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Abstract
The paper is concerned with stability for second-order stochastic neutral partial
functional systems subject to infinite delays and impulses. Some sufficient conditions
ensuring pth moment exponential stability of the second-order stochastic systems
are given by gaining a new integral inequality with impulses. Some earlier results are
generalized and improved.

1 Introduction
The role played by second-order system in the dynamics of physical and biological systems
has been an issue of growing interest and discussion. Recent research has also focused on
the relative dominance of existence, uniqueness, and stability behavior of second-order
systems [–].

In the real world, noise plays an important role in comprehending phenomena that can
be very hard to describe by deterministic systems. The dynamical behavior of stochas-
tic partial differential systems (SPDSs) has been discussed [–]. Sakthivel et al. [, ]
studied pseudo almost automorphic mild solutions to stochastic fractional equations by a
fixed point strategy and discussed complete controllability of stochastic evolution equa-
tions with jumps, respectively. Recently, [, ] discussed the existence, uniqueness, and
stability of mild solutions to stochastic neutral partial functional systems (SNPFSs). Mean-
while, second-order SPDSs [] are often used to model charge on a condenser, mechani-
cal vibrations, etc. Liang and Guo [] discussed the asymptotic behavior for second-order
stochastic evolution equations with memory. Sakthivel and Ren [] studied exponential
stability of second-order stochastic evolution equations with Poisson jumps by fixed point
theory. In addition, since sudden variations often exist in practice, it is necessary to model
the noise source by a sequence of impulses. For instance, the stability for first-order impul-
sive SPDSs was discussed by using integral inequalities in [–]. The authors in [–]
discussed the existence, controllability, and stability of mild solutions of second-order im-
pulsive stochastic systems.

The papers mentioned above focus on stochastic systems with finite delays. Recently,
the study of stochastic systems with infinite delay [–] has also been reported. For ex-
ample, Ren and Sakthivel [] discussed existence, uniqueness, and stability of a mild solu-
tion for second-order neutral stochastic evolution systems with infinite delay and Poisson
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jumps by fixed point theory. Yue [] discussed the existence of mild solutions of second-
order neutral impulsive stochastic evolution systems with infinite delay by contraction
theory. The authors in [, ] extended second-order stochastic systems with infinite
delay to second-order jump systems and second-order integro-differential systems.

With motivation from the above discussions, in order to overcome the difficulty of im-
pulses and infinite delays, in this paper we first establish a new integral inequality with re-
spect to impulses and infinite delays, which makes an important contribution to stability
analysis of the second-order SNPFSs subject to infinite delays and impulses. The integral
inequality is new and different from the above papers since the impulses and infinite de-
lays exist in the system. The inequality with finite delays in [–, ] is extended to the
inequality with infinite delays and impulses such that it is effective for the stochastic sys-
tems with infinite delays and impulses. By the new inequality, together with the stochastic
analysis technique, some sufficient conditions for stability are obtained.

The rest of this paper is organized as follows. In Section , some preliminaries are intro-
duced. Section  presents stability results by establishing a new integral inequality with
impulses and infinite delays and stochastic analysis technique. In Section , we give an
example to show the effectiveness of the obtained results.

2 Preliminaries
In this paper, (�,F, {Ft}t≥,P) is a complete probability space equipped with some fil-
tration Ft (t ≥ ) satisfying the usual conditions, i.e., the filtration is right continuous
and F contains all F-null sets. Let � and � be two real separable Hilbert spaces and
L(�,�) be the space of bounded linear operators from � to �. ‖ · ‖ denotes the norms
in �,�, and L(�,�). C((–∞, ],�) is the space of all bounded and continuous func-
tions ϕ from (–∞, ] to � with the norm ‖ · ‖C = sup–∞<θ≤ ‖ϕ(θ )‖. J is the family of all
Ft (t ≥ )-measurable and C((–∞, ],�)-valued random variables. Let the stochastic pro-
cess w(t) be a Q-Wiener process and σ ∈ L(�,�) be a Q-Hilbert-Schmidt operator with
‖σ‖

L


= tr(σQσ ∗) < +∞. L
(�,�) denotes the space of all Q-Hilbert- Schmidt operators

σ : � → �. For details, we can refer to [] and the references therein.
Consider the following second-order stochastic neutral partial functional systems

(SNPFSs) subject to infinite delays and impulses:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d[y′(t) – μ(t, yt)] = [Ay(t) + f (t, yt)] dt + g(t, yt) dw(t), t ≥ , t 
= tj, j = , , . . . ,
�y(tj) = Ij(y(t–

j )), j = , , . . . ,
�y′(tj) = Ĩj(y(t–

j )), j = , , . . . ,
y(·) = ϕ ∈ J, y′() = �,

()

where � is also an F-measurable �-valued random variable independent of the Wiener
process w(t). A : D(A) ⊂ � → � is the infinitesimal generator of a strongly continuous
cosine family on �; f ,μ : [, +∞) × J→ �, g : [, +∞) × J → L

(�,�), yt : (–∞, ] →
�, yt(θ ) = y(t + θ ) (t ≥ ),  < t < t < · · · < tj < · · · , and limj→+∞ tj = +∞. Ij ,̃ Ij : J → H ,
� ξ (t) = ξ (t+) – ξ (t–), where ξ (t+) and ξ (t–) denote the right and left limits of ξ at t, re-
spectively.

Let {C(t) : t ∈ R} ⊂ L(�,�) be a strongly continuous cosine family (see [] and the
references therein) and the corresponding strongly continuous sine family {S(t) : t ∈ R} ⊂
L(�,�) be defined by S(t)y =

∫ t
 C(s)y ds, t ∈ R, y ∈ �. The generator A : � → � of

{C(t) : t ∈ R} is defined by Ay = d

dt C(t)y|t= for all y ∈ D(A) = {y ∈ � : C(·)y ∈ C(R,�)}.
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Lemma  ([]) Let A be the infinitesimal generator of a cosine family of operators {C(t) :
t ∈ R}. Then:

(i) There exist δ∗ ≥  and β ≥  such that ‖C(t)‖ ≤ δ∗eβt and hence ‖S(t)‖ ≤ δ∗eβt .
(ii) For  ≤ s ≤ r < +∞, A

∫ r
s S(u)y du = [C(r) – C(u)]y.

(iii) There exists δ∗∗ ≥  such that for  ≤ r ≤ s < +∞ ‖S(s) – S(r)‖ ≤ δ∗∗| ∫ s
r eβ|θ | dθ |.

Lemma  ([]) For any p ≥  and for an L
(�,�)-valued predictable process y(·) we have

sup
s∈[,t]

E
∥
∥
∥
∥

∫ s


y(v) dw(v)

∥
∥
∥
∥

p

≤ cp

(∫ t



(
E
∥
∥y(v)

∥
∥p

L


) 
p dv

)p/

, t ∈ [, +∞),

where cp = (p(p – )/)p/.

Definition  An �-value stochastic process y(t) (t ∈ R) is called a mild solution of sys-
tem (), if

(i) y(t) is adapted to Ft (t ≥ ) and has a càdlàg path on t ≥  almost surely.
(ii) For t ∈ [, +∞), almost surely

y(t) = C(t)ϕ + S(t)
(
ξ – μ(,ϕ)

)
+

∫ t


C(t – ν)μ(ν, yν) dν

+
∫ t


S(t – ν)f (ν, yν) dν +

∫ t


S(t – ν)g(ν, yν) dw(ν)

+
∑

<tj<t

C(t – tj)Ij
(
y
(
t–
j
))

+
∑

<tj<t

S(t – tj )̃Ij
(
y
(
t–
j
))

. ()

Definition  We say there is a mild solution of system (), or for simplicity system ()
is said to be pth (p ≥ ) moment exponentially stable, if there exist constants γ >  and
N >  such that

E
∥
∥y(t)

∥
∥p ≤ Ne–γ t , t ≥ , p ≥ ,

for the initial data ϕ ∈ J.

3 Main results
In the section, we will establish exponential stability of system () by some integral in-
equalities. Thus we need to employ the following assumptions:

(A) For some constants α ≥ , a > , and b > , ‖C(t)‖ ≤ αe–bt and ‖S(t)‖ ≤ αe–at , t ≥ .
(A) There exist constants Li >  (i = , , ) and a function κ : (–∞, ] → [, +∞) with

∫ 
–∞ κ(t) dt =  and

∫ 
–∞ κ(t)e–�t dt < +∞ for � > , such that

∥
∥μ(t, y) – μ(t, y)

∥
∥ ≤ L

∫ 

–∞
κ(ϑ)

∥
∥y(t + ϑ) – y(t + ϑ)

∥
∥dϑ ,

∥
∥f (t, y) – f (t, y)

∥
∥ ≤ L

∫ 

–∞
κ(ϑ)

∥
∥y(t + ϑ) – y(t + ϑ)

∥
∥dϑ ,

∥
∥g(t, y) – g(t, y)

∥
∥
L


≤ L

∫ 

–∞
κ(ϑ)

∥
∥y(t + ϑ) – y(t + ϑ)

∥
∥dϑ ,

and μ(t, ) = f (t, ) = g(t, ) =  for any y, y ∈ J and t ≥ .
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(A) For y, y ∈ � and
∑+∞

j= αj < +∞,
∑+∞

j= βj < +∞, there exist positive numbers αj,βj

(j = , , . . .) such that

∥
∥Ij(y) – Ij(y)

∥
∥ ≤ αj‖y – y‖,

∥
∥̃Ij(y) – Ĩj(y)

∥
∥ ≤ βj‖y – y‖,

and Ij() = Ĩj() = .

Remark  References [, ] discussed the existence of mild solutions of second-order
stochastic neutral partial functional equations with infinite delay or with finite delay, re-
spectively. Similarly, we can show that for system () there exists a unique mild solution
under the conditions (A)-(A). Also, it is obvious that system () has a unique trivial mild
solution when the initial value ϕ = .

To obtain exponential stability of system (), we first establish the following integral in-
equality with impulses and infinite delays.

Lemma  Suppose that η,η ∈ (,�] and there exist constants ζi >  (i = , , , ) and a
function � : R → [, +∞) such that ζ

η
+ ζ

η
+

∑+∞
j= (aj + bj) < , and

�(t) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζe–ηt + ζe–ηt + ζ
∫ t

 e–η(t–s) ∫ 
–∞ κ(ϑ)�(s + ϑ) dϑ ds

+ ζ
∫ t

 e–η(t–s) ∫ 
–∞ κ(ϑ)�(s + ϑ) dϑ ds

+
∑

tj<t aje–η(t–tj)�(t–
j ) +

∑
tj<t bje–η(t–tj)�(t–

j ), t ≥ ,
ζe–ηt + ζe–ηt , t ∈ (–∞, ],

()

holds. Then �(t) ≤ Ne–δt , t ∈ (–∞, +∞), where δ ∈ (,η ∧ η) is a root of the inte-
gral equation: ( ζ

η–δ
+ ζ

η–δ
)
∫ 

–∞ κ(ϑ)e–δϑ dϑ +
∑+∞

j= (aj + bj) =  and N = max{ζ + ζ,
ζ(η–δ)

ζ
∫ 

–∞ κ(ϑ)e–δϑ dϑ
, ζ(η–δ)

ζ
∫ 

–∞ κ(ϑ)e–δϑ dϑ
} > .

Proof Let F(ζ ) = ( ζ
η–ζ

+ ζ
η–ζ

)
∫ 

–∞ κ(ϑ)e–ζϑ dϑ +
∑+∞

j= (aj + bj) – , then it is obvious that
there exists a positive constant δ ∈ (,η ∧ η), such that F(δ) = .

For any ε >  and let

Nε = max

{

ζ + ζ + ε,
(η – δ)(ζ + ε)

ζ
∫ 

–∞ κ(ϑ)e–δϑ dϑ
,

(η – δ)(ζ + ε)
ζ

∫ 
–∞ κ(ϑ)e–δϑ dϑ

}

> . ()

Now we only need to claim that () implies

�(t) ≤ Nεe–δt , t ∈ (–∞, +∞). ()

Obviously, for t ∈ (–∞, ], () holds. Next we will prove () by the contradiction method.
Assume that there exists a t >  such that

�(t) < Nεe–δt , t ∈ (–∞, t), �(t) = Nεe–δt . ()
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Note that δ ∈ (,η ∧ η), from () we have

�(t) ≤ ζe–ηt + ζe–ηt + ζNε

∫ t


e–η(t–s)

∫ 

–∞
κ(ϑ)e–δ(s+ϑ) ds

+ ζNε

∫ t


e–η(t–s)

∫ 

–∞
κ(ϑ)e–δ(s+ϑ) dϑ ds

+ Nε

∑

tj<t
aje–η(t–tj)e–δtj + Nε

∑

tj<t
bje–η(t–tj)e–δtj

≤
(

ζ –
Nεζ

η – δ

∫ 

–∞
κ(ϑ)e–δϑ dϑ

)

e–ηt +
(

ζ –
Nεζ

η – δ

∫ 

–∞
κ(ϑ)e–δϑ dϑ

)

e–ηt

+

(
ζ

η – δ

∫ 

–∞
κ(ϑ)e–δϑ dϑ +

ζ

η – δ

∫ 

–∞
κ(ϑ)e–δϑ dϑ

+
+∞∑

j=

(aj + bj)

)

Nεe–δt . ()

By (), we have

ζ –
ζNε

η – δ

∫ 

–∞
κ(ϑ)e–δϑ dϑ ≤ ζ –

ζ

η – δ

∫ 

–∞
κ(ϑ)e–δϑ dϑ

(η – δ)(ζ + ε)
ζ

∫ 
–∞ κ(ϑ)e–δϑ dϑ

< 

and

ζ –
Nεζ

η – δ

∫ 

–∞
κ(ϑ)e–δϑ dϑ ≤ ζ –

ζ

η – δ

∫ 

–∞
κ(ϑ)e–δϑ dϑ

(η – δ)(ζ + ε)
ζ

∫ 
–∞ κ(ϑ)e–δϑ dϑ

< .

Thus, () yields �(t) < Nεe–δt , which contradicts (), that is, () holds. Since ε >  is
small enough, by (), we have �(t) ≤ Ne–δt , t ≥ , where N = max{ζ +ζ, ζ(η–δ)

ζ
∫ 

–∞ κ(ϑ)e–δϑ dϑ
,

ζ(η–δ)
ζ

∫ 
–∞ κ(ϑ)e–δϑ dϑ

} > . The proof is completed. �

Remark  Lemma , which is different from the lemmas of [, , ], plays an important
role here. The main lemmas in [, , ] cannot be applied in the present study because
of the effects of impulses and infinite delays. The main lemma of [] aims at first-order
stochastic systems, while that of [] focuses on finite constant delay. Our lemma is effec-
tive to establish the stability of system (). It is clear that the lemma can deal with impulses
and infinite delay terms.

Theorem  Assume that (A)-(A) hold and a, b ∈ (,�], and for p ≥ ,

p–αpLp
b–p + p–αpLp

 a–p + p–αpLp
a– p



(
p(p – )



) p

(

(p – )
p – 

)– p


+ p–αp

( +∞∑

j=

βj

)p

+ p–αp

( +∞∑

j=

αj

)p

< . ()

Then system () is pth moment exponentially stable. Especially, when p =  system () is
mean square exponentially stable provided αL

b– + αL
 a– + αL

a– + α(
∑+∞

j= βj) +
α(

∑+∞
j= αj) < /.
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Proof By (), we have

E
∥
∥y(t)

∥
∥p = E

∥
∥
∥
∥C(t)ϕ + S(t)

(
� – μ(,ϕ)

)
+

∫ t


C(t – � )μ(� , y� ) d�

+
∫ t


S(t – � )f (� , y� ) d� +

∫ t


S(t – � )g(� , y� ) dw(� )

+
∑

<tj<t

C(t – tj)Ij
(
y
(
t–
j
))

+
∑

<tj<t

S(t – tj )̃Ij
(
y
(
t–
j
))

∥
∥
∥
∥

p

≤ p–αpE‖ϕ‖pe–bt + p–αpE
∥
∥� – μ(,ϕ)

∥
∥pe–at

+ p–E
∥
∥
∥
∥

∫ t


C(t – � )μ(� , y� ) d�

∥
∥
∥
∥

p

+ p–E
∥
∥
∥
∥

∫ t


S(t – � )f (� , y� ) d�

∥
∥
∥
∥

p

+ p–
∥
∥
∥
∥

∫ t


S(t – � )g(� , y� ) dw(� )

∥
∥
∥
∥

p

+ p–E
∥
∥
∥
∥

∑

<tj<t

C(t – tj)Ij
(
y
(
t–
j
))

∥
∥
∥
∥

p

+ p–E
∥
∥
∥
∥

∑

<tj<t

S(t – tj )̃Ij
(
y
(
t–
j
))

∥
∥
∥
∥

p

. ()

By (A), (A), (A), and the Hölder inequality, we have

E
∥
∥
∥
∥

∫ t


C(t – � )μ(� , y� ) d�

∥
∥
∥
∥

p

≤ αp
(∫ t



(
e–b(t–� )(p+)/p)

p
p– d�

)p– ∫ t


e–b(t–� )E

∥
∥μ(� , y� )

∥
∥pd�

≤ αpb–p
∫ t


e–b(t–� )E

∥
∥μ(� , y� ) – μ(� , ) + μ(� , )

∥
∥pd�

≤ αpLp
b–p

∫ t


e–b(t–� )E

(∫ 

–∞
κ(ϑ)

∥
∥y(� + ϑ)

∥
∥dϑ

)p

d� .

Similarly, we have

E
∥
∥
∥
∥

∫ t


S(t – � )f (� , y� ) d�

∥
∥
∥
∥

p

≤ αpLp
 a–p

∫ t


e–a(t–� )E

(∫ 

–∞
κ(ϑ)

∥
∥y(� + ϑ)

∥
∥dϑ

)p

d� .

By (A) and (A), we have

∥
∥
∥
∥

∑

<tj<t

C(t – tj)Ij
(
y
(
t–
j
))

∥
∥
∥
∥

p

≤ αpE
( ∑

<tj<t

e–b(t–tj)αj
∥
∥y

(
t–
j
)∥
∥

)p

≤ αpE

( +∞∑

j=

α
p–

p
j α


p
j e–b(t–tj)

∥
∥y

(
t–
j
)∥
∥

)p
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≤ αp

( +∞∑

j=

αj

)p–
∑

<tj<t

qje–pb(t–tj)E
∥
∥y

(
t–
j
)∥
∥p

≤ αp

( +∞∑

j=

αj

)p–
∑

<tj<t

αje–b(t–tj)E
∥
∥y

(
t–
j
)∥
∥p

and

∥
∥
∥
∥

∑

<tj<t

S(t – tj )̃Ij
(
y
(
t–
j
))

∥
∥
∥
∥

p

≤ αp

( +∞∑

j=

βj

)p–
∑

<tj<t

βje–a(t–tj)E
∥
∥y

(
t–
j
)∥
∥p.

From Lemma , we obtain

E
∥
∥
∥
∥

∫ t


S(t – � )g(� , y� ) dw(� )

∥
∥
∥
∥

p

≤ cpα
p
(∫ t



(
e–ap(t–� )E

∥
∥g(� , y� )

∥
∥p

L


) 
p d�

) p


= cpα
p
(∫ t


e–a(t–� )(E

∥
∥g(� , y� )

∥
∥p

L


) 
p d�

) p


≤ cpα
p
(∫ t


e– a(p–)

p– (t–� ) d�

) p
 – ∫ t


e–a(t–� )E

∥
∥g(� , y� )

∥
∥p

L

d�

≤ cpα
pLp



(
a(p – )

p – 

)– p

∫ t


e–a(t–� )E

(∫ 

–∞
κ(ϑ)

∥
∥y(� + ϑ)

∥
∥dϑ

)p

d� .

These together with () yield

E
∥
∥y(t)

∥
∥p

≤ p–αpE‖ϕ‖pe–bt + p–αpE
∥
∥� – μ(,ϕ)

∥
∥pe–at

+ p–αpLp
b–p

∫ t


e–b(t–� )

∫ 

–∞
κ(ϑ)E

∥
∥y(� + ϑ)

∥
∥p dϑ d�

+ p–αpLp
 a–p

∫ t


e–a(t–� )

∫ 

–∞
κ(ϑ)E

∥
∥y(� + ϑ)

∥
∥p dϑ d�

+ p–cpα
pLp



(
a(p – )

p – 

)– p

∫ t


e–a(t–� )

∫ 

–∞
κ(ϑ)E

∥
∥y(� + ϑ)

∥
∥p dϑ d�

+ p–αp

( +∞∑

j=

αj

)p–
∑

<tj<t

αje–b(t–tj)E
∥
∥y

(
t–
j
)∥
∥p

+ p–αp

( +∞∑

j=

βj

)p–
∑

<tj<t

βje–a(t–tj)E
∥
∥y

(
t–
j
)∥
∥p. ()

Obviously, from () there exist two positive numbers α′ and α′′ such that E‖y(t)‖ ≤
α′e–bt + α′′e–at , for any t ∈ (–∞, ].

Let ζ̆ = p–αpE‖ϕ‖p, ζ̆ = p–αpE‖�–μ(,ϕ)‖p, ζ̆ = p–αpLp
b–p, ζ̆ = p–αpLp

 a–p +
p–cpα

pLp
( a(p–)

p– )– p
 , η̌j = p–αp(

∑+∞
j= αj)p–αj, η̆j = p–αp(

∑+∞
j= βj)p–βj, If ζ̆

b + ζ̆
a +
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∑+∞
j= η̆ +

∑+∞
j= η̌ < , i.e. () holds, then by Lemma , we obtain E‖y(t)‖ ≤ M̂e–δ̂t , t ∈

[, +∞), where δ̂ ∈ (,η ∧η) and δ̂ is a positive root of the equation ( ζ̆
b–δ

+ ζ̆
a–δ

)
∫ 

–∞ κ(ϑ) ×
e–δϑ dϑ +

∑+∞
j= (αj + βj) = , M̂ = {p–αp(E‖ϕ‖p + E‖� – μ(,ϕ)‖p), p–αpb–pLp

,
p–αp(a–pLp

 + cpLp
a– p

 ( (p–)
p– )– p

 )} > . The proof is completed. �

If D(t, yt) ≡ , system () becomes the following second-order SPFDSs subject to infinite
delays and being impulsive:

⎧
⎪⎨

⎪⎩

dy′(t) = [Ay(t) + f (t, yt)] dt + g(t, yt) dw(t), t ≥ , t 
= tj, j = , , . . . ,
�y(tj) = Ij(y(t–

j )), �y′(tj) = Ĩj(y(t–
j )), j = , , . . . ,

y(·) = ϕ ∈ J, y′() = �,
()

Corollary  Under (A)-(A), and a, b ∈ (,�], system () is pth (p ≥ ) moment exponen-
tially stable provided

p–αpLp
 a–p + p–αpLp

a– p


(
p(p – )



) p

(

(p – )
p – 

)– p


+ p–αp

( +∞∑

j=

βj

)p

+ p–αp

( +∞∑

j=

αj

)p

< . ()

Moreover, if p =  system () is mean square exponentially stable provided αL
 a– +

αL
a– + α(

∑+∞
j= βj) + α(

∑+∞
j= αj) < .

If system () is not subject to impulses, system () becomes the following second-order
SNPFSs:

{
d[y′(t) – μ(t, yt)] = [Ay(t) + f (t, yt)] dt + g(t, yt) dw(t), t ≥ , t 
= tj, j = , , . . . ,
y(·) = ϕ ∈ J, y′() = �,

()

Corollary  Under (A)-(A), and a, b ∈ (,�], system () is pth (p ≥ ) moment expo-
nentially stable provided

p–αpLp
b–p + p–αpLp

 a–p + p–αpLp
a– p



(
p(p – )



) p

(

(p – )
p – 

)– p


< . ()

Moreover, if p =  system () is mean square exponentially stable provided αL
b– +

αL
 a– + αL

a– < .

Remark  System () with finite delays or without impulses has been discussed in [,
] and [], respectively. In this paper, we discuss the second-order stochastic neutral
partial functional differential equations subject to infinite delays and impulses, which is
more general. In addition, the method of establishing stability in [, , , , ] is fixed
point theory. However, the method different from the above papers is to establish a new
integral inequality with respect to impulses and infinite delays. Although [, –, ,
] also utilize the integral inequalities techniques to study stochastic partial differential
systems, these inequalities cannot be applied in this paper. In the sense, Theorem  is a
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generalization and development of these existing results. Finally, it should be pointed out
that the results are valid for system () with finite delays. Our results can easily be extended
to second-order stochastic systems driven by a Lévy process.

Remark  If p–αpLp
 a–p + p–αpLp

a– p
 ( p(p–)

 )
p
 ( (p–)

p– )– p
 < , system () without neu-

tral term is also pth moment exponentially stable. If αL
b– + αL

 a– + αL
a– < /,

system () without neutral term is mean square exponentially stable.

4 An example
In this section, we will discuss an example to show the theoretical results. Consider the
following second-order stochastic neutral partial functional systems subject to infinite de-
lays and impulses:

d
[

∂

∂t
y(t, x) – μ(t, yt)

]

=
[

∂

∂x y(t, x) + f (t, yt)
]

dt + g(t, yt) dw(t),

t ≥ , x ∈ [,π ],

�y(tj) =
u

j y
(
t–
j
)
, j = , , . . . ,

�y′(tj) =
u

j y
(
t–
j
)
, j = , , . . . ,

()

with y(s) = ϕ(s) ∈ J, y′() = ξ , y(t, ) = y(t,π ) = , t ≥ , ui > , i = , , , and u ≥ , u ≥ .
Let � = L[,π ] and � = R with the norm ‖ · ‖. Let A = ∂

∂x : � → � with D(A) =
{y ∈ � : y, ∂

∂x y be absolutely continuous, ∂

∂x y ∈ �, y() = y(π ) = }. Thus it is clear that
‖C(t)‖ ≤ e–πt and ‖S(t)‖ ≤ e–πt , t ≥ .

Now let

μ(t, yt) �
uπ





∫ 

–∞
(–� )– 

 eπ� y(t + � , x) d� ,

f (t, yt) �
uπ





∫ 

–∞
(–� )– 

 eπ� y(t + � , x) d� ,

g(t, yt) �
uπ



∫ 

–∞
(–� )– 

 eπ� y
(
(t + � ), x

)
d� ,

for any yt ∈ J. It is clear that the conditions of Theorem  hold with α = , b = a = π, L =
uπ

 , L = uπ

 , L = uπ

 , aj = u
j ,βj = u

j (j = , , . . .). Then, by Theorem , system () is
pth moment exponentially stable provided

up
 + up

 + up


(
p(p – )



) p

(

(p – )
p – 

)– p


+
(

uπ




)p

+
(

uπ




)p

< . ()

Especially, when p = , system () is mean square exponentially stable provided u
 + u

 +
u

 + u
π

 + u
π

 < .
If system () has no impulse term, i.e. u = u = , then system () becomes one of

the second-order neutral stochastic systems with infinite delays. Now let α = , b = a =
π, L = uπ

 , L = uπ

 , L = uπ

 . Then, by Corollary , system () without impulses is
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pth moment exponentially stable provided

up
 + up

 + up


(
p(p – )



) p

(

(p – )
p – 

)– p


< ;

and if u
 + u

 + u
 < , system () without impulses is mean square exponentially stable.

Remark  It is clear that the algebraic conditions of stability in the example are easily
computed. The example also shows that the results of this paper are effective.

5 Conclusions
In this paper we have studied second-order stochastic neutral partial functional systems
subject to infinite delays and impulses. We first established a new integral inequality with
respect to impulses and then give some algebraic criteria to ensure pth moment expo-
nential stability of the second-order stochastic impulsive systems. The results show some
earlier results are generalized and improved. Finally, an example was given to illustrate the
effectiveness of the theoretical results. Further research will be to study controller design
and noise stabilization as well as its possible extension to second-order stochastic systems
driven by Lévy jumps.
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