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Abstract
In this article, we study an unsteady flow of an anomalous Oldroyd-B fluid confined
between two infinite parallel plates subject to no-slip condition at boundary. The flow
is induced by a linear acceleration of the lower plate in its own plane. A standard
Galerkin finite element method is adopted to construct an approximate solution
blended with a finite difference approximation for Caputo fractional time derivatives.
The convergence of the proposed numerical scheme is substantiated, and error
estimates are provided in appropriate norms. Some adequate numerical simulations
are performed in order to elucidate the dominance of characteristic flow parameters
of velocity field in the prescribed configuration.
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1 Introduction
The curiosity to understand mass transfer phenomena in fluids obeying non-Newtonian
rheological paradigms is increasing due to broad range of engineering applications and ap-
posite industrial processes. The examples include material plasticizing and solidification
processes for manufacturing parts, oil-well drilling, and fossil fuel combustion; see, for
instance, [–], the review article [], and references therein. Spirited researchers endeav-
oring in assorted domains have been experimentally testing, mathematically modeling,
establishing numerical approximations, and designing algorithms for analyzing various
flow problems in different geometric and flow configurations [–]. Mathematicians are
particularly exposed to challenging mathematical riddles, for instance, related to solvabil-
ity, consistency, stability, and thermodynamic compatibility of constitutive flow models,
their solutions, and approximations [, , , , –].

Several approximate and self-consistent non-Newtonian rheological models are pro-
posed over the past decades as no single one can encompass assorted features of all the
fluids. These models are classified into differential, rate, and integral types. The interested
readers are referred, for instance, to [, , ] for detailed accounts. In particular, the
stress relaxation in polymer processing is usually predicted using rate-type fluid models
such as Maxwell, Oldroyd-B, or Burgers fluids [, , , , –].

In certain non-Newtonian fluids, an anomalous rheological model provides a more re-
alistic fit to the experimental data [, , ]. For instance, the anomalous Maxwell model
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yields algebraically decaying stress relaxation modulus resulting in a good agreement to
experimental data [], whereas the Brownian Maxwell fluid fails to do so, at least over
complete range of frequencies. Moreover, as indicated by Bagley and Torvik [, ], the
molecular theory is harmonic to anomalous viscoelastic models. The anomalous nature
of the flow is usually modeled with fractional-order time derivatives replacing those of in-
teger order in classical stress-strain relations. The issues concerning well-posedness and
thermodynamic stability of the anomalous viscoelastic flow models have been addressed,
for instance, in [, , ].

The constitutive initial-boundary value problems for non-Newtonian fluids rarely
have exact and closed-form analytic solutions since these models are strongly nonlin-
ear, whereas sufficient boundary conditions are not often available. Thus, numerical and
asymptotic techniques are sought exploiting supplementary information on the flow pro-
file. Unfortunately, the asymptotic solutions are mostly divergent for strongly nonlinear
problems and large values of pertinent flow parameters such as Péclet, Reynolds, and
Weissenberg numbers [, ]. Therefore, great interest in numerical approximation tech-
niques in non-Newtonian fluid mechanics is observed in recent years; see, for instance,
[, , , –], among many others.

The hot topics in numerical analysis include challenging issues related to instability of
approximate solutions due to strong nonlinearity, convection dominance, and parabolic-
hyperbolic nature of non-Newtonian flow problems for increasing values of flow pa-
rameters. A variety of stabilization and numerical approximation frameworks are con-
sequently introduced and analyzed. More recently, frameworks for approximating solu-
tions to time and/or space fractional differential equations in connection with subdiffu-
sion and superdiffusion, viscoelastic wave propagation, and anomalous flow problems are
discussed; see [–] and references therein. The so-called L-finite difference approxi-
mation method is invoked together with space approximation schemes to obtain numeri-
cal solutions to time-discretized models, such as spatial finite difference, spectral, lumped
mass, and Galerkin finite element techniques.

In this article, we provide a numerical exposition of flow phenomena for an incompress-
ible anomalous Oldroyd-B fluid using a standard Galerkin finite element method (FEM)
blended with finite difference approximation in time. We consider the fluid confined be-
tween two infinite parallel plates, which starts flowing due to a linear acceleration of the
lower plate in its own plane, whereas the upper plate is kept rigid and no slip condition at
boundaries is imposed. The anomalous behavior of the Oldroyd-B fluid is modeled with
left-sided Caputo fractional time derivatives thereby generalizing the canonical Brownian
Oldroyd-B fluid model that can be perceived as a limiting case. The objective of the in-
vestigation is twofold: () understanding the velocity profile in the aforementioned flow
and () deploying standard Lagrange-Galerkin FEM together with the L-finite difference
scheme and subsequently performing a convergence analysis following the pioneer works
in [–]. Albeit, the assumptions of a linear plate acceleration and negligible pressure
gradient are made for brevity, and the analysis contained herein can be analogously per-
formed otherwise. The results can be extended to the Burgers fluids and will be discussed
in a forthcoming investigation.

The rest of this contribution is arranged in the following manner. In Section , the flow
problem is mathematically formulated. The equations governing the flow are detailed
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(see Section .), and the associated initial boundary value problem (IBVP) is derived
and nondimensionalized (Section .). The finite element approximation to the veloc-
ity field is presented in Section . First, a few notions and notation are collected (Sec-
tion .), and a finite-difference-based temporal discretization scheme is presented for
the fractional time derivatives (Section .). Then, the spatial discretization of the IBVP
is derived using Lagrange interpolation functions (Section .). The convergence analy-
sis of the numerical scheme is performed in Section , and the numerical simulations are
presented in Section . Finally, the findings of the investigation are summarized in Sec-
tion .

2 Formulation of flow problem
We fix the following notation henceforth.

Definition . The left-sided Caputo fractional derivative of order γ (γ ∈ C, �e{γ } > )
with respect to t, denoted by ∂γ

∂tγ or ∂
γ
t , is defined as

∂
γ
t φ(t) :=


�(n – γ )

∫ t


(t – τ )n–γ – ∂n

∂τ n φ(τ ) dτ , n –  < �e{γ } < n, n ∈N, ()

where � is the standard Euler’s gamma function given by (see, e.g., the monographs [,
])

�(z) :=
∫
R

ξ z–e–ξ dξ , z ∈C,�{z} > .

Remark . The fractional derivative ∂
γ
t φ converges to the canonical integer-order

derivative ∂n
t φ as the parameter γ ∈R→ n ∈N, where n –  < γ < n (see, e.g., [], p.).

The following proposition from [], Proposition ., will be useful in the sequel.

Proposition . Let γ ∈ C with �e{γ } > , and n ∈ N such that n –  < �e{γ } < n. Then,
for all s ∈C with �e{s} > n – ,

∂
γ
t ts :=

�(s + )
�(s +  – γ )

ts–γ , ∀t > .

2.1 Flow configuration and governing equations for an ordinary fluid
Consider the flow of an incompressible Oldroyd-B fluid between two infinite parallel plates
at distance L >  apart. Without loss of generality, the y-axis is taken perpendicular to the
plates, whereas the planes y = –L and y = L represent the lower and upper plates, respec-
tively (see Figure ). Consider the velocity field

U := uex + vey + wez,

where {ex , ey , ez} is the canonical basis of R. Assume that the mainstream flow takes place
only along the x-axis. Then, u = u(y, t) and v ≡  ≡ w. Consequently,

U = u(y, t)ex . ()
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Figure 1 Geometric configuration.

Recall that the first Rivlin-Ericksen kinematic tensor A is defined by

A := ∇U + (∇U)�, ()

where the superscript � indicates the transpose operation. The relevant stress tensor, de-
noted by T, is given by

T = –pI + S,

where p is the hydrostatic pressure of the fluid, I is the identity tensor, and S is the extra
stress tensor defined by the relation

( + λDt)[S] = μ( + λDt)[A]. ()

Here μ >  is the dynamic viscosity, λ is the relaxation time, and λ is the retardation
time. The operator Dt is the so-called Oldroyd or upper convected derivative defined by

Dt[S] :=
∂

∂t
[S] + (U · ∇)[S] + (∇U)S + S(∇U)�. ()

We shall also consider the extra stress tensor of the form

S = S(y, t) :=

⎛
⎜⎝

sxx sxy sxz

syx syy syz

szx szy szz

⎞
⎟⎠ . ()

Moreover, for the fluid initially at rest, it is reasonable to impose the initial conditions

S(y, ) =  =
∂S

∂t
(y, ). ()

Remark . The thermodynamic stability, necessary condition for well-posedness in the
sense of Hadamard, and causality constraints restrict the values of relaxation and retarda-
tion times λ and λ to be such that  < λ < λ (refer, e.g., to [, ] for further details).

We consider an incompressible fluid such that the governing equations are

∇ · U = , ()

ρ

[
∂U
∂t

+ (U · ∇)U
]

= ∇ · S, ()
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where ρ >  is the (constant) density of the fluid. The body forces and pressure gradient
are neglected for simplicity.

2.2 Flow problem
In this section, the constitutive equations corresponding to a fractional Oldroyd-B fluid
are derived together with relevant initial and boundary conditions. Toward this end, we
first briefly derive constitutive equations for the flow of a canonical Oldroyd-B fluid and
then highlight appropriate changes in order to incorporate anomalous behavior of fluid
rheology.

Note that the velocity field U in () automatically satisfies the equation of continuity and
(U ·∇)U ≡ . By equations (), (), (), and () relation (), together with initial conditions
(), yields, for all t >  and |y| < L,

sxz = szx = syz = szy = syy = szz = , ()
(

 + λ
∂

∂t

)
[sxx] – λsxy

∂u
∂y

= –μλ

(
∂u
∂y

)

, ()

(
 + λ

∂

∂t

)
[sxy] =

(
 + λ

∂

∂t

)[
∂u
∂y

]
. ()

Now the momentum equation () for an ordinary Oldroyd-B fluid by () and relations
()-() yields

ρ

(
 + λ

∂

∂t

)[
∂u
∂t

]
= μ

(
 + λ

∂

∂t

)[
∂u
∂y

]
. ()

We are interested in the flow between two infinite plates wherein the upper plate is fixed,
whereas the lower plate exhibits variable acceleration for t > , and the whole system is at
rest initially. Therefore, we can write the boundary and initial conditions as

u(L, t) =  and u(–L, t) = A
μ

ρ
 L t, t > , ()

u(y, ) =  =
∂u
∂t

(y, ), |y| ≤ L, ()

so that the IBVP governing the flow of the canonical Oldroyd-B fluid is given by ()-().
The governing equations corresponding to anomalous Oldroyd-B fluids performing the

same motion are obtained by replacing the inner time derivatives with left-sided Caputo
fractional time derivatives ∂α

t and ∂
β
t defined in () for  < α ≤ β < . Precisely, we entertain

the following model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ( + λα


∂α

∂tα )[ ∂u
∂t ] = μ( + λ

β


∂β

∂tβ )[ ∂u
∂y ], |y| < L, t > ,

u(L, t) = , u(–L, t) = A μ

ρ
 L t, t > ,

u(y, ) =  = ∂u
∂t (y, ), |y| ≤ L.

()

Note that the exponents α and β on λ and λ are introduced in order to match the di-
mensions of different terms in (). Furthermore, we can normalize the anomalous model
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() using the following dimensionless quantities:

ŷ :=
y
L

, û :=
u
A

, t̂ :=
μ

ρL t, λ̂ := λ
μ

ρL , λ̂ := λ
μ

ρL . ()

By (), after dropping the hats for brevity and using the same notation for dimensionless
quantities by abuse of notation, the IBVP () becomes

⎧⎪⎪⎨
⎪⎪⎩

( + λα


∂α

∂tα )[ ∂u
∂t ] = ( + λ

β


∂β

∂tβ )[ ∂u
∂y ], |y| < , t > ,

u(, t) = , u(–, t) = t, t > ,

u(y, ) =  = ∂u
∂t (y, ), |y| ≤ .

Remark . As a consequence of Remark ., the anomalous Oldroyd-B model () re-
duces to the canonical Oldroyd-B model as α,β → . Moreover, () refers to a fractional
Maxwell fluid as λ → .

We end this section by introducing the function ϕ(y, t) by

ϕ(y, t) := u(y, t) +



(y – )t.

Then, by invoking Proposition . we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( + λα


∂α

∂tα )[ ∂ϕ

∂t ] – ( + λ
β


∂β

∂tβ )[ ∂ϕ

∂y ]

= [y – ](t + Bt–α), |y| < , t > ,

ϕ(, t) =  = ϕ(–, t), t > ,

ϕ(y, ) =  = ∂ϕ

∂t (y, ), |y| ≤ ,

()

where the constant B is defined by B := λα


�(–α) .

3 Numerical approximation scheme
The aim of this section is to discuss a numerical scheme for approximating velocity field
satisfying the flow problem () over a finite interval of time t ∈ [, T] with some final
control time T > . Precisely, we consider

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( + λα


∂α

∂tα )[ ∂ϕ

∂t ] – ( + λ
β


∂β

∂tβ )[ ∂ϕ

∂y ]

= (y – )(t + Bt–α), |y| < , t ∈ (, T),

ϕ(, t) =  = ϕ(–, t), t ∈ (, T),

ϕ(y, ) =  = ∂ϕ

∂t (y, ), |y| ≤ .

()

A few useful notions and notation are collected below, and a discrete weak flow prob-
lem is derived in order to implement a standard Galerkin FEM blended with a so-called
L-finite difference approximation scheme following [–]. The well-posedness of the
discrete and continuous problems can be proved using standard argument of Lax-Milgram
in appropriate functional spaces; refer, for instance, to [] for a special case of fractional
Maxwell model.
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3.1 Functional spaces and norms
We denote the space of square-integrable functions over  = (–, ) by L(). Recall that
L() is equipped with inner product and norm defined respectively by

(φ,ψ) :=
∫



φψ dy and ‖φ‖ :=
(∫



|φ| dy
)/

, φ,ψ ∈ L().

Henceforth, we fix the notation

〈φ,ψ〉 :=
(

∂φ

∂y
,
∂ψ

∂y

)
,

Lα
t
[
ξ (·)](t) :=

(
 + λα


∂α

∂tα

)
∂

∂t
[
ξ (t)
]
,

Qβ
t
[
ξ (·)](t) :=

(
 + λ

β


∂β

∂tβ

)[
ξ (t)
]
.

Moreover, Hp() denotes the usual Sobolev space for p > , and Hp
 () denotes the closure

of C∞
 () in Hp(), where C∞

 () represents the space of infinitely continuous functions
having compact support in  (see, e.g., []). Recall that Hp() and Hp

 () are equipped
with inner products and norms

(φ,ψ)Hp := (φ,ψ)p =
p∑

i=

(
diφ

dyi ,
diψ

dyi

)
and (φ,ψ)Hp


:= (φ,ψ)p, =

(
dpφ

dyp ,
dpψ

dyp

)
,

‖φ‖Hp := ‖φ‖p =

( p∑
i=

∥∥∥∥diφ

dyi

∥∥∥∥




)/

and ‖φ‖Hp


:= ‖φ‖p, := |φ|Hp =
∥∥∥∥dpφ

dyp

∥∥∥∥

,

where | · | represents a seminorm. Let us define the equivalent norm

‖φ‖,∗ :=
(

( + τCα)‖φ‖
 + τ ( + Cβ )

∥∥∥∥∂φ

∂y

∥∥∥∥




)/

for H(), where Cα and Cβ are parameters depending on τ >  (a parameter to be made
precise latter), material parameters λj (j = , ), α, and β given by

Cα(τ ;λ) := λα


τ–(α+)

�( – α)
and Cβ (τ ;λ) := λ

β


τ–β

�( – β)
.

It is easy to see that ‖ · ‖ and ‖ · ‖,∗ are indeed equivalent norms on H() and subse-
quently on H

().
Let L(, T ; V ()) be the Hilbert space of functions φ from [, T] having values in a

separable Hilbert space V such that ‖φ‖V ∈ L(, T) equipped with

(φ,ψ)L(,T ;V ()) :=
∫ T


(φ,ψ)V () dt and ‖φ‖L(,T ;V ()) :=

√∫ T


‖φ‖

V () dt.

Let us denote by C([, T]; V ()) the space of continuous functions with norm

‖φ‖C([,T];V ()) := max
t∈[,T]

‖φ‖V .
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Analogously, for n ∈N,

Cn([, T]; V ()
)

:=
{
φ ∈ C([, T]; V ()

) | ∂ j
tφ ∈ C([, T]; V ()

)
,∀j ≤ n : j ∈N

}

with norm

‖φ‖Cn([,T];V ()) :=
n

max
j=

(∥∥∂ j
tφ
∥∥
C([,T];V ())

)
.

3.2 Finite difference approximation
For a fixed integer m, let τ := T/m be the time step size, and let tk := kτ for k = , , , . . . , m.
Consider the approximations

∂�

∂t
(y, s) � ∂�

∂t
(y, tk) � �(y, tk+) – �(y, tk)

τ
()

for all tk ≤ s ≤ tk+ and

∂�

∂t (y, s) � ∂�

∂t (y, tk) � �(y, tk+) – �(y, tk) + �(y, tk–)
τ  ()

for all tk– ≤ s ≤ tk+ with  < k < m. Moreover, for k = ,

∂�

∂t
(y, t) � �(y, t) – �(y, t)

τ
and

∂�

∂t (y, t) � 
τ

[
∂�

∂t
(y, t) –

∂�

∂t
(y, t)
]

.

Therefore, if � satisfies the initial conditions �(y, ) =  = ∂�/∂t(y, ), then

�(y, t) �  and
∂�

∂t (y, t) � 
τ

∂�

∂t
(x, t) � 

τ 

[
�(x, t) – �(x, t)

]� . ()

Consequently, following Lin and Xu [], the finite difference approximation to fractional-
order time derivative ∂

β
t ( < β < ) for all  ≤ k < m is given by

∂β�

∂tβ
(y, tk+) =


�( – β)

k∑
s=

∫ (s+)τ

sτ

∂�(y, ξ )
∂ξ

dξ

(tk+ – ξ )β

� 
�( – β)

k∑
s=

�(y, ts+) – �(y, ts)
τ

∫ (s+)τ

sτ

dξ

(tk+ – ξ )β

=


�( – β)

k∑
p=

�(y, tk+–p) – �(y, tk–p)
τ

∫ (p+)τ

pτ

dε

εβ

=
τ–β

�( – β)
[
�(y, tk+) – �(y, tk)

]
+

τ–β

�( – β)
ζ

β

k [�],

where bβ
p := (p + )–β – (p)–β ,  ≤ p ≤ m, and

ζ
β

k [�] :=
k∑

s=

bβ
s
[
�(y, tk+–s) – �(y, tk–s)

]
with ζ

β
 [�] := . ()
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By () it can be observed immediately that ζ
γ
 [�] � , for all γ ∈ {α,β}. On the other

hand, since  < α +  < , we have (see, e.g., []), for  < k < m,

∂α+�

∂tα+ (y, tk+)

=


�( – (α + ))

k∑
s=

∫ (s+)τ

sτ

∂�(y, ξ )
∂ξ 

dξ

(tk+ – ξ )α

=


�( – α)

k∑
s=

∫ (s+)τ

sτ

∂�(y, ts)
∂ξ 

dξ

(tk+ – ξ )α

=


�( – α)

[∫ τ



∂�(y, t)
∂ξ 

dξ

(tk+ – ξ )α
+

k∑
s=

∫ (s+)τ

sτ

∂�(y, ts)
∂ξ 

dξ

(tk+ – ξ )α

]

� 
�( – α)

k∑
s=

�(y, ts+) – �(y, ts) + �(y, ts–)
τ 

∫ (s+)τ

sτ

dξ

(tk+ – ξ )α
,

where the last relation results from approximations () and (). Changing the summa-
tion index, we obtain

∂α+�

∂tα+ (y, tk+) =


�( – α)

k–∑
p=

�(y, tk+–p) – �(y, tk–p) + �(y, tk––p)
τ 

∫ (p+)τ

pτ

dε

εα

=
τ–α–

�( – α)
[
�(y, tk+) – �(y, tk) + �(y, tk–)

]

+
τ–α–

�( – α)

k–∑
p=

bα
p
[
�(y, tk+–p) – �(y, tk–p) + �(y, tk––p)

]
.

By the definition of memory terms ζ α
k–[�] and ζ α

k [�] we get

∂α+�

∂tα+ (y, tk+) =
τ–α–

�( – α)
[
�(y, tk+) – �(y, tk) + �(y, tk–)

]

+
τ–α–

�( – α)
[
ζ α

k [�] – ζ α
k–[�]
]
.

Therefore, Lα
t [�] and Qβ

t [�] can be approximated for  < k < m by

Lα
t [�](tk+) =

(
∂

∂t
+ λα


∂α+

∂tα+

)
[�](tk+)

� 
τ

[
�(tk+) – �(tk)

]
+ Cα

[
�(tk+) – �(tk) + �(tk–)

]

+ Cα

[
ζ α

k [�] – ζ α
k–[�]
]
,

Qβ
t [�](tk+) =

(
 + λ

β


∂β

∂tβ

)
[�](tk+)

� �(tk+) + Cβ

[
�(tk+) – �(tk)

]
+ Cβζ

β

k [�].
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Finally, we conclude this section by defining the approximate time-discrete operators

L̂α
k+[�] :=

�k+ – �k

τ
+ Cα[�k+ – �k + �k–] + Cα

[
ζ α

k [�] – ζ α
k–[�]
]
, ()

Q̂β

k+[�] := �k+ + Cβ [�k+ – �k] + Cβζ
β

k [�] ()

such that

Lα
t [�](tk+) = L̂α

k+[�] + Rk+
α, + O(τ ) and Qβ

t [�](tk+) = L̂β

k+[�] + Rk+
β , , ()

where �k is the approximation to �(tk), and Rk+
α, and Rk+

β , are the truncation error terms.
We provide further discussion on the truncation error to Section . and present a spatial
discretization scheme in the next section.

3.3 Galerkin finite element approximation
Let – = y < y < · · · < yn < yn+ = . Define the partition of the domain  into n subdo-
mains i = (yi, yi+) for i = , , . . . , n such that

 =
n⋃

i=

i and i
⋂

j = ∅, ∀i �= j.

Let h be the uniform length of elements i, that is, h := /n := yi+ – yi. Define the sequence
of finite-dimensional approximation subspaces {V h

 ()}h> of H
() by

V h
 () :=

{
φ ∈ H

() | φ|i
∈ ℘r(i),∀i = , , . . . , n

}
, ()

where ℘r(i) is a Lagrange interpolation space of polynomials with degree at most r over
the element i for each i = , , . . . , n.

Consider the following weak formulation of the flow problem ().

Weak Form Find ϕ ∈ C([, T]; H
()) such that

⎧⎨
⎩
Lα

t (ϕ(y, t),χ ) + Qβ
t 〈ϕ(y, t),χ〉 = ((y – )(t + Bt–α),χ ),

ϕ(y, ) =  = ∂ϕ

∂t (y, )
()

for all χ ∈ H
(). �

In the sequel, we derive a space and time discrete weak formulation of the problem ()
using (). Let ϕh be an approximate solution to () in C([, T]; V h

 ), that is, the solution
to following problem.

Semidiscrete weak form Find ϕh ∈ C([, T]; V h
 ()) such that

⎧⎨
⎩
Lα

t (ϕh(y, t),χh) + Qβ
t 〈ϕh(y, t),χh〉 = ((y – )(t + Bt–α),χh),

ϕh(y, ) =  = ∂ϕh
∂t (y, )

()

for all χh ∈ V h
 (). �
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Using approximations ()-() in () for a fixed time tk+ ( < k < m), the discrete weak
form of the flow problem () is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find ϕh(·, tk+) ∈ V h
 () such that ∀χh ∈ V h

 ():

L̂α
k+(ϕh(y, tk+),χh) + Q̂β

k+〈ϕh(y, tk+),χh〉 + Rk+
α, (y) + Rk+

β , (y)

= ((y – )(tk+ + Bt–α
k+ ),χh),

ϕ
h (y) =  = ϕ

h(y),

()

where ϕ
h (·) = ϕh(·, t) and ϕ

h(·) = ϕh(·, t). On the other hand, recall that the approximate
solution ϕh to () can be written as

ϕh(y, t) =
Nh∑
p=

ϕp(t)W p
h (y), y ∈ ,

where {W p
h |p = , , . . . , Nh} forms a basis of V h

 () with Nh := dim(V h
 ), and ϕp are the val-

ues to be determined. Therefore, choosing χh as W q
h for different values of q = , , . . . , Nh

finally leads to the following system of equations:

⎧⎨
⎩
A

hL̂α
k+[�h](tk+) + B

hQ̂β

k+[�h](tk+) + Ek+(Wh) = Gk+
h (Wh),

�
h =  = �

h,
()

where, for all p, q = , , . . . , Nh,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�h)p := ϕp,

(Wh)p := W p
h ,

(Ah)qp := (W p
h , W q

h ),

(Bh)qp := 〈W p
h , W q

h 〉,
(Gk+

h (Wh))p := ((y – )(tk+ + Bt–α
k+ ), W p

h ),

(Ek+(Wh))p := (Rk+
α, + Rk+

β , , W p
h ).

The finite difference-finite element approximation scheme for the flow problem () can
be described in two steps. In the sequel, the approximation to �h(tk+) is denoted by �k+

h .
In order to initiate the iterative scheme, the first two terms �

h and �
h are required. Note

that, by initial conditions,

�
h = �h(t) =  and �

h = �h(t) = .

For  < k < m, the approximate solution �k+
h can be obtained by successively solving

A
hL̂α

k+[�h](tk+) + B
hQ̂β

k+[�h](tk+) = Gk+
h (Wh).

4 Analysis of numerical scheme
This section is dedicated to the stability and error analysis of the numerical scheme estab-
lished in Section . In the sequel, C represents a generic constant independent of τ and h
but dependent on ϕ, α, β , λ, λ, u, and T and may differ from step to step.



Rasheed et al. Advances in Difference Equations  (2016) 2016:236 Page 12 of 21

4.1 Truncation error
We recall that the truncation errors for the finite difference approximations of time frac-
tional Caputo derivatives of order α +  and β are given respectively by

Rk+
α, =

∂α+�

∂tα+ (tk+) –
τ–α–

�( – α)
[
�(tk+) – �(tk) + �(tk–)

]

–
τ–α–

�( – α)
[
ζ α

k [�] – ζ α
k–[�]
]

=


�( – α)

k∑
s=

∫ ts+

ts

[
∂�(ξ )
∂ξ  –

∂�(ts)
∂t –

τ 


∂�(ts)
∂ξ

+ O
(
τ )] dξ

(tk+ – ξ )α
,

Rk+
β , =

∂β�

∂tβ
(tk+) –

τ–β

�( – β)
[
�(tk+) – �(tk)

]
–

τ–β

�( – β)
ζ

β

k [�]

=


�( – β)

k∑
s=

∫ ts+

ts

[
∂�(ξ )
∂ξ

–
∂�(ts)

∂t
–

τ


∂�(ts)
∂ξ 

+ O
(
τ )] dξ

(tk+ – ξ )β
.

The following truncation error bounds hold. We refer the interested reader to [, ] for
further details.

Lemma . If � ∈ C([, T]), then, for all  < k < m,

∣∣Rk+
α,
∣∣≤ C max

t∈[,T]

∣∣∣∣∂
�(t)
∂t

∣∣∣∣ k–α

�( – α)
τ –α ,

∣∣Rk+
β ,
∣∣≤ C max

t∈[,T]

∣∣∣∣∂
�(t)
∂t

∣∣∣∣ k–β

�( – β)
τ –β .

As an immediate consequence of Lemma ., the following result is evident.

Lemma . (Truncation error) If � ∈ C([, T]), then, for all  < k < m,

∣∣Lα
t [�](tk+) – L̂α

k+[�]
∣∣≤ Cτ +

∣∣Rk+
α,
∣∣≤ C
(
τ + τ –α

)
,

∣∣Qβ
t [�](tk+) – Q̂β

k+[�]
∣∣≤ ∣∣Rk+

β ,
∣∣≤ C
(
τ –β
)
.

4.2 Stability of discrete problem
This section is dedicated to proving the stability of the discrete weak problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find ϕk+
h ∈ V h

 () such that ∀χh ∈ V h
 ():

( + τCα)(ϕk+
h ,χh) + τ ( + Cβ )〈ϕk+

h ,χh〉
= Mk[ϕk

h ,χh] + τ (g(y)(tk+ + Bt–α
k+ ),χh),

ϕ
h =  = ϕ

h,  < k < m,

()
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where ϕk+
h is the approximation of ϕh(·, tk+), and

g(y) := (y – ),

Mk
[
ϕk

h ,χh
]

:= ( + τCα)
(
ϕk

h ,χh
)

+ τCβ

〈
ϕk

h ,χh
〉
– τCα

(
ϕk–

h ,χh
)

– τCα

(
ζ α

k [ϕh] – ζ α
k–[ϕh],χh

)
– τCβ

〈
ζ

β

k [ϕh],χh
〉
.

The following stability result holds.

Theorem . The discrete problem () is unconditionally stable in the sense that, for
τ >  and for all j such that  ≤ j ≤ m,

∥∥ϕj
h
∥∥

,∗ ≤ C‖g‖. ()

Proof Remark that ϕ
h = ϕ

h = , and thus

∥∥ϕ
h
∥∥

,∗ =
∥∥ϕ

h
∥∥

,∗ =  ≤ ‖g‖.

In order to prove the stability estimate () for  ≤ j ≤ m, we use mathematical induction.
. Initial step: (j = ). Taking χh = ϕ

h and k =  in () yields

∥∥ϕ
h
∥∥

,∗ ≤M
[
ϕ

h,ϕ
h
]

+ C‖g‖
∥∥ϕ

h
∥∥

. ()

By initial conditions and the definition of operator M we obtain

M
[
ϕ

h,ϕ
h
]

= ( + τCα)
(
ϕ

h,ϕ
h
)

+ τCβ

〈
ϕ

h,ϕ
h
〉
+ τCα

(
ϕ

h ,ϕ
h
)

= .

Consequently, inequality (), together with the inequality ‖ϕ
h‖ ≤ ‖ϕ

h‖, yields

∥∥ϕ
h
∥∥

,∗ ≤ C‖g‖.

. Supposition step: (j < m). Assume that estimate () holds for  < j < m, that is, there
exists a constant C independent on τ and h such that ‖ϕj

h‖,∗ ≤ C‖g‖.
. Induction step: (j = m). It is evident from the definition of bγ

k that

 = bγ
 > bγ

 > · · · > bγ

k →  as k → +∞. ()

Taking χh = ϕm
h and k = m –  in () yields

∥∥ϕm
h
∥∥

,∗ ≤Mm–
[
ϕm–

h ,ϕm
h
]

+ C‖g‖
∥∥ϕm

h
∥∥

. ()

Again, by the definition of the operator Mm– we have

Mm–
[
ϕm–

h ,ϕm
h
]

= ( + τCα)
(
ϕm–

h ,ϕm
h
)

+ τCβ

〈
ϕm–

h ,ϕm
h
〉
+ τCα

(
ϕm–

h ,ϕm
h
)

+ τCα

(
ζ α

m–[ϕh] – ζ α
m–[ϕh],ϕm

h
)

+ τCβ

〈
ζ

β
m–[ϕh],ϕm

h
〉
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≤ ( + τCα)
∥∥ϕm–

h
∥∥



∥∥ϕm
h
∥∥

 + τCβ

∥∥∥∥∂ϕm–
h

∂y

∥∥∥∥


∥∥∥∥∂ϕm
h

∂y

∥∥∥∥


+ τCα

∥∥ϕm–
h
∥∥



∥∥ϕm
h
∥∥

 + τCβ

∥∥∥∥∂ζ
β
m–[ϕh]
∂y

∥∥∥∥


∥∥∥∥∂ϕm
h

∂y

∥∥∥∥


+ τCα

∥∥ζ α
m–[ϕh]

∥∥


∥∥ϕm
h
∥∥

 + τCα

∥∥ζ α
m–[ϕh]

∥∥


∥∥ϕm
h
∥∥



≤ C max

(
 + λα


T–α

�( – α)
,λβ


T –β

�( – β)

)
‖g‖
∥∥ϕm

h
∥∥

.

To get the last inequality, we have used the assumption step and the fact that

∥∥ζ γ
p [ϕ]
∥∥

,∗ =

∥∥∥∥∥
p∑

s=

bγ
s
(
ϕ

p+–s
h – ϕ

p–s
h
)∥∥∥∥∥

,∗

≤
p∑

s=

(∥∥ϕp+–s
h
∥∥

,∗ +
∥∥ϕp–s

h
∥∥

,∗
)≤ C‖g‖

for all p < m, which holds again by the assumption step and relation (). This
completes the proof together with (). �

4.3 Convergence of numerical scheme
Let πh : H

() → V h
 () be the interpolation operator from H

() into V h
 () defined by

〈πhφ, vh〉 = 〈φh, vh〉, ∀vh ∈ V h
 (),φh ∈ V h

 ,φ ∈ H
().

Let us define the error term rk+
α by

rk+
α (y) := Lα

t
[
ϕh(y, tk+)

]
– L̂α

k+
[
πhϕ(y, tk+)

]
.

Then, we have the following error bounds.

Lemma . There exists a constant C >  depending on α, λ, ϕ, and T such that

∥∥rk+
α

∥∥
 ≤ C
(
hr+ + τ –α

)
. ()

Proof Note that

Lα
t
[
ϕh(y, tk+)

]
– L̂α

k+
[
πhϕ(y, tk+)

]

= ( – πh)Lα
t
[
ϕh(y, tk+)

]
+ πh
[
Lα

t
[
ϕh(y, tk+)

]
– L̂α

k+
[
ϕh(y, tk+)

]]
.

Therefore, recalling the truncation error estimates from Lemma . and the interpolation
error estimates from [, ], we conclude that estimate () holds. �

Remark from the discrete weak formulation () that, for χh ∈ V h
 () ⊂ H

() and a
fixed tk+,

L̂α
k+
(
πhϕ(y, tk+),χh

)
+ Q̂β

k+
〈
πhϕ(y, tk+),χh

〉
+
(
Rk+

h (y),χh
)

=
(
g(y)
(
tk+ + Bt–α

k+
)
,χh
)
, ()
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where

Rk+
h (y) := Rk+

α, (y) + Rk+
β , (y) + rk+

α (y).

The main result of this section is the following:

Theorem . (Convergence) Let ϕ(·, t) and ϕk+
h (·) be the solutions to () and (), re-

spectively. Then there exists a constant C >  independent on h and τ such that

∥∥ϕ(·, tk+) – ϕk+
h (·)∥∥,∗ ≤ C

(
hr+ + τ ),  ≤ k < m. ()

Proof The convergence estimate () can be proved by arguments analogous to those in
the proof of [], Theorem ., and that of [], Theorem .. The key ingredients of the
proof are further presented for completeness.

We split the error term ‖ϕ(·, tk+) – ϕk+
h (·)‖,∗ as

∥∥ϕ(·, tk+) – ϕk+
h (·)∥∥,∗ ≤ ∥∥ϕ(·, tk+) – πhϕ(·, tk+)

∥∥
,∗

+
∥∥πhϕ(·, tk+) – ϕk+

h (·)∥∥,∗.

Then the first term on the right-hand side (RHS) is well understood [, ], and we have

∥∥ϕ(·, tk+) – πhϕ(·, tk+)
∥∥

,∗ ≤ Chr+. ()

In order to estimate the second term on the RHS, let

εk+
h (·) := ϕk+

h (·) – πhϕ(·, tk+).

Then, by () and (),

L̂α
k+
(
εk+

h ,χh
)

+ Q̂β

k+
〈
εk+

h ,χh
〉

=
(
Rk+

h ,χh
)
, ∀χh ∈ V h

 ().

Choosing χh := εk+
h in this equation, we arrive at

L̂α
k+
(
εk+

h , εk+
h
)

+ Q̂β

k+
〈
εk+

h , εk+
h
〉

=
(
Rk+

h , εk+
h
)

or, equivalently,

∥∥εk+
h
∥∥

,∗ ≤Mk
[
εk

h , εk+
h
]

+ Cτ
∣∣Rk+

h
∣∣∥∥εk+

h
∥∥

,∗. ()

By Lemmas . and . the second term on the RHS of () can be controlled by O(hr+ +
τ ). In order to control the first term on the RHS of (), we use the arguments analogous
to those in Theorem . and prove that

Mk
[
εk

h , εk+
h
]≤ C
(∥∥εk

h
∥∥

,∗ +
∥∥εk–

h
∥∥

,∗
)∥∥εk

h
∥∥

,∗.
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Then using mathematical induction together with the fact that ε
h = ε

h = , it can be proved
in a similar fashion as in Theorem . that

∥∥εk+
h
∥∥

,∗ ≤ C
(
hr+ + τ ), ()

which consequently leads to the conclusion together with (). �

5 Numerical results and discussion
In this section, we present some numerical results showing the validity of the approxima-
tion scheme and discuss the approximate velocity profile.

5.1 Validation of numerical scheme
In order to validate the numerical scheme, we fabricate an exact solution and compare it
with the approximated solution obtained using the numerical scheme established in Sec-
tion  with ℘-elements. In order to construct an exact solution of the model, we introduce
an artificial source term Fart on the RHS of the first equation of () to arrive at

(
 + λα


∂α

∂tα

)[
∂ϕ

∂t

]
–
(

 + λ
β


∂β

∂tβ

)[
∂ϕ

∂y

]
= (y – )

(
t + Bt–α

)
+ Fart(y, t). ()

Then by choosing any smooth function ϕex that satisfies both initial and boundary con-
ditions of the model problem () we can easily find the corresponding source term Fart

by inserting ϕex in (). The function ϕex then becomes an exact solution of equation
() subject to initial and boundary conditions as in (). Toward this end, we choose
ϕex(y, t) = t sinπy in this subsection. In fact, the artificial source term in () is considered
only to validate the numerical scheme and to discuss its convergence. For the numerical
simulations of the model problem () and for discussing the velocity profile, we use the
original source term and the corresponding numerical solution.

In Figure , the transient profiles of the exact (fabricated) and approximated solutions
are compared over the time interval [, ]. The results show a very good match between

Figure 2 Comparison of exact and approximate solutions over (y, t) ∈ [–1, 1] × [0, 1].
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Figure 3 Numerical error estimation.

Table 1 Convergence rates in L2 and H1 norms

Number of
elements

‖u – uex‖L2(�) ‖u – uex‖H1(�)

60 5.0077× 10–3 9.5930× 10–2

70 4.7797× 10–3 8.2534× 10–2

80 4.6342× 10–3 7.2526× 10–2

90 4.5357× 10–3 6.4777× 10–2

100 4.4659× 10–3 5.8608× 10–2

110 4.4146× 10–3 5.3588× 10–2

120 4.3758× 10–3 4.9430× 10–2

130 4.3458× 10–3 4.5934× 10–2

140 4.3220× 10–3 4.2958× 10–2

150 4.3029× 10–3 4.0398× 10–2

exact and numerical solutions. In order to further substantiate the appositeness of the
numerical scheme, we show in Figure (a) the exact and approximate solution curves at
the control time t =  on a single frame. The approximate solution appears to be very close
to the exact one. In Figure (b), we plot the approximation error in log scales in L and
H norms by varying the values of the spatial discretization step size h. The numerical
estimated error is found to be in accordance with the theoretical estimate provided in
Section . Finally, in Table , we present the convergence rates for ℘-elements by varying
the spatial step size h. The results show that the convergence rate of the numerical scheme
agrees with the theoretically estimated convergence rate in Section .

5.2 Characteristic behavior of velocity profile
Figures  and  are prepared to delineate the dependence of velocity profile on fractional
exponents α and β . Plots are provided at fixed time instances t =  and t = . A strong effect
of fractional exponents on velocity field has been demonstrated. It is observed in Figure 
that the magnitude of the velocity field decreases with increasing values of α. Moreover,
this decrease is more rapid as α → . This indicates that the effect of an Oldroyd-B fluid
rheology on the flow is much stronger in Brownian or ordinary models than in anoma-
lous models. On the other hand, an increasing behavior of velocity amplitude is apparent
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Figure 4 Variations in velocity profile versus fractional exponents α.

Figure 5 Variations in velocity profile versus fractional exponents β .

with increasing values of β in Figure  in contrast with the case of α. However, the depen-
dence is certainly nonmonotonic in nature and cannot be generalized to other values of
parameters, especially when α and β are chosen to be very close. It is noted that α shows a
shear-thinning behavior, whereas β corresponds to shear-thickening behavior. Moreover,
an increase in α reduces the boundary layer thickness, whereas β shows an opposite trend
on boundary layer thickness to that of α. Based on these observations, wee can speculate
that the fractional exponents in the anomalous Oldroyd-B model have strong effects on
the velocity profile.

The effects of relaxation and retardation times on the velocity profile are presented in
Figures  and . Different velocity curves at fixed times t =  and t =  are plotted for
various choices of λ, λ, and the fractional exponents. Figure  shows that the magnitude
of the velocity profile decreases with increasing values of λ. An opposite behavior is noted
for λ versus magnitude of the velocity profile in Figure . Moreover, λ apparently has a
stronger effect on velocity field than λ. The comparison shows that the velocity magnitude
decays more slowly for large values of λ and λ than for small their values.

Finally, the transient velocity profile is depicted in Figure  for two different sets of rhe-
ological parameters and time intervals with anomalous behavior of the Oldroyd-B rheo-
logical model.
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Figure 6 Variations in velocity profile versus relaxation time λ1.

Figure 7 Variations in velocity profile versus retardation time λ2.

Figure 8 Transient velocity profile.

6 Concluding remarks
In this article, we presented a Galerkin finite element method blended with a finite differ-
ence scheme for time fractional derivative to approximate flow velocity in an anomalous
Oldroyd-B fluid confined between two infinite horizontal plates. The flow is induced by
variable acceleration of the lower plate. No slip condition at the boundary is imposed.
Convergence analysis of the numerical scheme is performed, and error bounds are pre-
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sented. Numerical results are discussed, and the influence of pertinent flow parameters
on the velocity field is delineated. The results presented in this investigation generalize
those for Brownian Oldroyd-B fluids and anomalous Maxwell fluids in analogous flow
configurations. In the present study, the pressure gradient is considered to be negligible
for simplicity. The results contained in this paper can be extended for Burgers fluids and
will be discussed in a forthcoming investigation.
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