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Abstract
In this paper, we consider the eigenvalue problem for fractional differential operator
containing left and right fractional derivatives with Dirichlet boundary value
conditions. By critical point theory, we see that there exist an eigenvalue sequence
which is increasing, tending to infinity, and an eigenfunction sequence which is a
Hilbert basis of a fractional Sobolev space.
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1 Introduction
The study of the eigenvalues of a linear operator is a classical topic and many functional
analytic tools of a general nature may be used to deal with it. The knowledge of eigenvalues
of an ordinary or partial linear differential operator with some boundary value conditions
plays an important role in the study of the existence of solutions of nonlinear perturbations
of this operator. For the classical second-order ordinary differential equation of the form

–u′′ = λu, ()

it is well known that, under certain boundary value conditions, nontrivial solutions exist
only for particular values λi, i = , , . . . . The constant λi are called eigenvalues and the
corresponding nontrivial solutions ui are called eigenfunctions. By using critical point
theory, the classical results as regards the eigenvalue problem () with Dirichlet boundary
value conditions have been obtained on W ,

 ([, T],R).
Recently, the subject of fractional calculus gained a considerable popularity and impor-

tance. During the last three decades or so, due to its demonstrated applications in numer-
ous fields of science and engineering, such as viscoelasticity, neurons, electrochemistry,
control, etc. [–], more attention was paid to the fractional differential equations. Many
different analytic tools including the variational method are used to study the existence
and multiplicity of solutions for fractional boundary value problems (BVPs for short); see
[–]. Meanwhile, different from the integer order differential BVPs, most of BVPs for
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the fractional differential operators do not have a variational structure. For instance, there
is no energy functional for the operator Dα (α /∈ N). So the variational method cannot be
applied here.

In recent years, by using critical point theory, some authors considered the existence of
(weak) solutions for some fractional BVPs with variational structure, such as

{
tDα

T Dα
t u = f (t, u), t ∈ (, T),

u() = u(T) = ,
()

where  < α ≤ , Dα
t , and tDα

T are the left and right Riemann-Liouville fractional deriva-
tive operators of order α, respectively. The reader may refer to [, , , , ] and the
references therein. The equations containing both left and right fractional differential op-
erators have received renewed attention due to their applications, such as the physical
phenomena exhibiting anomalous diffusion [] and the height loss over time of the gran-
ular material contained in a silo []. Note that, when α = , the fractional differential
operator tDα

T Dα
t reduces to the standard second-order differential operator –D.

Motivated by the above research, in this paper, we consider the following eigenvalue
problem:

{
tDα

T Dα
t u = λu, t ∈ (, T),

u() = u(T) = .
()

Naturally, we want to use the fractional Sobolev space Eα,p
 in [] to study our prob-

lem. Similar to the definition of W ,
 ([, T],R), in [], Eα,p

 is defined by the closure of
C∞

 ([, T],R) with respect to the norm

‖u‖α,p =
(∫ T



∣∣u(t)
∣∣p dt +

∫ T



∣∣Dα
t u(t)

∣∣p dt
) 

p
,

where Dα
t u denotes the classical fractional derivative. We should point out that the space

Eα,p
 they defined is not rigorous. In fact, taking a Cauchy sequence {un} ⊂ C∞

 ([, T],R)
with respect to the norm ‖ · ‖α,p, one has

un → u, Dα
t un → v in Lp([, T],R

)
.

Unfortunately Dα
t u may not exist. Even if Dα

t u exists, Dα
t u may not be equal to v.

Moreover, for u ∈ Eα,p
 , we think it is not clear that u satisfies u() = u(T) = . For study-

ing the problem () by critical point theory, we first should look for an appropriate space.
In [, ], based on the weak fractional derivative, they defined the fractional Sobolev
space W α,p

a+ , which is denoted by Eα,p in our paper. Meanwhile, it is not enough for our
problem because of the Dirichlet boundary problems. Inspired by [, , ], we discuss
the fractional Sobolev space still written as Eα,p

 , and then we study the eigenvalue prob-
lem ().

The paper is divided into four parts, as follows. First of all, we present the preliminar-
ies of the definitions of Riemann-Liouville fractional integral and derivative (Section ).
Second, based on the fractional Sobolev space Eα,p, we construct the fractional Sobolev
space Eα,p

 and discuss some properties of Eα,p
 . Moreover, we obtain the compactness of
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the embedding from Eα,p
 into C([, T],R) under some conditions (Section ). Third, we

study the regularity of weak solutions of a fractional BVP (Section ). Finally, we consider
the eigenvalue problem () in Eα,

 (Section ).

2 Preliminaries
For the convenience of the reader, the definitions of fractional integral and fractional
derivative and Eα,p are presented below [–].

Definition . (see []) For γ > , the left and right Riemann-Liouville fractional inte-
grals of order γ of a function u : [a, b] →R are given by

aIγ
t u(t) =


�(γ )

∫ t

a
(t – s)γ –u(s) ds,

tIγ

b u(t) =


�(γ )

∫ b

t
(s – t)γ –u(s) ds,

provided that the right-hand side integrals are pointwise defined on [a, b], where �(·) is
the gamma function.

Definition . (see []) For n –  ≤ γ < n (n ∈ N), the left and right Riemann-Liouville
fractional derivatives of order γ of a function u : [a, b] →R are given by

aDγ
t u(t) =

dn

dtn aIn–γ
t u(t),

tDγ

b u(t) = (–)n dn

dtn tIn–γ

b u(t).

Remark . When γ = , we can see from Definitions . and . that

aD
t u(t) = u′(t), tD

bu(t) = –u′(t),

where u′ is the usual first-order derivative of u.

Definition . (see []) Let  < α ≤ , u, v ∈ L([, T],R), if

∫ T


ϕ(t)v(t) dt =

∫ T


u(t)

(
tDα

Tϕ
)
(t) dt, ∀ϕ ∈ C∞


(
[, T],R

)
,

then v is called the weak left fractional derivative of order α of u, and it is denoted by
Ḋα

t u.

Definition . Let  < α ≤ , u, v ∈ L([, T],R), if

∫ T


ϕ(t)v(t) dt =

∫ T


u(t)

(
Dα

t ϕ
)
(t) dt, ∀ϕ ∈ C∞


(
[, T],R

)
,

then v is called the weak right fractional derivative of order α of u, and it is denoted by
tḊα

T u.
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Remark . When α = , we can conclude from Remark . that

Ḋ
t u(t) = u̇(t), tḊ

T u(t) = –u̇(t),

where u̇ is the usual first-order weak derivative of u.

Definition . (see []) For  < α ≤ ,  ≤ p < ∞, the space LEα,p is defined by

LEα,p =
{

u ∈ Lp([, T],R
)|Ḋα

t u ∈ Lp([, T],R
)}

with the norm

‖u‖LEα,p =
(‖u‖p

Lp +
∥∥Ḋα

t u
∥∥p

Lp
) 

p ,

where ‖u‖Lp = (
∫ T

 |u(t)|p dt)/p is the norm of Lp([, T],R).

Definition . For  < α ≤ ,  ≤ p < ∞, the space REα,p is defined by

REα,p =
{

u ∈ Lp([, T],R
)|tḊα

T u ∈ Lp([, T],R
)}

with the norm

‖u‖REα,p =
(‖u‖p

Lp +
∥∥tḊα

T u
∥∥p

Lp
) 

p .

Remark . When α = , it follows from Remark . that the spaces LEα,p and REα,p are
reduced to the usual Sobolev space W ,p([, T],R).

For the purpose of our paper, we only discuss the space LEα,p and the norm ‖ · ‖LEα,p are
denoted by Eα,p and ‖ · ‖Eα,p , respectively.

Lemma . (see []) Let  < α < , the space Eα,p is a Banach space for  ≤ p < ∞. More-
over, it is reflexive for  < p < ∞ and separable for  ≤ p < ∞.

3 Fractional Sobolev space Eα,p
0

When one discusses the existence of weak solutions for fractional BVPs by critical point
theory, a suitable function space is necessary. This section will propose a fractional
Sobolev space and some properties of this space for  < α ≤ .

Definition . For  < α ≤ ,  ≤ p < ∞, the fractional Sobolev space Eα,p
 is defined by

the closure of C∞
 ([, T],R) with respect to the norm of Eα,p.

Remark . It follows from Lemma . that the space Eα,p
 is a separable Banach space

and is reflexive for  < p < ∞. Moreover, when α = , the space Eα,p
 is reduced to the usual

Sobolev space W ,p
 ([, T],R) because of Remark ..

Now we give some lemmas that are useful in the proof of the properties of Eα,p
 .

Lemma . Iα
t : Lp([, T],R) → Eα,p is a bounded linear operator.
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Proof From the definition of fractional integral, we see that Iα
t is a linear operator. Let u ∈

Lp([, T],R), v = Iα
t u, then Lemma . in [] shows v ∈ Lp([, T],R). By the semigroup

property of the fractional integral, we have I–α
t v = I–α

t Iα
t u = I

t u. So Dα
t v = u exists,

which means Ḋα
t v = Dα

t v. Thus we obtain

∥∥Ḋα
t v

∥∥
Lp = ‖u‖Lp ()

and Iα
t u = v ∈ Eα,p. Together with Lemma . in [] and (), we have

∥∥Iα
t u

∥∥
Eα,p =

(∥∥Iα
t u

∥∥p
Lp +

∥∥Ḋα
t Iα

t u
∥∥p

Lp
) 

p

≤
(

Tαp

(�(α + ))p + 
) 

p
‖u‖Lp ,

which means Iα
t : Lp([, T],R) → Eα,p is a bounded operator. �

Lemma . Ḋα
t : Eα,p → Lp([, T],R) is a bounded linear operator.

Proof From the definition of left weak fractional derivative, we can see that the operator
Ḋα

t is linear. Moreover, it is easy to see

∥∥Ḋα
t u

∥∥
Lp ≤ (‖u‖p

Lp +
∥∥Ḋα

t u
∥∥p

Lp
) 

p = ‖u‖Eα,p ,

which means Ḋα
t : Eα,p → Lp([, T],R) is a bounded operator. �

Lemma . Let u ∈ Eα,p
 , then u = Iα

t Ḋα
t u a.e. on (, T).

Proof From the definition of space Eα,p
 , there exists a sequence {ϕn} ⊂ C∞

 ([, T],R) such
that

‖ϕn – u‖Eα,p →  as n → ∞.

For ϕn ∈ C∞
 ([, T],R), one has Ḋα

t ϕn = Dα
t ϕn, which together with Lemma . in []

yields

Iα
t Ḋα

t ϕn = Iα
t Dα

t ϕn = ϕn – I–α
t ϕn()
�(α)

tα–.

Since I–α
t ϕn() = , we have

Iα
t Ḋα

t ϕn = ϕn.

So, based on Lemmas . and ., we obtain

∥∥Iα
t Ḋα

t u – u
∥∥

Eα,p ≤ ∥∥Iα
t Ḋα

t u – Iα
t Ḋα

t ϕn
∥∥

Eα,p + ‖ϕn – u‖Eα,p

≤ c‖u – ϕn‖Eα,p + ‖ϕn – u‖Eα,p

= (c + )‖ϕn – u‖Eα,p →  as n → ∞,

where c >  is a constant. �
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Corollary . (Fractional Poincaré-Friedrichs inequality) Let u ∈ Eα,p
 , one has

‖u‖Lp ≤ Tα

�(α + )
∥∥Ḋα

t u
∥∥

Lp .

Proof Combining Lemma . with Lemma . in [], we have

‖u‖Lp =
∥∥Iα

t Ḋα
t u

∥∥
Lp

≤ Tα

�(α + )
∥∥Ḋα

t u
∥∥

Lp . �

Remark . According to Corollary ., we know that the norm ‖ · ‖Eα,p of the space Eα,p


is equivalent to the norm ‖Ḋα
t · ‖Lp . Hence we can consider Eα,p

 with the norm ‖Ḋα
t · ‖Lp

in the following analysis.

Theorem . Let α > /p and u ∈ Eα,p
 , then there exists a function ũ ∈ C([, T],R) such

that

u = ũ a.e. on (, T). ()

Proof Let u ∈ Eα,p
 and ũ = Iα

t Ḋα
t u. From Lemma ., () is obtained. Next we prove that

ũ is uniformly continuous on [, T].
By the Hölder inequality and α > /p, we have

∣∣ũ(t)
∣∣ =

∣∣∣∣ 
�(α)

∫ t


(t – s)α–

Ḋα
t u(s) ds

∣∣∣∣
≤ 

�(α)

(∫ t


(t – s)q(α–) ds

) 
q ∥∥Ḋα

t u
∥∥

Lp

≤ Tα– 
p

�(α)(αq – q + )

q

∥∥Ḋα
t u

∥∥
Lp , ∀t ∈ [, T], ()

which means ũ is uniformly bounded.
In addition, from Theorem . in [] and α > /p, one has

∣∣ũ(t) – ũ(t)
∣∣ =

∣∣Iα
t Ḋα

t u(t) – Iα
t Ḋα

t u(t)
∣∣

≤ c|t – t|α– 
p
∥∥Ḋα

t u
∥∥

Lp , ∀t, t ∈ [, T], ()

where c >  is a constant. So ũ is uniformly continuous on [, T]. �

Remark . For u ∈ Eα,p
 , it follows from Theorem . that

u ∈ Iα
t
(
Lp([, T],R

))
=

{
u|u = Iα

t v, v ∈ Lp([, T],R
)}

.

More precisely, ũ ∈ Iα
t (Lp([, T],R)) and ũ is uniformly continuous on [, T]. Hence we

do not distinguish u and ũ, that is, Eα,p
 ⊂ C([, T],R) and Ḋα

t u = Dα
t u. Moreover, by (),
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one has

‖u‖∞ ≤ C‖u‖Eα,p , ()

where ‖u‖∞ = maxt∈[,T] |u(t)| is the norm of C([, T],R) and

C =
Tα– 

p

�(α)(αq – q + )

q

> , q =
p

p – 
> 

are two constants.

Theorem . Let α > /p, then the imbedding of Eα,p
 in C([, T],R) is compact.

Proof Let {un} ⊂ Eα,p
 is a bounded sequence, from () and (), we know {un} ⊂ C([, T],R)

is uniformly bounded and equicontinuous. Thus, by the Arzelà-Ascoli theorem, {un} is
relatively compact in C([, T],R). �

Theorem . Let u ∈ Eα,p
 with α > /p, then

u() = u(T) = .

Proof For u ∈ Eα,p
 , from the definition of Eα,p

 , there exists a sequence {un} ⊂ C∞
 ([, T],R)

such that

un → u in Eα,p
 .

Thus, by (), we get

max
t∈[,T]

∣∣un(t) – u(t)
∣∣ ≤ C‖un – u‖Eα,p → .

So we have

u() = un() = , u(T) = un(T) = . �

4 Regularity of weak solutions
Consider the following BVP:

{
tDα

T Dα
t u = f , t ∈ (, T),

u() = u(T) = ,
()

where / < α ≤  and f is a given function in C([, T],R) or L([, T],R). First of all, we
give the definitions of weak solutions and classical solutions of BVP ().

Definition . A weak solution of BVP () is a function u ∈ Eα,
 satisfying

∫ T



(
Ḋα

t u
)(

Dα
t ϕ

)
=

∫ T


f ϕ, ∀ϕ ∈ C∞


(
[, T],R

)
. ()
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In the Sobolev space Eα,
 , we define the energy functional � by

�(u) =
∫ T





∣∣Ḋα

t u
∣∣ –

∫ T


fu.

It is easy to verify

〈
�′(u), v

〉
=

∫ T



(
Ḋα

t u
)(

Ḋα
t v

)
–

∫ T


fv, ∀v ∈ Eα,

 .

Hence the weak solutions of BVP () are the critical points of C functional �.

Definition . A classical solution of BVP () is a function u ∈ Eα,
 satisfying BVP () in

the usual sense, that is:
() Ḋα

t u = Dα
t u,

() tI–α
T Dα

t u is derivable for every t ∈ (, T).

Lemma . ([]) Let f ∈ L
loc(I) be such that

∫
I
f φ′ = , ∀φ ∈ C

c (I).

Then there exists a constant C such that f = C a.e. on I , where I is an open interval.

Theorem . If f ∈ L([, T],R), BVP () has a unique weak solution.

Proof Define the linear operator F : Eα,
 →R by

F (v) =
∫ T


fv, ∀v ∈ Eα,

 .

Obviously we have

F (v) =
∫ T


fv ≤ ‖f ‖L‖v‖L ≤ c‖f ‖L‖v‖Eα,


.

So the operator F is well defined in Eα,
 and continuous. Thus, it follows from the Lax-

Milgram theorem that there exists a unique u ∈ Eα,
 such that

∫ T



(
Ḋα

t u
)(

Dα
t v

)
=

∫ T


fv. �

Now we give the regularity of weak solutions of BVP ().

Theorem . If f ∈ C([, T],R), the unique weak solution of BVP () is the classical solu-
tion.

Proof Let u is a weak solution of BVP (), from Remark ., we can get Ḋα
t u = Dα

t u.
Next we prove tI–α

T Dα
t u is derivable for every t ∈ (, T). Let F = tIα

T f , then F ∈
L([, T],R) and

tDα
T F = –

(
tI–α

T tIα
T f

)′ = –(tIT f )′ = f .
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Thus, from the definition of right weak fractional derivative, we have

∫ T


F
(

Dα
t ϕ

)
=

∫ T



(
tDα

T F
)
ϕ =

∫ T


f ϕ, ∀ϕ ∈ C∞


(
[, T],R

)
,

which together with () yields

∫ T



(
Dα

t u
)(

Dα
t ϕ

)
=

∫ T


F
(

Dα
t ϕ

)

⇒
∫ T



(
Dα

t u – F
)(

Dα
t ϕ

)
= 

⇒
∫ T



(
Dα

t u – F
)(

I–α
t ϕ′) = 

⇒
∫ T



(
tI–α

T
(

Dα
t u – F

))
ϕ′ = .

Hence, from Lemma ., we have

tI–α
T

(
Dα

t u – F
)

= c a.e. on (, T).

That is,

tI–α
T Dα

t u = tI–α
T F + c

= tI–α
T tIα

T f + c

= tIT f + c. ()

The right side of () indicates that if f ∈ C([, T],R), then tIT f + c ∈ C([, T],R). So
tI–α

T Dα
t u is derivable for every t ∈ (, T).

Taking derivatives on both sides of (), one has

–tDα
T Dα

t u = (tIT f + c)′ = –f ,

which means u is a classical solution of BVP (). �

5 Spectral structure of fractional Dirichlet BVP
In this section, we study the spectral structure of a class of fractional Dirichlet BVPs with
variational structure. For proving our theorem, we first present a lemma.

Lemma . ([]) Let H be a separable Hilbert space and T be a compact self-adjoint
operator. Then there exists a Hilbert basis composed of eigenvectors of T .

Definition . Let L = tDα
T Dα

t with domL ⊂ Eα,
 , if there exists a function u �=  such

that Lu = λu, one says λ is the eigenvalue of L and u is the associated eigenfunction.

Theorem . For the following BVP:

{
tDα

T Dα
t u = λu, t ∈ (, T),

u() = u(T) = ,
()
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where / < α ≤ , there exist an eigenvalue sequence {λn} and an eigenfunction sequence
{φn} ⊂ Eα,

 . Furthermore,  < λ ≤ λ ≤ · · · ≤ λn ≤ · · · , λn → ∞ as n → ∞ and {φn} is a
Hilbert basis of Eα,

 .

Proof For f ∈ L([, T],R), by Theorem ., we see that there exists a unique u ∈ Eα,
 such

that
∫ T



(
Dα

t u
)(

Dα
t ϕ

)
=

∫ T


f ϕ, ∀ϕ ∈ C∞


(
[, T],R

)
. ()

So we can define T = L– : f → u as an operator from L into Eα,
 .

First of all, we show that T is compact. From the definition of Eα,
 and (), we have

∫ T



(
Dα

t u
)(

Dα
t u

)
=

∫ T


fu.

Thus ‖u‖
Eα, ≤ ‖f ‖L‖u‖L . By Corollary ., one has ‖u‖L ≤ c‖u‖Eα, . So we get ‖u‖Eα, ≤

c‖f ‖L . This can be written as

‖T f ‖Eα, ≤ c‖f ‖L , ∀f ∈ L([, T],R
)
.

Moreover, from Theorem ., the injection map from Eα,
 into L([, T],R) is compact.

Hence, we deduce that T is a compact operator from L([, T],R) into L([, T],R).
Second, we show that T is self-adjoint. Let T f = u, T g = v, by (), we have

∫ T



(
Dα

t u
)(

Dα
t v

)
=

∫ T


fv,

∫ T



(
Dα

t v
)(

Dα
t u

)
=

∫ T


gu.

So we get
∫ T

 fv =
∫ T

 gu, which means
∫ T

 f (T g) =
∫ T

 (T f )g .
Finally, we show that T is a positive operator. It is obvious that

∫ T


(T f )f =

∫ T


uf =

∫ T



(
Dα

t u
)(

Dα
t u

) ≥ .

In addition,
∫ T

 (T f )f =  implies f = .
Therefore, applying Lemma ., we know that L([, T],R) admits a Hilbert basis {φn}

consisting of eigenvectors of T with corresponding eigenvalues μn. Also we have μn > 
(∀n), μn →  (n → ∞). Thus we have φn ∈ Eα,

 and

∫ T



(
Dα

t φn
)(

Dα
t ϕ

)
=


μn

∫ T


φnϕ, ∀ϕ ∈ C∞


(
[, T],R

)
.

In other words, the φn are the weak solutions of () with λn = /μn.
Since φn ∈ Eα,

 , from Theorem ., the φn are continuous. Thus, by Theorem ., we see
that the φn satisfy the following BVP:

{
tDα

T Dα
t φn = λnφn, t ∈ (, T),

φn() = φn(T) = ,
()

where λn = /μn → ∞ (n → ∞).
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Now we show that { φn√
λn

} is a Hilbert basis of Eα,
 . It is easy to see

(φn,φm)Eα,


=
∫ T



(
Dα

t φn
)(

Dα
t φm

)
= λn(φn,φm)L = , n �= m,

which means { φn√
λn

} is orthonormal in Eα,
 . It remains to be proved that if f ∈ Eα,

 , satisfy-
ing (f ,φn)Eα,


= , then f = . From (), we have

∫ T



(
Dα

t φn
)(

Dα
t f

)
= λn

∫ T


φnf .

That is, (f ,φn)Eα,


= λn(f ,φn)L . Because {φn} is a Hilbert basis of L([, T],R) and
(f ,φn)L = , we get f = . �

Corollary . For / < α ≤ , the first eigenvalue λ of operator tDα
T Dα

t with Dirichlet
boundary value conditions satisfies

λ ≥
(

�(α + )
Tα

)

.

Proof From Theorem ., we obtain

λ = inf
u∈Eα,



(Lu, u)L

(u, u)L
= inf

u∈Eα,


‖Dα
t u‖

L

‖u‖
L

,

which together with Corollary . yields λ ≥ ( �(α+)
Tα ). �

Remark . When α = , the first eigenvalue of operator –D in W ,
 ([, T],R) is λ̃ =

(π/T), which satisfies λ̃ ≥ (/T).

Remark . When  < α ≤ /, the continuity of u ∈ Eα,
 (Theorem .) and the com-

pactness of injection from Eα,
 into C([, T],R) (Theorem .) may not be obtained. If

we want to get the conclusions of Sections -, some new methods and techniques need
to be explored.
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