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Abstract
In this manuscript we propose the discrete versions for the recently introduced
fractional derivatives with nonsingular Mittag-Leffler function. The properties of such
fractional differences are studied and the discrete integration by parts formulas are
proved. Then a discrete variational problem is considered with an illustrative example.
Finally, some more tools for these derivatives and their discrete versions have been
obtained.
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1 Introduction and preliminaries
Fractional calculus has become an important mathematical tool used in several branches
of science and engineering in order to describe better the properties of non-local com-
plex systems [–]. Recently some authors have introduced new non-local derivatives with
nonsingular kernels and they applied them successfully to some real world problems [–
]. However, several areas where the fractional calculus can be applied successfully re-
main still not deeply investigated, e.g. the thermoelasticity of bodies with microstructure
(see [–] for example and the references therein). Finding the discrete counterparts of
these new fractional operators is an important step to apply them to model the dynamics
of complex systems.

In the following we recall and prove some results in discrete fractional calculus that will
be necessary in proceeding to obtain our discrete results (see [–]).

Definition  []
(i) Let m be a natural number, then the m rising factorial of t is written as

tm =
m–∏

k=

(t + k), t = . ()

(ii) For any real number the α rising function becomes

tα =
�(t + α)

�(t)
, such that t ∈R \ {. . . , –, –, }, α = . ()
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In addition, we have

∇(
tα

)
= αtα–, ()

hence tα is increasing on N, where ρ(t) = t – .

Definition  (See [, ]) Let ρ(t) = t –  be the backward jump operator. Thus, for a
function f : Na = {a, a + , a + , . . .} → R, the nabla left fractional sum of order α >  be-
comes

∇–α
a f (t) =


�(α)

t∑

s=a+

(
t – ρ(s)

)α–f (s), t ∈Na+.

The nabla right fractional sum of order α >  for f : bN = {b, b – , b – , . . .} →R is written
as

b∇–αf (t) =


�(α)

b–∑

s=t

(
s – ρ(t)

)α–f (s) =


�(α)

b–∑

s=t

(
σ (s) – t

)α–f (s), t ∈ b–N.

The nabla left fractional difference of order α >  has the form

∇α
a f (t) = ∇n∇–(n–α)

a f (t) =
∇n

�(n – α)

t∑

s=a+

(
t – ρ(s)

)n–α–f (s), t ∈Na+,

and the nabla right fractional difference of order α >  is defined as

b∇αf (t) = ��n
b∇–(n–α)f (t) =

(–)n�n

�(n – α)

b–∑

s=t

(
s – ρ(t)

)n–α–f (s), t ∈ b–N.

The left Caputo fractional difference of order α >  started by a(α) = a + n – , n = [α] + 
is written as

(C∇α
a(α)f

)
(t) = ∇n–α

a(α)∇nf (t), t ∈ Na+n,

and the right Caputo fractional difference of order α >  ending at b(α) = b – n +  has the
following form:

(C
b(α)∇αf

)
(t) = b(α)∇n–α

� �nf (t), t ∈ b–nN.

The Q-operator action, (Qf )(t) = f (a + b – t), was used in [, ] to connect left and
right fractional sums and differences. We recall the following results:

• (∇–α
a Qf )(t) = Qb∇–αf (t).

• (∇α
a Qf )(t) = Qb∇αf (t).

• (C∇α
a Qf )(t) = QC

b ∇αf (t).
The mixing of nabla and delta operators in defining right fractional differences plays a
crucial role in obtaining the above dual identities.
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In our manuscript, we use the properties of the discrete version of Q-operator to define
and confirm our definitions of fractional differences with discrete Mittag-Leffler function
kernels.

Definition  [] Let a function f be defined on N. Then the nabla discrete Laplace
transform has the form

N f (z) =
∞∑

t=

( – z)t–f (t). ()

More generally for a function f it is defined on Na by

Naf (z) =
∞∑

t=a+

( – z)t–f (t). ()

If f (t, s) denotes a function of two variables, we have explicitly to show to which param-
eter we use the transform.

Lemma  [] For any α ∈R \ {. . . , –, –, },
(i) N (tα–)(z) = �(α)

zα , | – z| < ,
(ii) N (tα–b–t)(z) = bα–�(α)

(z+b–)α , | – z| < b.

Remark  We can generalize (i) of Lemma  to (Na(t – a)α–)(s) = ( – s)a �(α)
sα . Here we

accept N = N .

Definition  [] The Mittag-Leffler function of one parameter has the following form:

Eα(z) =
∞∑

k=

zk

�(αk + )
(
z ∈ C; Re(α) > 

)
, ()

and the one with two parameters α and β becomes

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
(
z,β ∈ C; Re(α) > 

)
, ()

where Eα,(z) = Eα(z).

Since in general it is not true that (tα)β = tαβ and (ab)α = aαbα in general, we define
for the sake of discretization the following (modified) versions of Mittag-Leffler functions
which also agree with the time scale calculus notations.

Definition  (Modified classical Mittag-Leffler functions) The Mittag-Leffler function of
one parameter is defined by

Eα(λ, z) = Eα

(
λzα

)
=

∞∑

k=

λk zαk

�(αk + )
(
 �= λ ∈ R, z ∈C; Re(α) > 

)
, ()
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and the one with two parameters α and β by

Eα,β (λ, z) = zβ–Eα,β
(
λzα

)
=

∞∑

k=

λk zαk+β–

�(αk + β)
(
 �= λ ∈ R, z,β ∈C; Re(α) > 

)
, ()

where Eα,(λ, z) = Eα(λ, z).

Agreeing with Definition , the author in [, ] defined the following discrete versions
of Mittag-Leffler functions.

Definition  (Nabla discrete Mittag-Leffler) (see [–]) For λ ∈ R, |λ| < , and α,β , z ∈
C with Re(α) > , the nabla discrete Mittag-Leffler functions is

Eα,β (λ, z) =
∞∑

k=

λk zkα+β–

�(αk + β)
. ()

For β = , we have

Eα(λ, z) � Eα,(λ, z) =
∞∑

k=

λk zkα

�(αk + )
, |λ| < . ()

The generalized ML of three parameters was defined in the literature by

Eρ
α,β (z) =

∞∑

k=

(ρ)k
zk

k!�(αk + β)
, ()

where (ρ)k = ρ(ρ + ) · · · (ρ + k – ). Notice that ()k = k! so that E
α,β (z) = Eα,β (z).

To pass to the discrete process we define the following version of ML function of three
parameters:

Eρ
α,β (λ, z) =

∞∑

k=

λk(ρ)k
zαk+β–

k!�(αk + β)
. ()

Definition  The (nabla) discrete general ML function of three parameters α,β , and ρ is
defined by

Eρ

α,β (λ, z) =
∞∑

k=

λk(ρ)k
zkα+β–

k!�(αk + β)
. ()

Notice that E
α,β (λ, z) = Eα,β (λ, z).

Proposition  (Summation and difference of discrete ML functions)
• ∇tEα(λ, z) = λEα,α(λ, z).
• ∇tE,β(λ, z) = λE,β+(λ, z).
• ∇tEγ

α,β(λ, z) = Eγ

α,β–(λ, z).
•

∑z
t=a+ Eα,β(λ, t – a) = Eα,β+(λ, z – a).
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Definition  [, ] Let a function f be defined on N. Thus, for  < α ≤  its α-order
Caputo fractional derivative is

C∇α
 f (t) = ∇–(–α)

 ∇f (t)

=


�( – α)

t∑

s=

(
t – ρ(s)

)–α∇f (s),

where ρ(s) = s –  and ∇–α
 f (t) = 

�(α)
∑t

s=(t – ρ(s))α–f (s) is the nabla left fractional sum
of order α.

We recall that if f is defined on N, then C∇α
 f (t) is defined on N = {, , , . . .}.

For the Caputo fractional difference of order n –  < α ≤ n starting from a(α) = a + n – 
we refer to Section  in [].

Example  [, ] Let  < α ≤ , a ∈R, and consider the nabla left Caputo nonhomoge-
neous fractional difference equation

C∇α
 y(t) = λy(t) + f (t), y() = a, t ∈N. ()

Thus, the solution of () is written as

y(t) = aEα(λ, t) +
t∑

s=

Eα,α
(
λ, t – ρ(s)

)
f (s). ()

Remark  [, ] The solution of () with α =  and a =  is

y(t) =
∞∑

k=

λk tk

k!
+

t∑

s=

∞∑

k=

λk (t – ρ(s))k

k!
f (s).

The nabla discrete exponential function êλ(t, ) = ( –λ)–t represents the first part of the
above solution, with |λ| < . For more details see [], p..

For the rest of this section, we summarize some facts as regards the discrete Laplace
transform of Mittag-Leffler type and convolution type functions (see [] for some details).

Definition  (See []) Let s ∈ R,  < α < , and f , g : Na → R be functions. The nabla
discrete convolution of f with g is defined by

(f ∗ g)(t) =
t∑

s=a+

g
(
t – ρ(s)

)
f (s). ()

In the above, ρ(s) = s– is the backward jumping operator used in ∇-analysis for the time
scale Z. This operator is necessary to prove for example a discrete convolution theorem
as shown below. Also it is necessary to obtain dual relations between the left and right
fractional sums and differences via the Q-operator.
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Proposition  For any α ∈R \ {. . . , –, –, }, s ∈R, and f , g defined on Na we have

(
Na(f ∗ g)

)
(z) = (Naf )(z)(N g)(z). ()

Proof

(
Na(f ∗ g)

)
(z) =

∞∑

t=a+

( – z)t–
t∑

a+

f (s)g
(
t – ρ(s)

)

=
∞∑

s=a+

∞∑

t=s
( – z)t–

t∑

a+

f (s)g
(
t – ρ(s)

)

=
∞∑

s=a+

∞∑

r=

( – z)r–( – z)s–f (s)g(r)

= (Naf )(z)(N g)(z),

where the change of variable r = t – ρ(s) was used. �

For the case a =  and g(t) = tα we refer to [].

Lemma  [] Let f be a function defined on N. Thus,

(
N∇(

f (t)
))

(z) = z(N f )(z) – f (). ()

We can generalize Lemma  as follows.

Lemma  Let f be a function defined on Na. The following result holds:

(
Na∇

(
f (t)

))
(z) = z(Naf )(z) – ( – z)af (a). ()

More generally,

(
Na(α)∇nf

)
(z) = zn(Na(α)f )(z) – ( – z)a(α)

n–∑

i=

zn––i∇ if (a + ). ()

Lemma  [] For any positive real number ν ,

(
Na–∇–ν

a–
)
f (s) = s–ν(Na–f )(s).

For the following lemma we will present an alternative proof without using convolutions
as was done in [].

Lemma  [] Let f be defined on N and  < α ≤ . Then

(
N C∇α

 f
)
(z) = zα(N f )(z) – zα–f (). ()
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Proof From the definition and Lemma . in [] we have

(C∇α
 f

)
(t) =

(∇–(–α)
 ∇f

)
(t) = ∇(∇–(–α)

 f
)
(t) –

t–α

�( – α)
f ().

Apply the nabla discrete Laplace transform and make use of Lemma  and Lemma  to get

(
N C∇α

 f
)
(z) = z

(
N∇–(–α)

 f
)
(z) –

(∇–(–α)
 f

)
() –

�( – α)
�( – α)z–α

f ().

Then the result follows by Lemma  with a =  and (∇–(–α)
 f )() = . �

Remark  Lemma  can be generalized as follows. For f defined on Na and  < α ≤ , we
have

(
Na

C∇α
a f

)
(z) = zα(Naf )(z) – ( – z)azα–f (a). ()

This can be proved by making use of Remark .

Lemma  [] Let  < α ≤  and f be defined on N. Then:
(i) (NEα(λ, t))(z) = zα–

zα–λ
.

(ii) (NEα,α(λ, t))(z) = 
zα–λ

.

Proof We just repeat the proof of (ii) due to the calculation error in Lemma (ii) in [].
(ii) First it is easy to see that ∇Eα(λ, t) = λEα,α(λ, t). Indeed,

∇Eα(λ, z) =
∞∑

k=

λk kαzkα–

�(αk + )
.

Since dividing by balls of Gamma function leads to zero, we then have ∇Eα(λ, t) =
∑∞

k= λk zkα–

�(αk) = λ
∑∞

k= λk zkα+α–

�(αk+α) = λEα,α(λ, t). If we use N together with (i) and Lemma ,
we conclude that

(
NEα,α(λ, t)

)
(z) = λ–[z

(
NEα(λ, t)

)
(z) – Eα(λ, )

]

= λ–
[

zα

zα – λ
– 

]

=


zα – λ
. �

2 Discrete fractional differences with discrete Mittag-Leffler kernels
Definition  Let f be defined on Na ∩ bN, a < b,α ∈ [, ], then the nabla discrete new
(left Caputo) fractional difference in the sense of Atangana and Baleanu is defined by

(ABC
a ∇αf

)
(t) =

B(α)
 – α

t∑

s=a+

∇sf (s)Eα

(
–α

 – α
, t – ρ(s)

)

=
B(α)
 – α

[
∇f (t) ∗ Eα

(
–α

 – α
, t

)]
()
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and in the left Riemann sense by

(ABR
a ∇αf

)
(t) =

B(α)
 – α

∇t

t∑

s=a+

f (s)Eα

(
–α

 – α
, t – ρ(s)

)

=
B(α)
 – α

∇t

[
f (t) ∗ Eα

(
–α

 – α
, t

)]
. ()

It is be noted that since for  < α < 
 we have – < λ = – α

–α
< , then Eα(λ, t) is con-

vergent for any t ∈ N. For example, Eα(λ, ) = ( – α) provided that  < α < 
 . Hence, all

the AB-type fractional differences will converge under the restriction  < α < 
 . Also note

that since tα is increasing on N, Eα(λ, t) is monotone decreasing for  < α < 
 , t > , and

λ = –α
–α

<  (see [] for the continuous case Eα(–tα)). We can show that limσ→

σ

Eα( –
σ

, t –
ρ(s)) = δs(t) =

{, t = s,
, t �= s, α = , which is the delta Dirac function on the time scale Z, and hence

as in [] we can show that, for α → , we have (ABR
a ∇αf )(t) → f (t) and for α → , we have

(ABR
a ∇αf )(t) → ∇f (t). Notice that E( –

σ
, t – ρ(s)) = ( – α)t–ρ(s), σ = –α

α
, and hence for ex-

ample

lim
α→

(ABR
a ∇αf

)
(t) = lim

α→
B(α)∇t

t∑

s=a+

f (s)( – α)t–s = ∇f (t).

Above we have made used of the fact that the nabla discrete exponential function has the
form eλ(t,ρ(s)) = ( 

–λ
)t–ρ(s) and E(λ, t – ρ(s)) = eλ(t,ρ(s)).

To derive the proper fractional difference for the above proposed fractional difference
we consider the equation

(ABR
a ∇αf

)
(t) = u(t). ()

Apply Na to () above and make use of Lemma , Proposition  with g(t) = Eα(λ, t) with
λ = –α

–α
, and Lemma ,

B(α)
 – α

Na
(∇f (t) ∗ Eα(λ, t)

)
(z) =

B(α)
 – α

z
(
Naf (t) ∗ Eα(λ, t)

)
(z) – 

=
B(α)
 – α

z
[

(Naf )(z) · zα–

zα – λ

]

=
(
Nau(t)

)
(z). ()

That is,

(Naf )(z) =
 – α

B(α)
(
Nau(t)

)
(z) –

 – α

B(α)
λ

zα

(
Nau(t)

)
(z). ()

Apply the inverse of Na and use of Proposition  and Lemma  to conclude that

f (t) =
 – α

B(α)
u(t) +

α

B(α)
(∇–α

a u
)
(t). ()

This suggests the following definition for the fractional sum corresponding to the frac-
tional difference with discrete Mittag-Leffler function kernel.



Abdeljawad and Baleanu Advances in Difference Equations  (2016) 2016:232 Page 9 of 18

Definition  The fractional sum associated to (ABR
a ∇αf )(t) with order  < α <  is defined

by

(AB
a ∇–αf

)
(t) =

 – α

B(α)
f (t) +

α

B(α)
(∇–α

a f
)
(t). ()

It is clear that α =  gives the function f and α =  gives
∑t

s=a+ f (s).
From the definition of the discrete fractional integral we have

(ABR
a ∇αABR

a ∇–αf
)
(t) = f (t).

On the other hand we have the following.

Theorem  For any  < α ≤  and f defined on Na, (ABR
a ∇αf )(t) satisfies the equation

(ABR
a ∇–αg

)
(t) = f (t). ()

Proof From the definition of fractional sum the equation in the statement of the theorem
is equivalent to

 – α

B(α)
g(t) +

α

B(α)
(∇–α

a g
)
(t) = f (t). ()

Apply the discrete Laplace transform Na and make use of Lemma  to obtain

 – α

B(α)
G(s) +

α

B(α)
s–αG(s) = F(s), ()

where G(s) = (Nag)(s) and F(s) = (Naf )(s). From this it follows that

G(s) =
sαB(α)

( – α)sα + α
F(s) =

B(α)
 – α

sα

sα – λ
F(s), ()

where λ = –α
–α

. Finally, apply the inverse of Na and use the discrete convolution theorem,
Proposition , or () to conclude that g(t) = (ABR

a ∇αf )(t). �

Theorem  (The relation between the Caputo and Riemann fractional differences with
ML kernels) We have

(ABC
a ∇αf

)
(t) =

(ABR
a ∇αf

)
(t) – f (a)

B(α)
 – α

Eα(λ, t – a). ()

Proof From () we have

(
Na

ABR
a ∇αf

)
(z) =

B(α)
 – α

[
(Naf )(z) · zα

zα – λ

]
, ()

where λ = –α
–α

. On the other hand, we have

(
Na

ABC
a ∇αf

)
(z) =

B(α)
 – α

(
Na∇f (t) ∗ Eα(λ, t)

)
(z)

=
B(α)
 – α

(Na∇f )(z) · (NEα(λ, t)
)
(z)
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=
B(α)
 – α

[
z(Naf )(z) – ( – z)af (a)

] ·
[

zα–

zα – λ

]

=
B(α)
 – α

[
(Naf )(z) · zα

zα – λ

]
– ( – z)af (a)

B(α)
 – α

[
zα–

zα – λ

]
. ()

From () and (), we see that

(
Na

ABC
a ∇αf

)
(z) =

(
Na

ABR
a ∇αf

)
(z) – ( – z)af (a)

B(α)
α

[
zα–

zα – λ

]
. ()

Apply the inverse of Na to () to conclude (). The fact that (Naf (t – a))(z) = ( –
z)a(N f (t))(z) was used above. �

By means of the action of the Q-operator on left and right fractional sums and differ-
ences, we can define the right fractional sums (AB∇–α

b f )(t) and differences (AB∇α
b f )(t) as

follows.

Definition  (The new right fractional difference with ML kernel) For  < α < , and f
defined on bN, the right fractional difference of f is defined by

(ABR∇α
b f

)
(t) =

B(α)
 – α

(–�t)
b–∑

s=t
f (s)Eα

(
–α

 – α
,
(
s – ρ(t)

))
()

and the right Caputo one by

(ABC∇α
b f

)
(t) =

B(α)
 – α

b–∑

s=t
(–�sf )(s)Eα

(
–α

 – α
,
(
s – ρ(t)

))
. ()

Definition  (The new right fractional sum with ML kernel) For  < α < , and f defined
on bN, the right fractional sum of f is defined by

(AB∇–α
b f

)
(t) =

 – α

B(α)
f (t) +

α

B(α)
(

b∇–αf
)
(t). ()

Theorem  For a function f defined on bN and  < α < , we have (ABR∇α
b

AB∇–α
b f )(t) = f (t)

and (AB∇–α
b

ABR∇α
b f )(t) = f (t).

If we apply the Q-operator to both sides and then replace f (t) by (Qf )(t) = f (a + b – t),
then we can state the following.

Theorem  (The relation between the new right Caputo fractional difference and the new
right Riemann fractional difference) We have

(ABC∇α
b f

)
(t) =

(ABR∇α
b f

)
(t) – f (b)

B(α)
 – α

Eα(λ, b – t). ()

3 Integration by parts for fractional sums and differences with discrete ML
First we state and prove an integration by parts formula for fractional sums.
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Theorem  (Integration by parts for the fractional sums with ML kernels) For f and g
defined on Na ∩ bN, a ≡ b (mod ), and  < α < , one has

b–∑

s=a+

g(s)
(AB

a ∇–αf
)
(s) =

 – α

B(α)

b–∑

s=a+

g(s)f (s) +
α

B(α)

b–∑

s=a+

f (s)
(

b∇–αg
)
(s)

=
b–∑

s=a+

f (s)
(AB∇–α

b g
)
(s). ()

Similarly, we have

b–∑

s=a+

g(s)
(AB∇–α

b f
)
(s) =

 – α

B(α)

b–∑

s=a+

g(s)f (s) +
α

B(α)

b–∑

s=a+

f (s)
(∇–α

a g
)
(s)

=
b–∑

s=a+

f (s)
(AB

a ∇–αg
)
(s). ()

Proof The proof follows by the definition of the new left fractional sum, the integration
by parts formula for nabla classical fractional sums (see Proposition  in []), and the
definition of the new right fractional sum. �

Theorem  (Integration by parts for the fractional differences with ML kernels) For f and
g defined on Na ∩ bN, a ≡ b (mod ), and  < α < , one has

b–∑

s=a+

f (s)
(ABR

a ∇αg
)
(s) =

b–∑

s=a+

g(s)
(ABR∇α

b f
)
(s). ()

Similarly,

b–∑

s=a+

f (s)
(ABR∇α

b g
)
(s) =

b–∑

s=a+

g(s)
(ABR

a ∇αf
)
(s). ()

Proof The proof is achieved by Theorem  and the previously proved fact that the new
fractional sums and differences are the inverses to each other. Indeed,

b–∑

s=a+

f (s)
(AB

a ∇αg
)
(s) =

b–∑

s=a+

(AB∇–α
b

AB∇–α
b f

)
(s)

(AB
a ∇αg

)
(s)

=
b–∑

s=a+

(AB∇–α
b f

)
(s)

(AB
a ∇–αAB

a ∇αg
)
(s)

=
b–∑

s=a+

g(s)
(AB∇α

b f
)
(s). ()

�

Next, in order to present an integration by parts formula for Caputo type fractional
differences with ML kernels, we first define the discrete versions of the (left) generalized



Abdeljawad and Baleanu Advances in Difference Equations  (2016) 2016:232 Page 12 of 18

fractional integral operator introduced and studied in [],

(
Eγ

ρ,μ,ω,a+ϕ
)
(x) =

∫ x

a
(x – t)μ–Eγ

ρ,μ
[
ω(x – t)ρ

]
ϕ(t) dt, x > a, ()

where Eγ
ρ,μ(z) =

∑∞
k=

(γ )kzk

�(ρk+μ)k! is the generalized Mittag-Leffler function which is defined
for complex ρ,μ,γ (Re(ρ) > ) [, ]. For our purposes we just introduce the discrete
version for γ = .

Definition 
• The discrete (left) generalized fractional integral operator is defined by

(
E

ρ,μ,ω,a+ϕ
)
(t) =

t∑

s=a+

(
t – ρ(s)

)μ–Eρ,μ
(
ω, t – ρ(s)

)
ϕ(s), t ∈Na.

• The discrete (right) generalized fractional integral operator is defined by

(
E

ρ,μ,ω,b–ϕ
)
(t) =

b–∑

s=t

(
s – ρ(t)

)μ–Eρ,μ
(
ω, s – ρ(t)

)
ϕ(s), t ∈ bN.

Theorem  (Integration by parts for Caputo fractional differences with ML kernels) For
functions f and g defined on Na ∩ bN, we have

b–∑

s=a
f (s)

(ABC
a– ∇αg

)
(s) =

b–∑

s=a
g(s)

(ABR∇α
b–f

)
(s) + g

(
ρ(t)

) B(α)
 – α

(
E

α,,λ,b– f
)
(t)

∣∣b
a. ()

Similarly,

b∑

s=a+

f (s)
(ABC∇α

b+g
)
(s) =

b∑

s=a+

g(s)
(ABR

a+ ∇αf
)
(s) – g

(
σ (t)

) B(α)
 – α

(
E

α,,λ,a+ f
)
(t)

∣∣b
a, ()

where λ = –α
–α

.

Proof By () and Theorem , we have

b–∑

s=a
f (s)

(ABC
a– ∇αg

)
(s) =

b–∑

s=a
f (s)

[(ABR
a– ∇αg

)
(s) – g(a – )

B(α)
 – α

Eα

(
λ, s – ρ(a)

)]

=
b–∑

s=a
g(s)

(ABR∇α
b–f

)
(s) – g(a – )

B(α)
 – α

b–∑

s=a
f (s)Eα

(
λ, s – ρ(a)

)

=
b–∑

s=a
g(s)

(ABR∇α
b–f

)
(s) + g

(
ρ(t)

) B(α)
 – α

(
E

α,,λ,b– f
)
(t)

∣∣b
a.

The second part follows by () and the second part of Theorem . �
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4 Discrete fractional Euler-Lagrange equations
We prove the Euler-Lagrange equations for a Lagrangian containing the left new discrete
Caputo derivative.

Theorem  Let  < α ≤  be non-integer, a, b ∈ R, a < b, a ≡ b (mod ). Assume that the
functional of the form

J(f ) =
b–∑

t=a
L
(
t, f ρ(t), ABC

a– ∇αf (t)
)

has a local extremum in S = {y : (Na– ∩ b–N) →R : y(a – ) = A, y(b – ) = B} at some f ∈ S,
where L : (Na– ∩ b–N) ×R×R→R. Then

[
L(s) + ABR∇α

b–L(s)
]

= , for all s ∈ (Na– ∩ b–N), ()

where L(s) = ∂L
∂f ρ (s) and L(s) = ∂L

∂ABC
a– ∇α f

(s).

Proof Without loss of generality, assume that J has local maximum in S at f . Hence, there
exists an ε >  such that J (̂f ) – J(f ) ≤  for all f̂ ∈ S with ‖̂f – f ‖ = supt∈Na∩bN

|̂f (t) – f (t)| < ε.
For any f̂ ∈ S there is an η ∈ H = {y : (Na– ∩ b–N) → R : y(a – ) = y(b – ) = } such that
f̂ = f + εη. Then the ε-Taylor’s theorem and the assumption implies that the first variation
quantity δJ(η, y) =

∑b–
t=a[ηρ(t)L(t) + (ABC

a– ∇αη)(t)L(t)] dt = , for all η ∈ H . To make the
parameter η free, we use the integration by parts equation () to obtain

δJ(η, f ) =
b–∑

s=a
ηρ(s)

[
L(s) + ABR∇α

b–L(s)
]

+ ηρ(t)
B(α)
 – α

(
E

α,, –α
–α ,b– L

)
(t)

∣∣b
a = ,

for all η ∈ H , and hence the result follows by the discrete fundamental lemma of the cal-
culus of variation. �

The term (E
α,, –α

–α ,b– L)(t)|ba =  above is called the natural boundary condition.
Similarly, if we allow the Lagrangian to depend on the discrete right Caputo fractional

derivative, we can state the following.

Theorem  Let  < α ≤  be non-integer, a, b ∈ R, a < b, a ≡ b (mod ). Assume that the
functional J of the form

J(f ) =
b∑

a+

L
(
t, f σ (t), ABC∇α

b+f (t)
)

has a local extremum in S = {y : (Na+ ∩b+ N) →R : y(a + ) = A, y(b + ) = B} at some f ∈ S,
where L : (Na+ ∩b+ N) ×R×R →R. Then

[
L(s) + ABR

a+ ∇αL(s)
]

= , for all s ∈ (Na+ ∩b+ N), ()

where L(s) = ∂L
∂f σ (s) and L(s) = ∂L

∂ABC∇α
b+f (s).
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Proof The proof is similar to Theorem  by applying the second integration by parts equa-
tion () to get the natural boundary condition of the form (E

α,, –α
–α ,a+ L)(t)|ba = . �

Example  We here study an interested physical action to support Theorem . Namely,
let us consider the following fractional discrete action:

J(y) =
∑b–

t=a[ 
 (ABC

a– ∇αy(t)) – V (yρ(t))], where  < α <  and with y(a – ), y(b – ) are
assigned or with the natural boundary condition

(
E

α,, –α
–α ,b–

ABC
a– ∇αy(t)

)
(t)

∣∣b
a = .

Then the Euler-Lagrange equation by applying Theorem  is

(ABR∇α
b– ◦ ABC

a– ∇αy
)
(s) –

dV
dy

(s) =  for all s ∈ (Na– ∩ b–N).

Here, we remark that it is of interest to deal with the above Euler-Lagrange equations ob-
tained in the above example, where we have a composition of discrete right and discrete
left type fractional derivatives. For the sake of comparisons with the classical discrete frac-
tional Euler-Lagrange equations within nabla we refer to []. For classical fractional dy-
namical systems composed by the left and right fractional operators under the presence
of delay we refer to [].

5 Some tools and properties for fractional derivatives with nonsingular ML
kernels and their discrete versions

Theorem  [] Let ρ,μ,γ ,ν,σ ,λ ∈C (Re(ρ), Re(μ), Re(ν) > ), then

∫ x


(x – t)μ–Eγ

ρ,μ
(
λ[x – t]ρ

)
tν–Eσ

ρ,ν
(
λtρ

)
dt = xμ+ν–Eγ +σ

ρ,μ+ν

(
λxρ

)
. ()

In particular, if γ = ,μ =  and ρ = α, we have

∫ x


Eα

(
λ[x – t]α

)
tν–Eσ

α,ν
(
λtα

)
dt = xνE+σ

α,+ν

(
λxα

)
. ()

Remark  If we use the modified notation of ML functions, then () takes the form

∫ x


Eγ

ρ,μ(λ, x – t)Eσ
ρ,ν(λ, t) dt = Eγ +σ

ρ,μ+ν(λ, x), ()

and () takes the form

∫ x


Eα(λ, x – t)Eσ

α,ν(λ, t) dt = E+σ
α,+ν(λ, x). ()

From [] we recall also the following differentiation formula, expressed in a modified
way, which will be helpful.

For α,μ,γ ,λ ∈C (Re(α) > ) and n ∈N we have

(
d
dz

)n[
Eγ

α,μ(λ, z)
]

= Eγ
α,μ–n(λ, z). ()
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Now, with the help of () and (), we have

ABR
 Dα

[
Eσ

α,ν(λ, x)
]

=
B(α)
 – α

d
dx

[
E+σ

α,+ν(λ, x)
]

=
B(α)
 – α

E+σ
α,ν (λ, x). ()

Similarly, with the help of () and (), we have

ABC
 Dα

[
Eσ

α,ν(λ, x)
]

=
B(α)
 – α

∫ x


Eα(λ, x – t)

d
dt

[
Eσ

α,ν(λ, t)
]

dt

=
B(α)
 – α

E+σ
α,ν (λ, x). ()

Remark  Noting that

E–
α,ν(λ, x) = xν–E–

α,ν
(
λxα

)
=

xv–

�(ν)
–

λxα+ν–

�(α + ν)

and

E
α,ν(λ, x) =

xν–

�(ν)
→ , ν → +,

one can conclude from () and () with σ = – that the function

g(x) = lim
ν→+

[
 – α

B(α)
E–

α,ν(λ, x)
]

=
α

B(α)
xα–

�(α)

is a nonzero function whose fractional ABR and ABC derivative is zero. Note that the
function g(x) tends to the constant function α

B(α)�(α) as α tends to .

The proof of the following lemma follows by Lemma (i) and the definition of discrete
ML functions in Definition .

Lemma  For γ ,α,β ,λ ∈C (Re(β) > ), and s ∈C with Re(s) > , |λs–α| < , we have

(
NEγ

α,β(λ, t)
)
(s) = s–β

[
 – λs–α

]–γ .

In particular

(
NEα,β(λ, t)

)
(s) = s–β

[
 – λs–α

]–.

The proof of the following lemma just follows by applying the discrete Laplace trans-
form N and its inverse in final step via the help of Lemma  and the discrete convolution
theorem.

Lemma  Let ρ,μ,γ ,ν,σ ,λ ∈C (Re(ρ), Re(μ), Re(ν) > ), then

t∑

s=

Eγ

ρ,μ
(
λ, t – ρ(s)

)
Eσ

ρ,ν(λ, s) = Eγ +σ

ρ,μ+ν(λ, t). ()
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Now, with the help of Proposition (iii) and Lemma , we have

ABR
 ∇α

[
Eσ

α,ν(λ, t)
]

=
B(α)
 – α

∇t
[
E+σ

α,+ν
(λ, t)

]
=

B(α)
 – α

E+σ
α,ν (λ, x). ()

Similarly, with the help of Proposition (iii) and Lemma , we have

ABC
 ∇α

[
Eσ

α,ν(λ, t)
]

=
B(α)
 – α

t∑

s=

Eα

(
λ, t – ρ(s)

)∇t
[
Eσ

α,ν(λ, s)
]

=
B(α)
 – α

E+σ
α,ν (λ, t). ()

Remark  Noting that

E–
α,ν(λ, t) =

xv–

�(ν)
–

λtα+ν–

�(α + ν)

and

E
α,ν(λ, t) =

tν–

�(ν)
→ , ν → +,

one can conclude from () and () with σ = – that the function

h(t) = lim
ν→+

[
 – α

B(α)
E–

α,ν(λ, t)
]

=
α

B(α)
tα–

�(α)

is a nonzero function whose discrete fractional ABR and ABC derivative is zero. Note that
the function h(t) tends to the constant function  as α tends to . As a result of this, if the
potential function V in Example , with a = , is , then the solution takes the form

y(t) =
α

B(α)
tα–

�(α)
.

Using the following a-version of equation () in []:

(ABC
a Dαf

)
(t) =

(ABR
a Dαf

)
(t) –

B(α)
 – α

f (a)Eα

(
λ(t – a)α

)
, λ =

–α

 – α
, ()

and the identity (see [], p., for example)

(
aIα(t – a)β–Eμ,β

[
λ(t – a)μ

])
(x) = (x – a)α+β–Eμ,α+β

[
λ(x – a)μ

]
, ()

we can state the following result which is very useful tool to solve fractional dynamical
systems with a Caputo fractional derivative with ML kernels.

Proposition  For  < α < , we have

(AB
a IαABC

a Dαf
)
(x) = f (x) – f (a)Eα

(
λ(x – a)α

)
–

α

 – α
f (a)xαEα,α+

(
λ(x – a)α

)

= f (x) – f (a).
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Similarly,

(ABIα
b

ABCDα
b f

)
(x) = f (x) – f (b). ()

Similarly, in the discrete case by recalling that (see [], Proposition . or [])

∇–α
a (t – a)μ =

�(μ + )
�(μ + α + 

(t – a)μ+α ,

we can state the following important result in classical discrete fractional calculus.

Theorem  Let a ∈ [,∞), and let α,ρ,μ,γ ,λ ∈ C (Re(α) > , Re(μ) > , Re(ρ) > ).
Then for t > a the relations hold:

• ∇–α
a Eγ

ρ,μ(λ, t – a) = Eγ

ρ,μ+α(λ, t – a).
• ∇α

a Eγ

ρ,μ(λ, t – a) = Eγ

ρ,μ–α(λ, t – a).

Then we can state the following.

Proposition  For  < α < , we have

(AB
a ∇–αABC

a ∇αf
)
(t) = f (t) – f (a)Eα(λ, t – a) –

α

 – α
f (a)Eα,α+(λ, t – a)

= f (t) – f (a).

Similarly, by the first part and the action of the Q-operator

(AB∇–α
b

ABC∇α
b f

)
(t) = f (t) – f (b). ()

6 Conclusions
The modified versions of Mittag-Leffler functions enable us to treat easily the fractional
type derivatives with ML kernels and enable us to obtain successfully their discrete ver-
sions. The Q-operator and its discrete version always provide an effective tool to confirm
dual definitions and relations when passing from left to right or vice versa. There exist non-
constant functions whose usual or discrete ABC fractional derivatives are zeros. Hence
a zero potential function in a usual or discrete variational problem does not imply only
constant solution. The results obtained tend to the ordinary case when α tends to . The
discrete versions for AB type fractional derivatives have been defined and their discrete
fractional integrals given with the help of the discrete Laplace transform.
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