 Solutions of system (1.1) for xo = 2.0, 25
a(t)=0.2, b(t) =e, o (t) =0.03, A(Y) =1, and the

step size At=0.01, h(t,u) =1.1935. sl

Figure 3 Solutions of system (1.1) for xo = 2.0,
a(t)=0.3, b(t) = e, o (t) = 0.04, A(Y) = 1, and the
step size At =0.01, h(t,u) = 0.4863.

Then by Theorem 4.2, (x(¢)) is persistent in mean, and Figure 1 confirms this. In Figure 2,

we choose /(¢, u) = 1.1935, and then by a simple calculation we have

/ [A(u, ) = In(1 + h(u, £)) |1 (dx) = 0.408
Y
and

c(t) =a(t)Inb(t) -

2
o () _ / [A(u, ) = In(1 + h(u, £)) | A(dx) = —0.2098 < 0.
2 Y

In view of Theorem 4.3, we see that (x(¢)) goes to extinction, and Figure 2 confirms this.

Example 5.2 Letxg = 2.0, a(t) = 0.3, b(t) = e, o (t) = 0.04, A(Y) = 1, and the step size Af =
0.01. In Figure 3, we choose k(¢, u) = 0.4863, and then by a simple calculation we have

/ [hl(u, t)— ln(l + I (u, t))]k(du) =0.09
Y

and

2
a(®)(1+ nb(e) - 2

- / [711(u, ) = In(1 + 1y (u, £)) | A(de) = 0.8092 > 0.
Y
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Figure 4 Solutions of system (1.1) for xo = 2.0, 14 i i i i
a(t)=0.3, b(t) =e, o (t) =0.04, A(Y) =1, and the
step size At=0.01, h(t,u)=e-1.

Then, by Theorem 4.2, (x(2)) is persistent in mean, and Figure 3 confirms this. In Figure 4,

we choose /(t,u) = e — 1, and then by a simple calculation we have

/ [, ) = In(1 + h(u, ) ]A(due) = € — 2
Y

and

o?(t)
2

c(t) = a(t) Inb(t) - - / [A(u, ) = In(1 + h(u, £)) |A(due) = —0.1191 < 0.
Y

According to Theorem 4.3, we obtain that (x(¢)) goes to extinction.

The only difference between conditions of Figure 1 and Figure 2 (or Figure 3 and Fig-
ure 4) in these examples is that the values of jump-diffusion are different. This confirms

that a Lévy noise plays an important role in population dynamics.

6 Conclusion

In this work, we propose a stochastic nonautonomous Gompertz model driven by Lévy
jumps. We show that the model admits a unique global positive solution and study asymp-
totic moment properties of solutions. Moreover, we provide sufficient conditions for the
extinction, persistence in the mean, and weak persistence of this model. The results con-
firm that the intensity of jump noise has a grave impact on the properties of this model.
In the future, we will study some more practical and complex models such as the hybrid
system driven by continuous-time Markov chains.
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