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Abstract
We investigate state estimation for a class of discrete-time recurrent neural networks
with leakage delay and time-varying delay. The design method for the state estimator
to estimate the neuron states through available output measurements is given.
A novel delay-dependent sufficient condition is obtained for the existence of state
estimator such that the estimation error system is globally asymptotically stable.
Based a novel double summation inequality and reciprocally convex approach, an
improved stability criterion is obtained for the error-state system. Two numerical
examples are given to demonstrate the effectiveness of the proposed design
methods. The simulation results show that the leakage delay has a destabilizing
influence on a neural network system.
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1 Introduction
Neural networks have become a hot research topic in the past few years, and many prob-
lems such as feedback control [], stability [–], dissipativity and passivity [–] are
being taken to treat in various dynamic neural networks systems. Since only partial infor-
mation about the neuron states is available in the network output of large-scale complex
networks, it is important and necessary to estimate the neuron states through available
measurements. The state estimation problem is studied for neural networks with time-
varying delays in []. A novel delay partition approach in [] was proposed to study the
state estimation problem of recurrent neural networks. The H∞ state estimation for static
neural networks is studied in [, ].

Most of works on state estimation for neural networks are focused on the continuous-
time cases [–]. However, discrete-time neural networks play an important role when
implementing the dynamic system in a digital way. In recent years, some significant results
about state estimation problem for discrete-time neural networks have been obtained in
[–]. For example, the robust state estimation problem for discrete-time bidirectional
associative memory (BAM) neural networks is studied in []. A sufficient condition is
obtained such that the error estimate system for discrete-time BAM neural networks is
globally exponentially stable in []. Wu et al. [] studied the state estimation for discrete-
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time neural networks with time-varying delay. A typical time delay called leakage delay
has a tendency to destabilize a system. Since the leakage delay has a great impact on the
dynamical behavior of neural networks, it is necessary to take the effect of leakage delay
on state estimation of neural networks into account. Recently, the neural networks with
leakage delay have received much attention [–, , , ]. However, there are few
research results on the state estimation for discrete-time neural networks with leakage
delay in the existing literature.

Motivated by the above discussion, we consider the problem of state estimation for
discrete-time recurrent neural networks with leakage delay. This paper aims to design
a state estimator via the available output measurement such that the estimation error sys-
tem is asymptotically stable. The major contributions of this paper can be summarized as
follows: () A state estimator and a delay-dependent stability criterion for the error system
of discrete-time neural networks with leakage delay in terms of linear matrix inequalities
(LMIs) are developed. () Based on a novel double summation inequality, reciprocally con-
vex method, and three zero-value equalities, a less conservative stability criterion with less
computational complexity is derived in terms of LMIs.

Notation Throughout this paper, Z denotes the set of integers, Rn is the n-dimensional
Euclidean vector space, and R

m×n denotes the set of all m × n real matrices. The super-
script T stands for the transpose of a matrix; In and m×n represent the n × n identity
matrix and m × n zero matrix, respectively; ‖ · ‖ refers to the Euclidean vector norm or
the induced matrix norm. The symbol ∗ denotes the symmetric term in a symmetric ma-
trix, and Sym{X} = X + XT .

2 Problem formulation and preliminaries
Consider the following discrete-time recurrent neural networks with leakage delay:

x(k + ) = Ax(k – σ ) + Wg
(
x(k)

)
+ Wg

(
x
(
k – τ (k)

))
+ J ,

y(k) = Cx(k) + φ
(
k, x(k)

)
,

()

where x(k) = [x(k), x(k), . . . , xn(k)]T ∈ R
n is the state vector, g(x(k)) = [g(x(k)), g(x(k)),

. . . , gn(xn(k))]T ∈ R
n denotes the activation function, A = diag{a, a, . . . , an} is the state

feedback matrix with entries |ai| < , W ∈ R
n×n and W ∈ R

n×n are the interconnection
weight matrices, J denotes an external input vector, y(k) ∈ R

m is the measurement out-
put, φ(k, ·) is the neuron-dependent nonlinear disturbance on the network outputs, C is
a known constant matrix of appropriate dimension, τ (k) denotes the time-varying delay
satisfying  < τ ≤ τ (k) ≤ τ, where τ, τ are known positive integers, and σ is a known
positive integer representing the leakage delay.

Assumption  [] For any u, v ∈ R, u �= v, each activation function gi(·) in () satisfies

l–
i ≤ gi(u) – gi(v)

u – v
≤ l+

i (i = , , . . . , n),

where l–
i and l+

i are known constants.
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Assumption  [] The function φ(k, ·) is assumed to be globally Lipschitz continuous,
that is,

∥
∥φ(k, u) – φ(k, v)

∥
∥ ≤ ∥

∥L(u – v)
∥
∥ for all u, v ∈R

n, u �= v,

where L is a known constant matrix of appropriate dimension.

Now, the full-order state estimator for system () is of the form

x̂(k + ) = Ax̂(k – σ ) + Wg
(
x̂(k)

)
+ Wg

(
x̂
(
k – τ (k)

))
+ J + K

[
y(k) – ŷ(k)

]
, ()

where x̂(k) is the estimation of the state vector x(k), ŷ(k) is the estimation of the mea-
surement output vector y(k), and K ∈ R

n×m is the estimator gain matrix to be designed
later.

Let the error state vector be e(k) = x(k) – x̂(k). Then we can obtain the following error-
state system from () and ():

e(k + ) = Ae(k – σ ) + Wf (k) + Wf
(
k – τ (k)

)
– KCe(k) – Kψ(k), ()

where f (k) = g(x(k)) – g(x̂(k)) and ψ(k) = φ(k, x(k)) – φ(k, x̂(k)).
From Assumption  it can be easily seen that l–

i ≤ fi(k)
ei(k) ≤ l+

i for all ei(k) �= , i = , , . . . , n.
Before proceeding further, we introduce the following three lemmas.

Lemma  [] For any vectors ξ, ξ in R
m, given a positive definite matrix Q in R

n×n, any
matrices W, W in R

n×m, and a scalar α in the interval (, ), if there exists a matrix X in
R

n×n such that
[ Q X

∗ Q
]

> , then the following inequality holds:


α

ξT W T
 QWξ +


 – α

ξT W T
 QWξ ≥

[
Wξ

Wξ

]T [
Q X
∗ Q

][
Wξ

Wξ

]

.

Lemma  [] For a given matrix Z > , any sequence of discrete-time variables y in
[–h, ] ∩Z →R

n, the following inequality holds:

∑

i=–h+

∑

k=i

yT (k)Zy(k) ≥ (h + )
h

�T
 Z� +

(h + )(h + )
h(h – )

�T
 Z�,

where y(k) = x(k) – x(k – ), � = x() – 
h+

∑
i=–h x(i), � = x() + 

h+
∑

i=–h x(i) –


(h+)(h+)
∑

i=–h
∑

k=i x(k).

Lemma  [] For given matrix Z > , three nonnegative integers a, b, k satisfying a ≤ b ≤
k, define the function ω(k, a, b) as

ω(k, a, b) =

⎧
⎨

⎩


b–a [

∑k–a–
s=k–b x(s) + x(k – a) – x(k – b)], a < b,

x(k – a), a = b.
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Then, the following summation inequality holds:

–(b – a)
k–a–∑

s=k–b


xT (s)Z
x(s) ≤ –

[
ν

ν

]T [
Z 
 Z

][
ν

ν

]

,

where 
x(s) = x(s + ) – x(s), ν = x(k – a) – x(k – b), and ν = x(k – a) + x(k – b) – ω(k, a, b).

3 Main results
In this section, we consider the asymptotic stability of the error-state system (). For
simplicity, ei ∈ Rn×n (i = , , . . . , ) are defined as block entry matrices (e.g., e =
[n×n, In, n×n]T ). The other notations are defined as


e(k) = e(k + ) – e(k), τd = τ – τ,

Lm = diag
{

l–
 , l–

 , . . . , l–
n
}

, Lp = diag
{

l+
 , l+

 , . . . , l+
n
}

,

Zi =

[
 Zi

∗ Zi

]

(i = , , ),

ξ (k) =

[

eT (k), eT (k – τ), eT (k – τ), eT(
k – τ (k)

)
, eT (k – σ ),

k–∑

s=k–τ

eT (s),

k––τ∑

s=k–τ (k)

eT (s),
k––τ (k)∑

s=k–τ

eT (s),
k–∑

s=k–σ

eT (s),
eT (k),
eT (k – τ),


eT (k – τ), f T (k), f T (k – τ), f T (k – τ), f T(
k – τ (k)

)
,ψT (k)

]T

,

η(k) =

[

eT (k), eT (k – τ), eT (k – τ),
k–∑

s=k–τ

eT (s),
k––τ∑

s=k–τ

eT (s)

]T

,

η(k) =
[
eT (k),
eT (k)

]T ,

 = diag
{
τZ, –τZ + τdZ, –τd(Z – Z), –τdZ

}
,

 = N + Z, =

[
N + Z M

∗ N + Z

]

,

π = [e + e, e + e, e + e, e – e + e, e – e + e + e],

π = [e, e, e, e, e + e],

π = [e, e], π = [e, e], π = [e, e], π = [e, e, e, e],

π = [e, e – e], π = [e, e – e, e, e – e],

� = πPπT
 – πPπT

 ,

� =
(
e + e – (e + e – e)A

)
S

(
e + e – (e + e – e)A

)T

– (e – eA)S(e – eA)T + σ [e, e]S[e, e]T

– [e, e – e]S[e, e – e]T ,

� = πQπ
T
 – π(Q – Q)πT

 – πQπ
T
 ,
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� = τ 
 πNπ

T
 + τ 

d πNπ
T
 + ππ

T
 – ππ

T
 – ππ

T
 ,

� = – Sym
{

(e – eLm)H(e – eLp)T + (e – eLm)H(e – eLp)T

+ (e – eLm)H(e – eLp)T + (e – eLm)H(e – eLp)T}
,

ϒ = ε
(
eLT LeT

 – eeT


)
, ϒ = e + e,

ϒ = X
(
AeT

 – eT
 – eT

 + WeT
 + WeT


)

– Y
(
CeT

 + eT


)
,

� =
∑

i=

�i + � + ϒ + Sym{ϒϒ}.

Theorem  For given integers  < τ < τ,  < σ , the error-state system () is asymptotically
stable if there exist symmetric positive definite matrices P ∈R

n×n, S ∈R
n×n, S ∈R

n×n,
Q ∈ R

n×n, Q ∈R
n×n, N ∈R

n×n, N ∈R
n×n, positive diagonal matrices Hi ∈R

n×n

(i = , , , ), a scalar ε > , symmetric matrices Zi ∈ R
n×n (i = , , ), and matrices M ∈

R
n×n, X ∈R

n×n, Y ∈R
n×n satisfying the following LMIs:

� < , ()

i ≥  (i = , ). ()

Furthermore, the estimator gain matrix is given by K = X–Y .

Proof Consider the Lyapunov-Krasovskii functional for system () as follows:

V (k) = V(k) + V(k) + V(k) + V(k), ()

where

V(k) = ηT
 (k)Pη(k),

V(k) =

[

e(k) – A
k–∑

s=k–σ

e(s)

]T

S

[

e(k) – A
k–∑

s=k–σ

e(s)

]

+ σ

–∑

s=–σ

k–∑

u=k+s

ηT
 (u)Sη(u),

V(k) =
k–∑

s=k–τ

ηT
 (s)Qη(s) +

k––τ∑

s=k–τ

ηT
 (s)Qη(s),

V(k) = τ

–∑

s=–τ

k–∑

u=k+s

ηT
 (u)Nη(u) + τd

––τ∑

s=–τ

k––τ∑

u=k+s

ηT
 (u)Nη(u).

Define the forward difference of V (k) as 
V (k) = V (k + ) – V (k). Calculating 
Vi(k)
(i = , , , ), we have


V(k) = ηT
 (k + )Pη(k + ) – ηT

 (k)Pη(k) = ξT (k)�ξ (k), ()


V(k) =

[

e(k + ) – A
k∑

s=k–σ+

e(s)

]T

S

[

e(k + ) – A
k∑

s=k–σ+

e(s)

]
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–

[

e(k) – A
k–∑

s=k–σ

e(s)

]T

S

[

e(k) – A
k–∑

s=k–σ

e(s)

]

+ σ ηT
 (k)Sη(k) – σ

k–∑

s=k–σ

ηT
 (s)Sη(s).

Using Jensen’s inequality in [], we get

–σ

k–∑

s=k–σ

ηT
 (s)Sη(s) ≤ –

( k–∑

s=k–σ

ηT
 (s)

)

S

( k–∑

s=k–σ

η(s)

)

.

So


V(k) ≤ ξT (k)�ξ (k). ()

Obviously,


V(k) = ηT
 (k)Qη(k) – ηT

 (k – τ)Qη(k – τ)

+ ηT
 (k – τ)Qη(k – τ) – ηT

 (k – τ)Qη(k – τ)

= ξT (k)�ξ (k). ()

Inspired by the work of [], for any symmetric matrices Zi of appropriate dimension (i =
, , ), we introduce the following zero equalities:

 = τeT (k)Ze(k) – τeT (k – τ)Ze(k – τ)

– τ

k–∑

s=k–τ

(

eT (s)Z
e(s) + eT (s)Z
e(s)

)
, ()

 = τdeT (k – τ)Ze(k – τ) – τdeT(
k – τ (k)

)
Ze

(
k – τ (k)

)

– τd

k––τ∑

s=k–τ (k)

(

eT (s)Z
e(s) + eT (s)Z
e(s)

)
, ()

 = τdeT(
k – τ (k)

)
Ze

(
k – τ (k)

)
– τdeT (k – τ)Ze(k – τ)

– τd

k––τ (k)∑

s=k–τ

(

eT (s)Z
e(s) + eT (s)Z
e(s)

)
. ()

Using these zero equalities and the Jensen inequality, we have


V(k) = τ 
 ηT

 (k)Nη(k) – τ

k–∑

s=k–τ

ηT
 (s)(N + Z)η(s)

+ τ 
d ηT

 (k – τ)Nη(k – τ) – τd

k––τ∑

s=k–τ (k)

ηT
 (s)(N + Z)η(s)

– τd

k––τ (k)∑

s=k–τ

ηT
 (s)(N + Z)η(s) + ξT (k)ππ

T
 ξ (k)



Qiu et al. Advances in Difference Equations  (2016) 2016:234 Page 7 of 18

≤ τ 
 ηT

 (k)Nη(k) + τ 
d ηT

 (k – τ)Nη(k – τ) + ξT (k)ππ
T
 ξ (k)

–
k–∑

s=k–τ

ηT
 (s)

k–∑

s=k–τ

η(s) –
τd

τ (k) – τ

k––τ∑

s=k–τ (k)

ηT
 (s)(N + Z)

×
k––τ∑

s=k–τ (k)

η(s) –
τd

τ – τ (k)

k––τ (k)∑

s=k–τ

ηT
 (s)(N + Z)

k––τ (k)∑

s=k–τ

η(s).

By Lemma , since  ≥ , we get

–
τd

τ (k) – τ

k––τ∑

s=k–τ (k)

ηT
 (s)(N + Z)

k––τ∑

s=k–τ (k)

η(s)

–
τd

τ – τ (k)

k––τ (k)∑

s=k–τ

ηT
 (s)(N + Z)

k––τ (k)∑

s=k–τ

η(s)

≤ –

[∑k––τ
s=k–τ (k) η(s)

∑k––τ (k)
s=k–τ

η(s)

]T



[∑k––τ
s=k–τ (k) η(s)

∑k––τ (k)
s=k–τ

η(s)

]

.

The difference 
V(k) can be rebounded as


V(k) ≤ ξT (k)�ξ (k). ()

By Assumption , for any positive diagonal matrices Hi = diag{hi, . . . , hin} (i = , , , ), the
following inequality holds:

 ≤ –
n∑

i=

hi
(
fi(k) – l–

i ei(k)
)(

fi(k) – l+
i ei(k)

)

– 
n∑

i=

hi
(
fi(k – τ) – l–

i ei(k – τ)
)(

fi(k – τ) – l+
i ei(k – τ)

)

– 
n∑

i=

hi
(
fi(k – τ) – l–

i ei(k – τ)
)(

fi(k – τ) – l+
i ei(k – τ)

)

– 
n∑

i=

hi
(
fi
(
k – τ (k)

)
– l–

i ei
(
k – τ (k)

))(
fi
(
k – τ (k)

)
– l+

i ei
(
k – τ (k)

))

= ξT (k)�ξ (k). ()

From Assumption , for any positive scalar ε, we can deduce that

 ≤ ε
(
eT (k)LT Le(k) – ψ(k)Tψ(k)

)
= ξT (k)ϒξ (k). ()

On the other hand, to design the gain matrix K , for any matrix X of appropriate dimension,
we use the following zero equality to avoid the nonlinear matrix inequality

 = 
(
eT (k) + 
eT (k)

)
X

[
Ae(k – σ ) – KCe(k) + Wf (k) + Wf

(
k – τ (k)

)

– Kψ(k) – e(k + )
]

= ξT (k) Sym{ϒϒ}ξ (k). ()
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Therefore, from ()-(), the following inequality holds:


V (k) ≤ ξT (k)�ξ (k). ()

Obviously, if � <  and ξ (k) �= , then 
V (k) < , which indicates that the error-state sys-
tem () is asymptotically stable. This completes the proof of Theorem . �

Remark  Differently from methods in [–], we introduce three zero equalities ()-
() to reduce the conservatism of the stability criterion. In [], the authors used the
inequality –PX–P ≤ –P + X (X ≥ ) to deal with the problem of nonlinear matrix in-
equality. In this paper, by employing the zero equality (), the nonlinear matrix inequality
can be avoided. At the same time, the method in our work can provide much flexibility in
solving linear matrix inequalities.

Remark  In order to estimate –
∑t–hm–

j=t–hM
η(j)T Rη(j), the authors in [] divided the

sum into two parts, –
∑t–h(t)–

j=t–hM
ηT

 (j)Rη(j) and –
∑t–hm–

j=t–h(t) η
T
 (j)Rη(j), and then sim-

ply estimated them respectively. In [],
∑k–

i=k+–τ (k) eT (i)Qe(i) was approximated with
∑k–

i=k+–τm eT (i)Qe(i). So the methods in [, ] may bring some conservatism. In this
paper, the reciprocally convex approach and some inequality techniques are employed to
deal with this kind of terms. Tighter upper bounds for these terms are obtained.

Recently, Nam et al. [] obtained a discrete Wirtinger-based inequality. Based on
this inequality, we will reconsider the asymptotic stability of the error-state system ().
For simplicity, ẽi ∈ Rn×n (i = , , . . . , ) are defined as block entry matrices (e.g., ẽ =
[n×n, In, n×n]T ). The other notations are defined as

ξ̃ (k) =

[

eT (k), eT (k – τ), eT (k – τ), eT(
k – τ (k)

)
, eT (k – σ ),

k–∑

s=k–τ

eT (s),

k––τ∑

s=k–τ (k)

eT (s),
k––τ (k)∑

s=k–τ

eT (s),
k–∑

s=k–σ

eT (s),
eT (k),
eT (k – τ),


eT (k – τ), f T (k), f T (k – τ), f T (k – τ), f T(
k – τ (k)

)
,

∑

s=–τ+

k∑

j=k+s

eT (j),ψT (k)

]T

,

π̃ = [ẽ + ẽ, ẽ + ẽ, ẽ + ẽ, ẽ – ẽ + ẽ, ẽ – ẽ + ẽ + ẽ],

π̃ = [ẽ, ẽ, ẽ, ẽ, ẽ + ẽ], π̃ = ẽ – ẽ,

π̃ = ẽ + ẽ –

σ

(ẽ – ẽ + ẽ), π̃ = [ẽ, ẽ], π̃ = [ẽ, ẽ],

π̃ = [ẽ, ẽ], π̃ = [ẽ, ẽ, ẽ, ẽ], π̃ = [ẽ, ẽ – ẽ],

π̃ = [ẽ, ẽ – ẽ, ẽ, ẽ – ẽ], π̃ = ẽ –


τ + 
(ẽ + ẽ),

π̃ = ẽ +
(


τ + 

–


(τ + )(τ + )

)
(ẽ + ẽ) –


(τ + )(τ + )

ẽ,
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�̃ = π̃Pπ̃T
 – π̃Pπ̃T

 ,

�̃ =
(
ẽ + ẽ – (ẽ + ẽ – ẽ)A

)
S

(
ẽ + ẽ – (ẽ + ẽ – ẽ)A

)T

– (ẽ – ẽA)S(ẽ – ẽA)T + σ ẽSẽT
 – π̃Sπ̃

T
 – π̃Sπ̃

T
 ,

�̃ = π̃Qπ̃
T
 – π̃(Q – Q)π̃T

 – π̃Qπ̃
T
 ,

�̃ = τ 
 π̃Nπ̃

T
 + τ 

d π̃Nπ̃
T
 + π̃π̃

T
 – π̃π̃

T
 – π̃π̃

T
,

�̃ =
τ(τ + )


ẽQẽT

 –
(τ + )

τ
π̃Qπ̃

T
 –

(τ + )(τ + )
τ(τ – )

π̃Qπ̃
T
,

�̃ = – Sym
{

(ẽ – ẽLm)H(ẽ – ẽLp)T + (ẽ – ẽLm)H(ẽ – ẽLp)T

+ (ẽ – ẽLm)H(ẽ – ẽLp)T + (ẽ – ẽLm)H(ẽ – ẽLp)T}
,

ϒ̃ = ε
(
ẽLT LẽT

 – ẽẽT


)
, ϒ̃ = ẽ + ẽ,

ϒ̃ = X
(
AẽT

 – ẽT
 – ẽT

 + WẽT
 + WẽT


)

– Y
(
CẽT

 + ẽT


)
,

�̃ =
∑

i=

�̃i + �̃ + ϒ̃ + Sym{ϒ̃ϒ̃}.

Theorem  For given integers  < τ < τ,  < σ , the error-state system () is asymptotically
stable if there exist symmetric positive definite matrices P ∈ R

n×n, S ∈ R
n×n, S ∈ R

n×n,
Q ∈ R

n×n, Q ∈ R
n×n, N ∈ R

n×n, N ∈ R
n×n, Q ∈ R

n×n, positive diagonal matri-
ces Hi ∈ R

n×n (i = , , , ), a scalar ε > , symmetric matrices Zi ∈ R
n×n (i = , , ), and

matrices M ∈R
n×n, X ∈R

n×n, Y ∈R
n×n satisfying the following LMIs:

�̃ < , ()

i ≥  (i = , ). ()

Then, the estimator gain matrix is given by K = X–Y , and the other parameters are defined
as in Theorem .

Proof Defined a Lyapunov-Krasovskii functional as

V (k) = V(k) + V(k) + V(k) + V(k) + V(k), ()

where

V(k) = ηT
 (k)Pη(k),

V(k) =

[

e(k) – A
k–∑

s=k–σ

e(s)

]T

S

[

e(k) – A
k–∑

s=k–σ

e(s)

]

+ σ

–∑

s=–σ

k–∑

u=k+s


eT (u)S
e(u),

V(k) =
k–∑

s=k–τ

ηT
 (s)Qη(s) +

k––τ∑

s=k–τ

ηT
 (s)Qη(s),
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V(k) = τ

–∑

s=–τ

k–∑

u=k+s

ηT
 (u)Nη(u) + τd

––τ∑

s=–τ

k––τ∑

u=k+s

ηT
 (u)Nη(u),

V(k) =
∑

s=–τ+

∑

j=s

k∑

u=k+j

yT (u)Qy(u),

where y(u) = e(u) – e(u – ).
By arguments similar to those in Theorem , we have


Vi(k) ≤ ξ̃T (k)�̃iξ̃ (k) (i = , , ). ()

Calculating the forward difference of V(k) yields


V(k) =

[

e(k + ) – A
k∑

s=k–σ+

e(s)

]T

S

[

e(k + ) – A
k∑

s=k–σ+

e(s)

]

–

[

e(k) – A
k–∑

s=k–σ

e(s)

]T

S

[

e(k) – A
k–∑

s=k–σ

e(s)

]

+ σ 
eT (k)S
e(k) – σ

k–∑

s=k–σ


eT (s)S
e(s).

Lemma  gives

–σ

k–∑

s=k–σ


eT (s)S
e(s)

≤ –

[
ζ

ζ

]T [
S 
 S

][
ζ

ζ

]

= –ξ̃T (k)
(
π̃T

 Sπ̃ – π̃T
 Sπ̃

)
ξ̃ (k),

where ζ = e(k) – e(k – σ ), ζ = e(k) + e(k – σ ) – 
σ

(
∑k–

s=k–σ e(s) + e(k) – e(k – σ )).
So


V(k) ≤ ξ̃T (k)�̃ξ̃ (k). ()

Calculating 
V(k), we get


V(k) =
τ(τ + )



eT (k)Q
e(k) –

∑

s=–τ+

k∑

j=k+s

yT (j)Qy(j).

By Lemma  we obtain the following inequality:

–
∑

s=–τ+

k∑

j=k+s

yT (j)Qy(j)

≤ –
(τ + )

τ
ζ T

 Qζ
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–
(τ + )(τ + )

τ(τ – )

[

e(k) +


τ + 

k∑

s=k–τ

e(s) –


(τ + )(τ + )

∑

s=–τ

k∑

j=k+s

e(j)

]T

× Q

[

e(k) +


τ + 

k∑

s=k–τ

e(s) –


(τ + )(τ + )

∑

s=–τ

k∑

j=k+s

e(j)

]

= –
(τ + )

τ
ζ T

 Qζ –
(τ + )(τ + )

τ(τ – )
ζ T

 Qζ

= ξ̃T (k)
(

–
(τ + )

τ
π̃Qπ̃

T
 –

(τ + )(τ + )
τ(τ – )

π̃Qπ̃
T


)
ξ̃T (k),

where ζ = e(k) – 
τ+

∑k
s=k–τ

e(s), and

ζ = e(k) +
(


τ + 

–


(τ + )(τ + )

) k∑

s=k–τ

e(s) –


(τ + )(τ + )

∑

s=–τ+

k∑

j=k+s

e(j).

Hence,


V(k) ≤ ξ̃T (k)�̃ξ̃ (k). ()

Following a similar procedure as from () to (), we gather from () to () that


V (k) ≤ ξ̃T (k)�̃ξ̃ (k).

Inequality () implies


V (k) ≤ ξ̃T (k)�̃ξ̃ (k) < , ∀ξ̃ (k) �= . ()

Therefore, the error-state system () is asymptotically stable. This completes the proof of
Theorem . �

Remark  In , Nam et al. [] derived a discrete version of the Wirtinger-based in-
tegral inequality. Combining this new inequality with the reciprocally convex technique,
a less conservative stability condition for the linear discrete systems with an interval time-
varying delay is obtained in []. Using the Wirtinger-based summation inequality ob-
tained in [], we derive Theorem , which is less conservative than Theorem . Recently,
Zhang et al. [] investigate the delay-variation-dependent stability of discrete-time sys-
tems with a time-varying delay. A novel augmented Lyapunov functional is constructed.
A generalized free-weighing matrix approach is proposed to estimate the summation
terms appearing in the forward difference of the Lyapunov functional. The generalized
free-weighing matrix approach encompasses the Jensen-based inequality approach and
the Wirtinger-based inequality approach as particular cases. Our results may be further
improved by using the generalized free-weighing matrix approach.

Remark  In order to reduce the conservatism of the stability criterion, we modify the
Lyapunov-Krsovskii functional in the proof of Theorem . The Lyapunov-Krsovskii func-
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tional term
∑

s=–τ+
∑

j=s
∑k

u=k+j yT (u)Qy(u) is taken into account,

V(k) =

[

e(k) – A
k–∑

s=k–σ

e(s)

]T

S

[

e(k) – A
k–∑

s=k–σ

e(s)

]

+ σ

–∑

s=–σ

k–∑

u=k+s

ηT
 (u)Sη(u)

in the proof of Theorem  is replaced by

V(k) =

[

e(k) – A
k–∑

s=k–σ

e(s)

]T

S

[

e(k) – A
k–∑

s=k–σ

e(s)

]

+ σ

–∑

s=–σ

k–∑

u=k+s


eT (u)S
e(u).

A new asymptotic stability criterion - Theorem  is derived. Theorem  in this paper is
less conservative than Theorem .

If the leakage delay disappears, that is σ = , then the error-state system () reduces to

e(k + ) = (A – KC)e(k) + Wf (k) + Wf
(
k – τ (k)

)
– Kψ(k). ()

From Theorem , the following stability criterion for the error-state system () can be
obtained. For simplicity, ěi ∈ Rn×n (i = , , . . . , ) are defined as block entry matrices
(e.g., ě = [n×n, In, n×n]T ). The other notations are defined as

ξ̌ (k) =

[

eT (k), eT (k – τ), eT (k – τ), eT(
k – τ (k)

)
,

k–∑

s=k–τ

eT (s),
k––τ∑

s=k–τ (k)

eT (s),

k––τ (k)∑

s=k–τ

eT (s),
eT (k),
eT (k – τ),
eT (k – τ), f T (k), f T (k – τ),

f T (k – τ), f T(
k – τ (k)

)
,

∑

s=–τ+

k∑

j=k+s

eT (j),ψT (k)

]T

,

π̌ = [ě + ě, ě + ě, ě + ě, ẽ – ě + ě, ě – ě + ě + ě],

π̌ = [ě, ě, ě, ě, ě + ě], π̌ = [ě, ě], π̌ = [ě, ě],

π̌ = [ě, ě], π̌ = [ě, ě, ě, ě, ], π̌ = [ě, ě – ě],

π̌ = [ě, ě – ě, ě, ě – ě], π̌ = ě –


τ + 
(ě + ě),

π̌ = ě +
(


τ + 

–


(τ + )(τ + )

)
(ě + ě) –


(τ + )(τ + )

ě,

�̌ = π̌Pπ̌T
 – π̌Pπ̌T

 ,

�̌ = π̌Qπ̌
T
 – π̌(Q – Q)π̌T

 – π̌Qπ̌
T
 ,

�̌ = τ 
 π̌Nπ̌

T
 + τ 

d π̌Nπ̌
T
 + π̌π̌

T
 – π̌π̌

T
 – π̌π̌

T
 ,

�̌ =
τ(τ + )


ěQěT

 –
(τ + )

τ
π̌Qπ̌

T
 –

(τ + )(τ + )
τ(τ – )

π̌Qπ̌
T
,

�̌ = – Sym
{

(ě – ěLm)H(ě – ěLp)T + (ě – ěLm)H(ě – ěLp)T
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+ (ě – ěLm)H(ě – ěLp)T + (ě – ěLm)H(ě – ěLp)T}
,

ϒ̌ = ε
(
ěLT LěT

 – ěěT


)
, ϒ̌ = ě + ě,

ϒ̌ = X
[
(A – In)ěT

 – ěT
 + WěT

 + WěT


]
– Y

(
CěT

 + ěT


)
,

�̌ =
∑

i=

�̌i + ϒ̌ + Sym{ϒ̌ϒ̌}.

Corollary  For given integers  < τ < τ and diagonal matrices Lm = diag{l–
 , . . . , l–

n} and
Lp = diag{l+

 , . . . , l+
n}, the error-state system () is asymptotically stable for τ ≤ τ (k) ≤ τ

if there exist symmetric positive definite matrices P ∈ R
n×n, Q ∈ R

n×n, Q ∈ R
n×n,

N ∈ R
n×n, N ∈ R

n×n, Q ∈ R
n×n, positive diagonal matrices Hi ∈ R

n×n (i = , , , ),
a scalar ε > , symmetric matrices Zi ∈ R

n×n (i = , , ), and matrices M, X, Y of appro-
priate dimensions satisfying the following LMIs:

�̌ < , ()

i ≥  (i = , ). ()

Then, the estimator gain matrix is given by K = X–Y , and the other parameters are defined
as in Theorem .

Proof Choose the following Lyapunov-Krasovskii functional for system ():

V (k) = V(k) + V(k) + V(k) + V(k), ()

where

V(k) = ηT
 (k)Pη(k),

V(k) =
k–∑

s=k–τ

ηT
 (s)Qη(s) +

k––τ∑

s=k–τ

ηT
 (s)Qη(s),

V(k) = τ

–∑

s=–τ

k–∑

u=k+s

ηT
 (u)Nη(u) + τd

––τ∑

s=–τ

k––τ∑

u=k+s

ηT
 (u)Nη(u),

V(k) =
∑

s=–τ+

∑

j=s

k∑

u=k+j

yT (u)Qy(u),

where y(u) = e(u) – e(u – ).
From (), (), (), and (), the forward difference of Vi(k) (i = , , , ) satisfies


Vi(k) ≤ ξ̌T (k)�̌iξ̌ (k) (i = , , , ). ()

Combining () with () gives


V (k) ≤ ξ̌T (k)�̌ξ̌ (k) < , ∀ξ̌ (k) �= . ()

So the error-state system () is asymptotically stable. This completes the proof. �
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Remark  A novel Lyapunov-Krasovskii functional in Corollary  is constructed, which
includes the Lyapunov-Krasovskii functional term V(k) =

∑
s=–τ+

∑
j=s

∑k
u=k+j yT (u) ×

Qy(u). However, this Lyapunov-Krasovskii functional term was not taken into ac-
count in [, ]. The Jensen inequality was employed to estimate an upper bound of
–

∑
s=–τ+

∑k
j=k+s yT (j)Qy(j) in the forward difference of the Lyapunov-Krasovskii func-

tional in []. Since the Jensen inequality ignored some terms, the estimation methods in
[] may bring conservatism to some extent. In this paper, by employing a novel double
summation inequality in Lemma , a tight upper bound of –

∑
s=–τ+

∑k
j=k+s yT (j)Qy(j)

is given. The stability criterion in [] needs n + n decision variables. However, the
number of decision variables in Corollary  is .n + .n. Therefore, Corollary  has
lower computational complexity.

4 Numerical examples
In this section, we give two numerical examples to demonstrate the effectiveness of our
stability criteria.

Example  Consider the discrete-time error-state system () with leakage delay and the
following parameters:

A =

[
. 
 .

]

, W =

[
. –.
 –.

]

, W =

[
–. .
–. .

]

,

C =

[
 
 

]

, L = diag{., .}.

Let the activation function g(x) =
[ g(x)

g(x)
]

=
[ tanh(.x)

tanh(.x)
]
. Then Lm = diag{, } and LP =

{., .}.
By solving the LMIs in Theorem  and Theorem , the allowable upper bounds of τ for

different τ and σ are listed in Table  and Table , respectively. For the case τ = , τ = ,
and σ = , by Theorem , the corresponding gain matrix is

K = X–Y =

[
–. .
–. –.

]

.

Furthermore, the state dynamics trajectories of (x(t), x̂(t)) and error dynamics trajectories
of e(t) are shown in Figures  and , respectively.

Table 1 Upper delay bound of τ2 for different σ and τ1 by Theorem 1 (Example 1)

τ1 = 2 τ1 = 4 τ1 = 6 τ1 = 8

σ = 1 31 33 35 37
σ = 2 9 11 13 15
σ = 3 Infeasible Infeasible Infeasible Infeasible

Table 2 Upper delay bound of τ2 for different σ and τ1 by Theorem 2 (Example 1)

τ1 = 2 τ1 = 4 τ1 = 6 τ1 = 8

σ = 1 31 33 35 37
σ = 2 11 13 15 17
σ = 3 Infeasible Infeasible Infeasible Infeasible
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Figure 1 Error trajectories with σ = 2 (a) the state x1 and its estimation; (b) the state x2 and its
estimation; (c) the error state.

Figure 2 Error trajectories with σ = 5 (a) the state x1 and its estimation; (b) the state x2 and its
estimation; (c) the error state.

Remark  From Table  or Table , it can be easily seen that the error-state system ()
is globally asymptotically stable when the leakage delay σ =  and . But when σ ≥ , the
LMIs in Theorem  and Theorem  are infeasible as shown in Table  and Table . Table 
and Table  also show that Theorem  is less conservative than Theorem  when σ = .

Remark  Figure  and Figure  show the simulation results. For the case σ = , Fig-
ure  shows that the state trajectories of (x(t), x̂(t)) and the error state e(t) converge to zero
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Table 3 Upper delay bound of τ2 with various τ1 values (Example 2)

τ1 2 4 6 8 NoDV

[30] 7 9 17 18 21
[33] 24 26 28 30 82
[34] 28 30 32 34 552
Corollary 1 28 30 32 34 294

smoothly. Figure  shows that the state trajectories of (x(t), x̂(t)) and the error state e(t) do
not converge to an equilibrium point in case of σ = . Hence, the effect of leakage delay in
the dynamical system cannot be neglected.

Example  Consider the discrete-time error-state system () with the following param-
eters:

A =

⎡

⎢
⎣

.  
 . 
  .

⎤

⎥
⎦ , W =

⎡

⎢
⎣

. –. .
 –. .

–. –. –.

⎤

⎥
⎦ ,

W =

⎡

⎢
⎣

–. . 
–. . .
. –. .

⎤

⎥
⎦ , C = I, L = diag{., ., .}.

Let the activation function be g(x) = tanh(.x), we obtain Lm = diag{, , } and LP =
{., ., .}. Since all conditions in Corollary  are satisfied, the error-state system ()
with given parameters is globally asymptotically stable. For different values of τ, the al-
lowed maximum time-delay bounds obtained by Corollary  are listed in Table . From
Table , it can be confirmed that Corollary  gives larger delay upper bounds than those
obtained by the stability criteria in [, ]. Although the allowed delay upper bounds ob-
tained by Corollary  are the same as those obtained in [], the stability criterion in []
requires  decision variables. The number of decision variables (NoDV) in Corollary 
is , which means that Corollary  has lower computational complexity.

For the case τ = , τ = , by solving the LMIs in Corollary , the corresponding state
gain matrix is

K = X–Y =

⎡

⎢
⎣

. –. –.
–. . .
–. . .

⎤

⎥
⎦ .

5 Conclusions
In this paper, we have investigated the problem of delay-dependent state estimation for
discrete-time recurrent neural networks with leakage delay and time-varying delay. By
constructing two new Lyapunov-Krasovskii functionals, some new delay-dependent sta-
bility criteria for designing state estimator of the discrete-time networks are established.
Moreover, the simulation results show that the effect of leakage delay in dynamical neural
networks cannot be ignored. The effectiveness of the developed results has been verified
via two examples.
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