
Chen et al. Advances in Difference Equations  (2016) 2016:231 
DOI 10.1186/s13662-016-0959-3

R E S E A R C H Open Access

Adaptive control of multiple chaotic
systems with unknown parameters in two
different synchronization modes
Xiangyong Chen1,2, Jinde Cao1,3*, Jianlong Qiu2*, Ahmed Alsaedi4 and Fuad E Alsaadi5

*Correspondence:
jdcao@seu.edu.cn;
qiujianlong@lyu.edu.cn
1Department of Mathematics,
Southeast University, Nanjing,
210096, China
2School of Automation and
Electrical Engineering, Linyi
University, Linyi, Shandong 276005,
China
Full list of author information is
available at the end of the article

Abstract
This paper investigates the synchronization of multiple chaotic systems with
unknown parameters using adaptive control method, and two kinds of different
synchronization modes are considered here. One is that more response systems
synchronize with one drive system, and the other is the ring transmission
synchronization, which guarantees that all chaotic systems can synchronize with each
other. The definition of adaptive synchronization of multiple chaotic systems with
unknown parameters is given, and then based on the idea of adaptive control
method, adaptive laws are derived to estimate the unknown parameters, and
nonlinear adaptive controllers are developed to ensure the asymptotical stability of
two classes of error systems. Finally, simulation results are presented to verify the
effectiveness of proposed synchronization schemes.
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1 Introduction
In recent years, chaos synchronization [] of multiple chaotic systems has became a much-
studied topic in nonlinear research area. It is in favor of its potential applications in multi-
lateral communications, secret signaling, and many other engineering fields [, ]. Various
kinds of synchronization of multiple chaotic systems have been discussed by using some
advanced control techniques. Lü and Liu addressed complete synchronization of N cou-
pled chaotic systems with chain and ring connection based on feedback control methods
[]. Tang and Fang extended the work of [] to multiple fractional-order chaotic systems
[]. Chen et al. used the direct design method to study complete synchronization, anti-
synchronization and hybrid synchronization among multiple chaotic systems [, ]. Sun
et al. and Jiang et al. investigated generalized combination synchronization of multiple
chaotic systems in [, ], respectively. Sun et al. discussed compound synchronization
among four memristor chaotic oscillator systems based on the adaptive techniques [].
For a special ring connection structure of multiple chaotic systems, a new transmission
synchronization mode of multiple chaotic systems was proposed in []. Xi et al. proposed
adaptive function projective combination synchronization of three different fractional-
order chaotic systems []. It should be pointed out that most of aforementioned results
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are only concerned with the synchronization of multiple systems based on knowing ex-
actly the system parameters, and the influences of unknown parameters for such systems
are not considered. In fact, chaotic systems are unavoidably affected by unknown param-
eters, and it is hard to exactly know the values of the systems parameters in a priori. Thus,
it is a challenging problem to study the synchronization among multiple chaotic systems
with unknown parameters, which is the main motivation of this work.

On another research frontier, adaptive control method [] is an effective way to es-
timate the unknown parameters due to its advantages on witnessed rapid and impres-
sive developments leading to global stability and tracking results for nonlinear systems.
It has been successfully applied to synchronize chaotic systems with unknown parame-
ters, and many important results have been presented. For example, Park studied adap-
tive synchronization of a unified chaotic systems with an unknown parameter [, ].
Zhang et al. proposed the adaptive controllers and adaptive laws to synchronize two dif-
ferent chaotic systems with unknown parameters []. In [], the adaptive complete syn-
chronization between chaotic systems with fully uncertain parameters were realized. Li
et al. gave a deeply research on adaptive impulsive synchronization for fractional-order
chaotic systems with unknown parameters []. In [], adaptive synchronization of two
different chaotic systems was addressed by considering the time varying unknown param-
eters. Adaptive added-order and reduced-order anti-synchronization of chaotic systems
were investigated in [, ], respectively. He et al. made a thorough inquiry about syn-
chronization of hyperchaotic systems with multiple unknown parameters []. Zhao et
al. presented a discussion of chaos synchronization between the coupled systems on net-
work with unknown parameters based on adaptive control method []. Liu developed
adaptive anti-synchronization of chaotic complex nonlinear systems with unknown pa-
rameters []. Wu and Yang achieved the adaptive synchronization of coupled nonidenti-
cal chaotic systems with complex variables and stochastic perturbations []. However, all
of these works only deal with the synchronization problems between two chaotic systems
with unknown parameters. Up to now, no related results have been established for the
synchronization of multiple chaotic systems with unknown parameters, which is another
motivation of this paper.

At present, there are two different synchronization modes for synchronizing multiple
chaotic systems. One is that more response systems synchronize with one drive system,
which can be considered as a previous synchronization model. For this synchronization
mode in Figure (a), it is widely used to realize the synchronization of multiple chaotic
systems or coupled complex networks. Lu and Cao considered the adaptive synchroniza-
tion problems of three same dynamic networks []. Chen et al. investigated complete
synchronization of N different chaotic systems in the above synchronization mode [].
Tang et al. proposed the adaptive control problem for cluster synchronization of coupled
complex networks in [, ]. Yang et al. established finite-time synchronization of cou-
pled discontinuous neural networks with mixed delays and nonidentical perturbations in
[]. And the other mode is the ring transmission synchronization among multiple sys-
tems in Figure (b), which is constructed by utilizing the general benefits of the ring control
approach and cluster synchronization scheme for the drive-response dynamical networks
and extending it to multi-systems. It make the first system synchronize with the second
system, and the second system synchronize with the third system. In the same way, the ring
transmission synchronization among multi-systems in transmission method is realized.



Chen et al. Advances in Difference Equations  (2016) 2016:231 Page 3 of 17

Figure 1 The diagram of two kinds of
synchronization modes among multi-systems,
one is that more systems synchronize with one
system, and the other is the transmission
synchronization.

This synchronization mode is quite different from the first mode, and it can overcome the
trouble of the occurrence of a fault without affecting multiple system’s synchronization.
Sun et al. adopted an impulsive control technique to deal with the transmission synchro-
nization problem for multi-systems with delayed coupling []. Chen et al. addressed the
transmission synchronization in an array of nonidentical coupled chaotic systems based
on a special antisymmetric structure []. Meanwhile, the transmission synchronization
mode has good applications in multilateral communications [] and signal transmission
on complex networks with a ring connection with N nodes [–]. Hence, it is highly de-
sirable to discuss the adaptive control problem of multiple chaotic systems with unknown
parameters by considering the above synchronization modes.

In response to the above discussions, in this paper, the adaptive control method is
adopted to investigate the synchronization of multiple chaotic systems with unknown pa-
rameters by considering two different synchronization modes. By designing the adaptive
controllers and the adaptive laws, the sufficient conditions are derived to guarantee the
asymptotical stability of the error dynamic systems. Simulation results show the effective-
ness of the presented schemes. The main contributions of this paper lie in the following.
() The results in [, , , , ] are extended to multiple chaotic system with un-
known parameters. () Transmission synchronization of multiple chaotic systems with
unknown parameters is first discussed with the special connection structure for such sys-
tems. () The proposed controllers and adaptive laws effectively realize the synchroniza-
tion of multiple uncertain chaotic systems and estimate precisely unknown parameters.

2 Adaptive synchronization of multiple chaotic systems with unknown
parameters

In this section, the synchronization problems of multiple chaotic systems with unknown
parameters are taken into account, which has two kinds of different synchronization
modes. The controllers and adaptive laws are designed using adaptive control method,
respectively. Furthermore, two examples are give to demonstrate the effectiveness of the
synchronization schemes.

2.1 Adaptive synchronization between more response systems and one drive
system

Considering the following multiple chaotic systems with unknown parameters, one drive
system is described by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = f(x(t), . . . , xn(t)) + F(x(t), . . . , xn(t))θ̂,
ẋ(t) = f(x(t), . . . , xn(t)) + F(x(t), . . . , xn(t))θ̂,
...
ẋn(t) = fn(x(t), . . . , xn(t)) + Fn(x(t), . . . , xn(t))θ̂n,

(.)
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where x(t) = [x, x, . . . , xn]T is the state of the drive system (.), fi(x(t), . . . , xn(t))
(i = , . . . , n) is a continuous function and f(x(t)) = [f, f, . . . , fn]T ; Fi(x(t), . . . , xn(t))
(i = , . . . , n) is the matrices function and F(x(t)) = [F, F, . . . , Fn]T ; θ̂i (i = , . . . , n) is
the unknown parameter and θ̂ = [θ̂, θ̂, . . . , θ̂n]T .

The other N –  response systems can be given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋj(t) = fj(xj(t), . . . , xjn(t)) + Fj(xj(t), . . . , xjn(t))θ̂j + uj–,,
ẋj(t) = fj(xj(t), . . . , xjn(t)) + Fj(xj(t), . . . , xjn(t))θ̂j + uj–,,
...
ẋjn(t) = fjn(xj(t), . . . , xjn(t)) + Fjn(xj(t), . . . , xjn(t))θ̂jn + uj–,n,

(.)

where j = , . . . , N , and xj(t) = [xj, xj, . . . , xjn]T is the state of the response system (.),
fji(xj(t), . . . , xjn(t)) (i = , . . . , n) is a continuous function and fj(xj(t)) = [fj, fj, . . . , fjn]T ;
Fji(xj(t), . . . , xjn(t)) (i = , . . . , n) is the matrices function and Fj(xj(t)) = [Fj, Fj, . . . , Fjn]T ;
θ̂ji (i = , . . . , n) is the unknown parameter and θ̂j = [θ̂j, θ̂j, . . . , θ̂jn]T , the control input
is uj– = [uj–,, uj–,, . . . , uj–,n]T . If fs(xs) �= ft(xt) (s, t = , . . . , N , s �= t) and Fs(xs) �= Ft(xt)
(s, t = , . . . , N , s �= t), then (.) and (.) are multiple nonidentical chaotic systems.

Then the above multiple chaotic systems can be rewritten into the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = f(x(t)) + F(x(t))θ̂,
ẋ = f(x(t)) + F(x(t))θ̂ + u,
· · ·
ẋN = fN (xN (t)) + FN (xN (t))θ̂N + uN–,

(.)

and the definition of the adaptive synchronization of multiple chaotic systems is first given,
which has N –  response systems and one drive system with unknown parameters.

Definition  For N chaotic systems (.), if there exist controllers u(t), . . . , uN–(t) such
that x(t) and all other trajectories vectors x(t), . . . , xN (t) in (.) with any initial condition
(x(), . . . , xN ()) satisfy the following conditions:

lim
t→∞

∥
∥ei(t)

∥
∥ = lim

t→∞
∥
∥xi+(t) – x(t)

∥
∥ = , i = , . . . , N – , (.)

then it is said that they are the adaptive synchronization among N systems.

Remark  According to Figure (a) and Definition , the errors dynamic systems are ob-
tained as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ė

ė

ė
...

ėN–

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ – ẋ

ẋ – ẋ

ẋ – ẋ
...

ẋN – ẋ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

f(x) – f(x) + F(x)θ̂ – F(x)θ̂ + u

f(x) – f(x) + F(x)θ̂ – F(x)θ̂ + u
...

fN (xN ) – f(x) + Fn(xN )θ̂N – F(x)θ̂ + uN–

⎤

⎥
⎥
⎥
⎥
⎦

; (.)

then it is easy to see that if the error dynamic systems (.) are asymptotically stable, the
adaptive synchronization for the systems (.) with unknown parameters will be realized.
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The adaptive control method is used to ensure the asymptotical stability of the error
dynamic systems (.), the control laws u(t), . . . , uN–(t) can be proposed as

ui = Kiei + f(x) – fi(xi) + F(x)θ – Fi(xi)θi, i = , . . . , N , (.)

where Ki is the coefficient matrix, and Ki = Ki + Ki, where KT
i = –Ki and Ki =

diag(ki, . . . , kin), kij <  (j = , . . . , n). The estimations for the unknown parameters θ̂ and θ̂i

(i = , . . . , N ) can be defined as θ and θi (i = , . . . , N ). In order to deal with the unknown
parameters, the appropriate adaptive laws are given as follows:

{
θ̇ = –FT

 (x)ei–, θ̇i = FT
i (xi)ei–, i = , . . . , N ,

θ() = θ, θi() = θi,
(.)

where θ and θi are the initial values of the adaptive laws θ and θi (i = , . . . , N ).

Theorem  If the error systems (.) can be controlled by the controllers (.) and the
adaptive laws (.), then the error system (.) is asymptotically stable, which means the
adaptive synchronization is reached between multiple controlled response systems and one
drive system.

Proof The error systems (.) can be rewritten as

ėi– = fi(xi) – f(x) + Fi(xi)θ̂i – F(x)θ̂ + ui. (.)

Choose the following Lyapunov function:

Vi– =


(
eT

i–ei– + θ̄T
 θ̄ + θ̄T

i θ̄i
)
, (.)

where θ̄ = θ – θ̂ and θ̄i = θi – θ̂i (i = , . . . , N ) are the parameter errors, and it is clear that
˙̄θ  = θ̇, ˙̄θ i = θ̇i.

Taking the derivative of Vi along the trajectory of (.), one has

V̇i =


(
ėT

i–ei– + eT
i–ėi– + ˙̄θT

 θ̄ + θ̄T


˙̄θ  + ˙̄θT
i θ̄i + θ̄T

i
˙̄θ i
)

=


[
fi(xi) – f(x) + Fi(xi)θ̂i – F(x)θ̂ + ui

]T ei–

+



ei–
T[

fi(xi) – f(x) + Fi(xi)θ̂i – F(x)θ̂ + ui
]

+


(
θ̇T

 θ̄ + θ̄T
 θ̇ + θ̇T

i θ̄i + θ̄T
i θ̇i

)
. (.)

Substituting (.) into equation (.), one can easily get

V̇i– =


[
Kiei– + F(x)(θ – θ̂) – Fi(xi)(θi – θ̂i)

]T ei–

+



eT
i–

[
Kiei– + F(x)(θ – θ̂) – Fi(xi)(θi – θ̂i)

]

+


(
θ̇T

 θ̄ + θ̄T
 θ̇ + θ̇T

i θ̄i + θ̄T
i θ̇i

)
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=


[
F(x)θ̄ – Fi(xi)θ̄i

]T +



eT
i–

[
ei– + F(x)θ̄ – Fi(xi)θ̄i

]

+


(
θ̇T

 θ̄ + θ̄T
 θ̇ + θ̇T

i θ̄i + θ̄T
i θ̇i

)
. (.)

Inserting the adaptive laws (.) into equation (.), one obtains

V̇i– =



eT
i–

(
KT

i + Ki
)
ei–.

Therefore, it is easy to see that

V̇i– =



eT
i–

(
KT

i + KT
i + Ki + Ki

)
ei– =




eT
i–

(
KT

i + Ki
)
ei– < ;

then the error system (.) is asymptotically stable, that is, adaptive synchronization be-
tween N –  respond systems and one drive system is achieved. The proof is completed.

�

Remark  According to Theorem , the adaptive control method is used to estimate un-
known parameters, which are directly used in the adaptive synchronization controllers.
When adaptive controllers are designed, special consideration is necessary of convergence
and robustness issues. Lyapunov stability theory is typically used to derive adaptive con-
trol laws and show convergence.

2.2 Adaptive transmission synchronization of multiple chaotic systems with
unknown parameters

In this subsection, the first chaotic system is described as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẏ = Ay(t) + g(y(t), . . . , yn(t)) + G(y(t), . . . , yn(t))φ̂,
ẏ = Ay(t) + g(y(t), . . . , yn(t)) + G(y(t), . . . , yn(t))φ̂,
· · ·
ẏn = Anyn(t) + gn(y(t), . . . , yn(t)) + Gn(y(t), . . . , yn(t))φ̂n,

(.)

where A(t) = [A, A, . . . , An]T is the coefficient matrix, y(t) = [y, y, . . . , yn]T is the
state of the system (.), gi(y(t), . . . , yn(t)) (i = , . . . , n) is a continuous function and
g(y(t)) = [g, g, . . . , gn]T ; Gi(y(t), . . . , yn(t)) (i = , . . . , n) is the matrix function and
G(y(t)) = [G, G, . . . , Gn]T ; φ̂i (i = , . . . , n) is for the unknown parameters and φ̂ =
[φ̂, φ̂, . . . , φ̂n]T .

The other N –  chaotic systems are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẏj = Ajy(t) + gj(yj(t), . . . , yjn(t)) + Gj(yj(t), . . . , yjn(t))φ̂j + vj–,,
ẏj = Ajy(t) + gj(yj(t), . . . , yjn(t)) + Gj(yj(t), . . . , yjn(t))φ̂j + vj–,,
· · ·
ẏjn = Ajnyn(t) + gjn(yj(t), . . . , yjn(t)) + Gjn(yj(t), . . . , yjn(t))φ̂jn + vj–,n,

(.)

where j = , . . . , N and Aj(t) = [Aj, Aj, . . . , Ajn]T is the coefficient matrix, the state of the
system (.) is yj(t) = [yj, yj, . . . , yjn]T , gji(yj(t), . . . , yjn(t)) (i = , . . . , n) is a continuous
function and gj(yj(t)) = [gj, gj, . . . , gjn]T ; Gji(yj(t), . . . , yjn(t)) (i = , . . . , n) is the matrix func-
tion and Gj(yj(t)) = [Gj, Gj, . . . , Gjn]T ; φ̂ji (i = , . . . , n) is for the unknown parameters and
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φ̂j = [φ̂j, φ̂j, . . . , φ̂jn]T , and the control input is vj– = [vj–,, vj–,, . . . , vj–,n]T . If Ai �= Aj

(i, j = , . . . , N , i �= j), gi(yi) �= gj(yj) (i, j = , . . . , N , i �= j) and Gi(yi) �= Gj(yj) (i, j = , . . . , N , i �= j),
then the systems (.) and (.) are an array of nonidentical chaotic systems.

In accordance with (.) and (.), the above N chaotic systems can be rewritten as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẏ = Ay + g(y) + G(y)φ̂,
ẏ = Ay + g(y) + G(y)φ̂ + v,
· · ·
ẏN = AN yN + gN (yN ) + GN (yN )φ̂N + vN–.

(.)

In the framework of the transmission synchronization mode, the state error can be de-
fined as ej(t) = yj+(t) – yj(t), j = , . . . , N – , then the definition of adaptive transmissions
synchronization of N systems is obtained.

Definition  For N chaotic systems described by (.), if there exist adaptive controllers
v(t), . . . , vN–(t) such that the error dynamic systems

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ė

ė

ė
...

ėN–

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẏ – ẏ

ẏ – ẏ

ẏ – ẏ
...

ẏN – ẏN–

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
Ay – Ay + g(y) – g(y)
+G(y)φ̂ – G(y)φ̂ + v

)

(
Ay – Ay + g(y) – g(y)

+G(y)φ̂ – G(y)φ̂ + v – v

)

...
(

AN yN – AN–yN– + gN (yN ) – gN–(yN–)
+GN (xN )φ̂N – GN–(xN–)φ̂N– + vN – vN–

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

satisfy the following condition:

lim
t→∞

∥
∥ej(t)

∥
∥ = lim

t→∞
∥
∥yj+(t) – yj(t)

∥
∥ = , j = , . . . , N – , (.)

it is said that the adaptive transmission synchronization are realized among N systems
with unknown parameters.

Now, adaptive control method is used to design the controllers and adaptive laws to
achieve limt→∞ ‖ej(t)‖ = , and the synchronization among (.) and (.) are realized
under the transmissions synchronization mode. The control inputs v(t), . . . , vN–(t) can
be designed as

⎧
⎪⎨

⎪⎩

v = –(A – A)y – g(y) + g(y) – G(y)φ + G(y)φ + He,
vj – vj– = (–(Aj+ – Aj)yj – gj+(yj+) + gj(yj) – Gj+(yj+)φj+ + Gj(yj)φj + Hjej),

j = , . . . , N – ,
(.)

where Hj is the coefficient matrix, which can be constructed in order to ensure that system
(.) is asymptotically stable. φ and φj (j = , . . . , N ) are the estimations of the unknown
parameters φ̂ and φ̂j (j = , . . . , N ). And the proper adaptive laws can be obtained as fol-
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lows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ̇ = –GT
 (y)e,

φ̇j = GT
j (yj)ej– = –GT

j (yj)ej, j = , . . . , N – ,
φ̇N = GT

N (yN )eN–,
φ() = φ, φj() = θj, φN () = θN.

(.)

Theorem  Considering the error dynamic systems ej(t) with the controllers in (.) and
adaptive laws in (.), it is easy to ensure that the error dynamic systems ej(t) are asymp-
totically stable, and adaptive transmission synchronization among N systems with un-
known parameters is realized.

Proof First of all, the first error dynamic system ė(t) = ẏ(t) – ẏ(t) is considered. Choose
the following Lyapunov function for e(t),

V =


(
eT

 e + φ̄T
 φ̄ + φ̄T

 φ̄
)
,

where φ̄ = φ – φ̂ and φ̄ = φ – φ̂ are the parameters errors.
Similarly to Theorem , substituting the adaptive laws φ̇ = –GT

 (y)e and φ̇ = GT
 (y)e

and the controller v into the derivative of V, one has

V̇ =



eT

(
AT

 + A + H + HT

)
e.

By constructing the appropriate coefficient matrix H, one can guarantee V̇ < , then the
error dynamic systems e(t) is asymptotically stable, that is, the adaptive synchronization
between the first system and the second system is achieved.

Second, for the error dynamic system ej(t) (j = , . . . , N – ) between the jth system and
the (j + )th system, a proper Lyapunov function for ej(t) is constructed as

Vj =


(
eT

j ej + φ̄T
j φ̄j + φ̄T

j+φ̄j+
)
,

where φ̄j = φj – φ̂j and φ̄j+ = φj+ – φ̂j+ are the parameters errors.
Introducing the controller

vj – vj– =
(
Aj+ej – (Aj+ – Aj)xj – gj+(yj+) + gj(yj) – Gj+(yj+)φj+ + Gj(yj)φj + Hjej

)
,

j = , . . . , N – ,

into the derivative of Vj, one can easily obtain

V̇j =


(
ėT

j ej + eT
j ėj + ˙̄φT

j φ̄j + φ̄T
j

˙̄φj + ˙̄φT
j+φ̄j+ + φ̄T

j+
˙̄φj+

)

=


[
Aj+ej + (Aj+ – Aj)yj + gj+(yj+) – gj(yj) + Gj+(yj+)φ̂j+ – Gj(yj)φ̂j + vi – vj–

]T ej

+



ej
T[

Aj+ej + (Aj+ – Aj)yj + gj+(yj+) – gj(yj)

+ Gj+(yj+)φ̂j+ – Gj(yj)φ̂j + vi – vj–
]
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+


(
φ̇T

j φ̄j + φ̄T
j φ̇j + φ̇T

j+φ̄j+ + φ̄T
j+φ̇j+

)

=


[
Aj+ej + Gj(yj)(φj – φ̂j) – Gj+(yj+)(φj+ – φ̂j+) + Hjej

]T ej

+



ej
T[

Aj+ej + Gj(yj)(φj – φ̂j) – Gj+(yj+)(φj+ – φ̂j+) + Hjej
]

+


(
φ̇T

j φ̄j + φ̄T
j φ̇j + φ̇T

j+φ̄j+ + φ̄T
j+φ̇j+

)

=



eT
j
(
AT

j+ + Aj+ + Hj + HT
j
)
ej +



[
φ̄T

j GT
j (yj)ej – φ̄T

j+GT
j+(yj+)ej

]

+


[
ej

T Gj(yj)φ̄j – ej
T Gj+(yj+)φ̄j+

]

+


(
φ̇T

j φ̄j + φ̄T
j φ̇j + φ̇T

j+φ̄j+ + φ̄T
j+φ̇j+

)
. (.)

Substituting the adaptive laws φ̇j = –GT
j (j)ej and φ̇j+ = GT

j+(yj+)ej into (.) and sim-
plifying it, one has

V̇j =



eT
j
(
AT

j+ + Aj+ + Hj + HT
j
)
ej. (.)

Similarly, by constructing the appropriate coefficient matrix Hj to guarantee V̇j < , the
error dynamic systems ej(t) will be asymptotically stable, that is, the adaptive synchro-
nization between the j system and the j +  system is realized. With the above discussions,
it is easy to see that the adaptive transmission synchronization is reached among N sys-
tems with unknown parameters. Hence, the proof is completed. �

Remark  According to Theorem , when the unknown parameters φj and φj+ are esti-
mated and the adaptive synchronization between the jth system and the (j + )th system
is investigated, the adaptive laws should satisfy φ̇j = –GT

j (yj)ej and φ̇j+ = GT
j+(yj+)ej+. For

the (j – )th system and the jth system, when the unknown parameters φj– and φj are es-
timated, the conditions φ̇j– = –GT

j–(yj–)ej– and φ̇j = GT
j (yj)ej should hold, then it is easy

to conclude that

φ̇j = GT
j (yj)ej– = –GT

j (yj)ej, j = , . . . , N – . (.)

Remark  According to Definition  and Theorem , the transmission synchronization
with ring connection can be effectively applied in the many engineering fields, such as
circuits, mobile ad hoc networks, etc. [–]. The nodes in such networks can exhibit
phase synchronization or can be synchronized in the same state to keep such networks
stable.

3 Numerical examples and simulation
In the section, two numerical examples are given to validate the effectiveness of the pro-
posed synchronization schemes by choosing three chaotic systems and three hyperchaotic
systems [–], respectively, which satisfy the above proposed synchronization connec-
tion modes.
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Example  Consider one Lorenz system [] and two Lü systems [] as an example,
which can be described as follows:

⎧
⎪⎨

⎪⎩

ẋ = θ̂(x – x),
ẋ = θ̂x – xx – x,
ẋ = xx – θ̂x,

(.)

⎧
⎪⎨

⎪⎩

ẋ = θ̂(x – x) + u,
ẋ = –xx + θ̂x + u,
ẋ = xx – θ̂x + u,

(.)

and
⎧
⎪⎨

⎪⎩

ẋ = θ̂(x – x) + u,
ẋ = –xx + θ̂x + u,
ẋ = xx – θ̂x + u,

(.)

where θ̂, θ̂, θ̂, θ̂, θ̂, θ̂, θ̂, θ̂, θ̂ are the unknown parameters. When θ̂ = , θ̂ =
, θ̂ = – 

 , θ̂ = θ̂ = , θ̂ = θ̂ = , θ̂ = θ̂ = , then (.), (.), and (.) are
chaotic systems. u = [u, u, u]T and u = [u, u, u]T are the control inputs, and

f(x) =

⎡

⎢
⎣


–xx – x

xx

⎤

⎥
⎦ , F(x) =

⎡

⎢
⎣

x – x  
 x 
  –x

⎤

⎥
⎦ ,

f(x) =

⎡

⎢
⎣


–xx

xx

⎤

⎥
⎦ , F(x) =

⎡

⎢
⎣

x – x  
 x 
  –x

⎤

⎥
⎦ ,

f(x) =

⎡

⎢
⎣


–xx

xx

⎤

⎥
⎦ , F(x) =

⎡

⎢
⎣

x – x  
 x 
  –x

⎤

⎥
⎦ .

The error dynamic systems can be obtained:

[
ė

ė

]

=

[
ẋ – ẋ

ẋ – ẋ

]

=

[
f(x) – f(x) + F(x)θ̂ – F(x)θ̂ + u

f(x) – f(x) + F(x)θ̂ – F(x)θ̂ + u

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ̂(x – x) – θ̂(x – x) + u

–xx + θ̂x – θ̂x + xx + x + u

xx – θ̂x – xx + θ̂x + u

θ̂(x – x) – θ̂(x – x) + u

–xx + θ̂x – θ̂x + xx + x + u

xx – θ̂x – xx + θ̂x + u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

According to (.) and (.), the proper coefficient matrices are constructed as

K =

⎡

⎢
⎣

–  –
 – –
  –

⎤

⎥
⎦ , K =

⎡

⎢
⎣

– – –
 – –
  –

⎤

⎥
⎦ ;
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Figure 2 Synchronization errors e11, e12, e13 between drive system (3.1) and response system (3.2),
and the time response of the adaptive vector parameters θ11,θ12,θ13,θ21,θ22,θ23.

then the controllers and the adaptive laws can be obtained as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = θ(x – x) – θ(x – x) – e – e,
u = xx – θx + θx – xx – x – e – e,
u = –xx + θx + xx – θx + e + e – e,
u = θ(x – x) – θ(x – x) – e – e – e,
u = xx – θx + θx – xx – x + e – e – e,
u = –xx + θx + xx – θx + e + e – e,

(.)

and

⎡

⎢
⎣

θ̇

θ̇

θ̇

⎤

⎥
⎦ = –

⎡

⎢
⎣

x – x  
 x 
  –x

⎤

⎥
⎦

⎡

⎢
⎣

e

e

e

⎤

⎥
⎦ = –

⎡

⎢
⎣

x – x  
 x 
  –x

⎤

⎥
⎦

⎡

⎢
⎣

e

e

e

⎤

⎥
⎦ ,

⎡

⎢
⎣

θ̇

θ̇

θ̇

⎤

⎥
⎦ =

⎡

⎢
⎣

x – x  
 x 
  –x

⎤

⎥
⎦

⎡

⎢
⎣

e

e

e

⎤

⎥
⎦ ,

⎡

⎢
⎣

θ̇

θ̇

θ̇

⎤

⎥
⎦ =

⎡

⎢
⎣

x – x  
 x 
  –x

⎤

⎥
⎦

⎡

⎢
⎣

e

e

e

⎤

⎥
⎦ ,

where θ, θ, θ, θ, θ, θ, θ, θ, θ are the estimations of the above chaotic system
parameters θ̂, θ̂, θ̂, θ̂, θ̂, θ̂, θ̂, θ̂, θ̂.

For simulations, the initial conditions of one drive system and two response chaotic
systems are chosen as (x(), x(), x()) = (, , ), (x(), x(), x()) = (, , ),
and (x(), x(), x()) = (, , ). It is assumed that the initial value of the adaptive pa-
rameters are (θ̂(), θ̂(), θ̂()) = (, , ), (θ̂(), θ̂(), θ̂()) = (, , ), (θ̂(), θ̂(),
θ̂()) = (, , ). Then the state trajectories of the error dynamic systems e and e are
shown in Figure (a) and Figure (a). The adaptive laws θ, θ, θ, θ, θ, θ, θ, θ, θ

can be depicted in Figure (b) and Figure (b). It is clear that the trajectories of the errors
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Figure 3 Synchronization errors e21, e22, e23 between drive system (3.1) and response system (3.3),
and the time response of the adaptive vector parameters θ11,θ12,θ13,θ31,θ32,θ33.

systems converge to  quickly, and synchronization among the three chaotic systems is
achieved. From Figure (b) and Figure (b), it is easy to see that all adaptive laws converge
to some fixed values, which realize the estimation of the unknown parameters of chaotic
systems.

Remark  In the above simulations, the reasonable value K and K can be chosen ac-
cording to the corresponding chaotic complex system to achieve the desired result in the
simple way.

Example  Consider two hyperchaotic Chen systems [] and one hyperchaotic Rössler
system [] as an example, which satisfy the ring networks connection mode and can be
described by

⎡

⎢
⎢
⎢
⎣

ẏ

ẏ

ẏ

ẏ

⎤

⎥
⎥
⎥
⎦

= A

⎡

⎢
⎢
⎢
⎣

y

y

y

y

⎤

⎥
⎥
⎥
⎦

+ g(y) + G(y)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a

b

c

d

r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (.)

⎡

⎢
⎢
⎢
⎣

ẏ

ẏ

ẏ

ẏ

⎤

⎥
⎥
⎥
⎦

= A

⎡

⎢
⎢
⎢
⎣

y

yj

yj

yj

⎤

⎥
⎥
⎥
⎦

+ g(y) + G(y)

⎡

⎢
⎢
⎢
⎣

a

b

c

d

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

v

v

v

v

⎤

⎥
⎥
⎥
⎦

, (.)

and

⎡

⎢
⎢
⎢
⎣

ẏ

ẏ

ẏ

ẏ

⎤

⎥
⎥
⎥
⎦

= A

⎡

⎢
⎢
⎢
⎣

y

y

y

y

⎤

⎥
⎥
⎥
⎦

+ g(y) + G(y)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a

b

c

d

r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

v

v

v

v

⎤

⎥
⎥
⎥
⎦

, (.)
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where â, b̂, ĉ, d̂, r̂, â, b̂, ĉ, d̂, and â, b̂, ĉ, d̂, r̂ are the systems parameters. When
âl = , b̂l = , ĉl = , d̂l = , r̂l = ., l = , , a = ., b = , c = ., d = ., (.),
(.), and (.) are chaotic systems. v = [v, v, v]T and v = [v, v, v]T are the con-
trol inputs. And

Al =

⎡

⎢
⎢
⎢
⎣

   
   
   
   

⎤

⎥
⎥
⎥
⎦

, gl(yl) =

⎡

⎢
⎢
⎢
⎣


–ylyl

ylyl

ylyl

⎤

⎥
⎥
⎥
⎦

,

G(y) =

⎡

⎢
⎢
⎢
⎣

yl – yl    
  yl yl 
 –yl   
    yl

⎤

⎥
⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎣

 – – 
   
   
   

⎤

⎥
⎥
⎥
⎦

,

g(y) =

⎡

⎢
⎢
⎢
⎣




yy



⎤

⎥
⎥
⎥
⎦

, G(y) =

⎡

⎢
⎢
⎢
⎣

   
y   
   
  –y y

⎤

⎥
⎥
⎥
⎦

.

The error systems ė = ẏ – ẏ and ė = ẏ – ẏ can be obtained as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė = –y – y – y – â(y – y) + v,
ė = y + y + ây + yy – ĉy – d̂y + v,
ė = yy + b̂ – yy + b̂y + v,
ė = –ĉy + d̂y – yy – r̂y + v,
ė = y + y + y + â(y – y) + v – v,
ė = –y – y – ây – yy + ĉy + d̂y + v – v,
ė = –yy – b̂ + yy – b̂y + v – v,
ė = ĉy – d̂y + yy + r̂y + v – v.

(.)

According to (.) and (.), the controllers and the adaptive laws can be designed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v = y + y + y + a(y – y) + he,
v = –y – y – ay – yy + cy + dy + he,
v = –yy – b + yy – by + he,
v = cy – dy + yy + ry + he,
v = –y – y – y – a(y – y) + v + he,
v = y + y + ay + yy – cy – dy + v + he,
v = yy + b – yy + by + v + he,
v = –cy + dy – yy – ry + v + he,

(.)

and
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ȧ

ḃ

ċ

ḋ

ṙ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= –

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(y – y)e

–ye

ye

ye

ye

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ȧ

ḃ

ċ

ḋ

ṙ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(y – y)e

–ye

ye

ye

ye

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (.)
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Figure 4 Synchronization errors e11, e12, e13, e14 between drive system (3.5) and response system
(3.6) in (a), and the time response of the adaptive vector parameters a1, b1, c1, d1, r1, a2, b2, c2, d2 in (b).

⎡

⎢
⎢
⎢
⎣

ȧ

ḃ

ċ

ḋ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

ye

e

–ye

ye

⎤

⎥
⎥
⎥
⎦

= –

⎡

⎢
⎢
⎢
⎣

ye

e

–ye

ye

⎤

⎥
⎥
⎥
⎦

,

where H and H can be constructed as

H =

⎡

⎢
⎢
⎢
⎣

h

h

h

h

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

–   –
 –  
  – 
   –

⎤

⎥
⎥
⎥
⎦

, H =

⎡

⎢
⎢
⎢
⎣

h

h

h

h

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

–  – 
 –  
  – 
   –

⎤

⎥
⎥
⎥
⎦

,

and a, b, c, d, r, a, b, c, d, a, b, c, d, r are the estimations of the unknown param-
eters â, b̂, ĉ, d̂, r̂, â, b̂, ĉ, d̂, â, b̂, ĉ, d̂, r̂.

The initial conditions of three chaotic systems are chosen as (y(), y(), y(),
y()) = (, –, –, –), (y(), y(), y(), y()) = (, –, , –), (y(), y(), y(),
y()) = (, –, –, –), respectively. The initial values of the adaptive parameters can be
assumed as (a, b, c, d, r) = (a, b, c, d, r) = (, , , , ), (a, b, c, d) =
(, , ., .). The state trajectories of the error dynamic systems e and e are shown in
Figure (a) and Figure (a). Meanwhile, the adaptive laws a, b, c, d, r, a, b, c, d, a,
b, c, d, r can be found in Figure (b) and Figure (b). It implies that the error dynamic
systems e and e converge to  quickly, that is, (.) synchronizes with (.), and (.) syn-
chronizes with (.). It is concluded that adaptive transmission synchronization among
three chaotic systems is achieved. According to Figure (b) and Figure (b), it is clear that
the designed adaptive laws (.) are appropriate, and they converge to some fixed values,
which realize the estimation of the unknown parameters of chaotic systems.

Remark  From a simulation analysis of Examples  and , it is easy to see that two differ-
ent synchronization modes can be effectively applied in cluster synchronization and trans-
mission synchronization for complex networks. And cluster synchronization and trans-
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Figure 5 Synchronization errors e21, e22, e23, e24 between drive system (3.6) and response system
(3.7) in (a), and the time response of the adaptive vector parameters a2, b2, c2, d2, a3, b3, c3, d3, r3 in (b).

mission synchronization for special networks connection composed of chaotic systems
lead to improved applications in secure communications [] and other fields.

4 Conclusions
In this paper, we have introduced two classes of different chaos synchronization modes
among multiple chaotic systems, and we discussed the adaptive synchronization prob-
lems of multiple chaotic systems with unknown parameters. By using the adaptive control
method, adaptive controllers and adaptive laws have been designed, and new synchro-
nization criteria are given, which can effectively stabilize the error systems and estimate
the unknown parameters, Simulation results have shown the effectiveness of the proposed
controllers for synchronizing multiple uncertain chaotic systems by using adaptive control
techniques. The main limitation of this work is that the synchronization problems of mul-
tiple chaotic systems with unknown parameters are only discussed. To investigate the syn-
chronization among multiple chaotic systems with uncertainty and external disturbances,
and to have do rigorous research on their application on multilateral communications []
and signal transmission of ring networks [–] are our future works.
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