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Abstract
In this work we consider a discrete nonlocal problem of the following type:

{
�(q�x)(n) + f (n + 1,x(n + 1)) = 0,

x(∞) = g(x),

in the context of an arbitrary Banach space (X ,‖·‖X ), and we give sufficient conditions
that ensure the existence of solutions to it.
In order to present our result, we shall need to study conditions that ensure the

existence of solutions with a nonlocal asymptotic behavior for the following equation:

x(n) = g(x) –
∞∑

k=n+1

k–1∑
j=n

1
q(j)

f (k,x(k)).
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1 Introduction
Throughout this paperN,R, andR+ will denote the usual sets of numbers, i.e., nonnegative
integers, reals, and nonnegative reals, respectively. Also, (X,‖·‖X) will denote an arbitrary
(real) Banach space, whose (open) balls (with center x ∈ X and radius r) are B(x, r), or
BX(x, r) depending on whether the base space needs emphasis or not. The closure, the
convex hull, and the closed convex hull of a given set A ⊂ X are written A, co(A), and co(A),
respectively. Sequences (or double sequences) will be understood as mappings defined on
N (or N×N), thus avoiding as much as possible the use of subscripts or superscripts. For
instance, a sequence in X will be a mapping x : N→ X, whose nth component is x(n). The
operator forward difference, �, applies sequences into sequences. Thus, if x is a sequence,
then �x is a sequence that component-wise is given by �x(n) = x(n + ) – x(n). Rather than
considering the whole space of sequences on X, we shall be working with �∞(X), the usual
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space of bounded sequences on X, which becomes a Banach space under the sup norm:
‖x‖∞ = supn ‖x(n)‖X .

The study of difference equations in the context of Banach spaces has always attracted
the attention of several authors (see for instance [] and the references therein). In this
paper, we follow this line of work.

For q a given sequence of positive real numbers and f an X-valued function defined on
N×X, we look, in this paper, for conditions that ensure the existence of bounded X-valued
sequences x, solutions of the following problem:

⎧⎨
⎩�(q�x)(n) + f (n + , x(n + )) = ,

x(∞) = g(x).
()

Here, x(∞) = limn→∞ x(n) and g is an X-valued function defined on �∞(X). This nonlocal
asymptotic behavior, as opposed to local asymptotic behavior given by x(∞) = constant,
is the interesting part of our study and makes it different from what, we believe, has been
done before. For instance, in [], a quite general set of hypotheses was given in order to
ensure the existence of solutions with a specified local asymptotic behavior for the above
equation (see also [–]). Those hypotheses were enough in order to use the Sadovskĭı
fixed point theorem, but when we tried to adapt them to the nonlocal setting, we did not
see how to do it without imposing conditions difficult to verify. In the end, we have realized
that a Leray-Schauder type fixed point theorem is the appropriate tool to obtain a good
result for this nonlocal setting. The basics of this theory are briefly explained in Section ,
together with a result on fixed points of mappings defined on sequence spaces which is
similar to Theorem  in [].

In Section , we shall study the following summation equation:

x(n) = g(x) –
∞∑

k=n+

k–∑
j=n


q(j)

f
(
k, x(k)

)
, ()

whose solutions, as one can easily check, are also solutions of the problem (), because the
convergence of the series is implicitly assumed in this direction. In the other direction, one
needs to provide conditions ensuring the convergence of the series in order to see that the
solutions to problem () are also solutions of the above summation equation. Actually, an
equation a bit more general than () will be the main object of our study. The paper will
be complete once we present the corresponding result to obtain solutions of problem ().

2 A fixed point theorem
Compactness is a usual ingredient when trying to obtain results about fixed points of map-
pings. Without going any further, the well-known Schauder fixed point theorem asserts
that a compact mapping, i.e., a continuous mapping that transforms bounded sets into rel-
atively compact ones, has a fixed point, whenever it leaves invariant a nonempty, bounded,
closed, and convex set. The invariance of the set can be relaxed if we refer to an also well-
known Leray-Schauder type fixed point theorem, which states that a compact mapping T
has a fixed point if it satisfies the Leray-Schauder boundary condition on B(, R), for some
R > , that is, if there exists R >  such that

T(x) �= λx, whenever ‖x‖ = R, and λ > . (LS)
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A natural generalization of compactness in these results deal with the concept of mea-
sures of noncompactness. A typical one is the measure of noncompactness of Kuratowski,
defined for each bounded set A as the infimum α(A) of the ε >  for which A admits a
finite ε-cover. (By an ε-cover of A we mean a collection of sets Fi, i ∈ I , of diameter less
than ε, whose union contains A.)

α(A) = inf

{
ε >  : A ⊆

n⋃
i=

Fi, diam(Fi) < ε

}
.

In general, a measure of noncompactness in X is a mapping m that assigns to each bounded
set in X a nonnegative real number, such that

(MNC) for all bounded A ⊂ X , m(A) =  if and only if A is compact;
(MNC) for all bounded A ⊂ X , m(A) = m(A);
(MNC) for all bounded A, B ⊂ X , m(A ∪ B) = max{m(A), m(B)}.

A property deduced easily from (MNC) is that if A ⊆ B are bounded, then m(A) ≤
max{m(A), m(B)} = m(A∪B) = m(B). Additionally, the measure of noncompactness of Ku-
ratowski also satisfies the following useful properties:

(K) for all bounded A ⊂ X and all scalars λ, α(λA) = |λ|α(A);
(K) for all bounded A, B ⊂ X , α(A + B) ≤ α(A) + α(B);
(K) for all bounded A ⊂ X , α(co(A)) = α(A).
Compact mappings are particular cases of m-condensing mappings. These are con-

tinuous mappings T that send bounded sets A with m(A) >  into bounded sets T(A)
with m(T(A)) < m(A). In this respect, in , Sadovskĭı [] obtained an extension of
Schauder’s fixed point theorem for condensing mappings, namely, if the measure of non-
compactness is such that m(A) = m(co(A)) for any bounded set A ⊂ X, then any condens-
ing mapping has a fixed point, whenever it leaves invariant a nonempty, bounded, closed,
and convex set. Again, the invariance of the set can be relaxed via a Leray-Schauder type
fixed point theorem: if the measure of noncompactness is unaltered after applying con-
vex hulls, we see that any condensing mapping has a fixed point if it satisfies the Leray-
Schauder boundary condition (LS) on BX(, R), for some R > . For proofs of these results,
at least for the Kuratowski measure of noncompactness, see, for instance, [] and [].

From now on, we restrict ourselves to the Kuratowski measures of noncompactness αX

in X, and α∞ in �∞(X), respectively. In , the authors [] used Sadovskĭı fixed point the-
orem in order to obtain a result as regards fixed points for mappings on sequence spaces.

Theorem A Let K ⊂ �∞(X) be a nonempty, bounded, closed, and convex set. Assume that
a mapping T : K → K is given by T = (T, T, . . .), where each Tn is (α∞,αX)-condensing,
and limn diam(TnK) = . Then T has a fixed point in K.

The proof just consisted in showing that T is α∞-condensing. Now, we shall need a result
which is a Leray-Schauder counterpart of Theorem A, in order to relax the existence of
a T-invariant set. This observation is just stated as our first result, for which there is no
need to repeat the proof.

Theorem  Let T : �∞(X) → �∞(X), T = (T, T, . . .), be such that maps bounded sets into
bounded sets. Assume that each Tn is (α∞,αX)-condensing, and that limn diam Tn(U ) = 
for each bounded set U ∈ �∞(X). Then T is α∞-condensing.
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If, besides, T satisfies the Leray-Schauder boundary condition (LS) on B�∞(X)(, R), for
some R > , then T has a fixed point.

3 Solutions for a summation equation
As we said in the Introduction, we will study an equation a bit more general than (), in
the context of the Banach space X,

x(n) = g(x) –
∞∑

k=n+

P(n, k)f
(
k, x(k)

)
, (E)

where g : �∞(X) → X, P : N×N →R+, and f : N× X → X.
Observe that () is just the case P(n, k) =

∑k–
j=n


q(j) , for k ≥ n + .

In order to ensure the existence of solutions to this equation we have found that the
following conditions fit our requirements and are quite general:

(H) g : �∞(X) → X is compact and bounded.
(H) There exists a sequence p : N→ R+ such that

P(n, k) ≤ p(k), for all n ∈N and all k ≥ n + .

(H) There exist ϕ : R+ →R+, nondecreasing, and a : N →R+ such that

∥∥f (n, x)
∥∥

X ≤ a(n)ϕ
(‖x‖X

)
, for all n ∈N and all x ∈ X.

(This implies that each f (n, ·) maps bounded sets into bounded sets.)
(H) ϕ(s) >  for all s > , and

∫ ∞



ϕ(s) ds = +∞.

(H)
∑∞

n= p(n)a(n) < ∞.
(H) For k ∈N, f (k, ·) is continuous on X , there exists Lk ≥  such that

αX
(
f (k, A)

) ≤ LkαX(A), for all bounded A ⊂ X, and
∞∑

k=

p(k)Lk < .

Observe that if each f (k, ·) were a compact function then we could take Lk =  for all k
in (H). Also, notice that (H) and (H) tell us that

∑
k p(k)f (k, x(k)) converges absolutely

for each x ∈ �∞(X), and it does it uniformly on each bounded set of �∞(X). Precisely, this
convergence condition will help us to show that any solution of () is also a solution of ().
Recall that we mentioned before that the other direction was straightforward.

Proposition  Let x ∈ �∞(X) be a solution of (). Put P(n, k) =
∑k–

j=n


q(j) (for k ≥ n + ),
and p(k) =

∑k–
j=


q(j) (for k ≥ ). Assume that conditions (H) and (H) hold, as well as

limk p(k) = ∞. Then x is also a solution of ().

Remark  The hypothesis
∑

j


q(j) = ∞ (p(k) → ∞) becomes natural if we think of q(j) as
equal to  for all j. Equation () would then be

�x(n) = –f
(
n + , x(n + )

)
.
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Proof For fixed n and N ≥ n we have

q(N + )�x(N + ) – q(n)�x(n) =
N∑

k=n

�(q�x)(k) = –
N+∑

k=n+

f
(
k, x(k)

)
. ()

Recall that q(n) > . So we may divide the above expression by q(n), and since 
q(n) ≤ p(k) for

k ≥ n + , the series in the resulting right hand side converges absolutely, by (H) and (H).
So, taking limits as N → ∞, we conclude that there exists the limit y ∈ X of q(N)�x(N)
as N → ∞.

We claim that this limit must be y = . For, assuming y �= , by Hahn-Banach, a
continuous (real) linear functional H exists on X such that H(y) = . This shows that
q(N)H(�x(N)) → H(y) = , and hence, there exists N ∈ N such that H(�x(N)) > 

q(N)
for all N ≥ N. Thus, for N ≥ N,

H
(
x(N + )

)
= H

(
x(N)

)
+

N∑
j=N

H
(
�x(j)

)
> H

(
x(N)

)
+




N∑
j=N


q(j)

,

leaving us with a contradiction at the moment of taking limits as N → ∞, for the left
hand side converges to H(x(∞)) = H(g(x)) while the right hand side goes to ∞ because,
by hypothesis,

∑
j


q(j) = ∞.

Once the claim is proved, () yields

�x(n) =


q(n)

∞∑
k=n+

f
(
k, x(k)

)
, for all n ∈N,

and again, for fixed n and N ≥ n,

x(N + ) – x(n) =
N∑

j=n

�x(j) =
N∑

j=n


q(j)

∞∑
k=j+

f
(
k, x(k)

)

=
N+∑

k=n+

k–∑
j=n


q(j)

f
(
k, x(k)

)
+

∞∑
k=N+

N∑
j=n


q(j)

f
(
k, x(k)

)
.

It is clear now that, again by (H) and (H), we can take limits as N → ∞ and, doing so,
see that x is a solution of equation (). �

Let us now state and prove the main result of this paper.

Theorem  Under conditions (H)-(H), equation (E) has a solution in �∞(X).

Proof First we get rid of the case in which, for one reason or another, the sum in the right
hand side of equation (E) is always missing (equal to  for all n),

x(n) = g(x).

An �∞(X) solution to this equation must be a constant sequence cx, given by cx(n) = x,
n ∈N, satisfying g(cx) = x. To this aim, define g̃ : X → X as g̃(x) = g(cx). By (H), g̃ is clearly



González and Jiménez-Melado Advances in Difference Equations  (2016) 2016:237 Page 6 of 9

compact and bounded, showing that co(g̃(X)) is a g̃-invariant nonempty, bounded, closed,
and convex set. So by Schauder’s fixed point theorem, g̃ has a fixed point x ∈ X and,
consequently, the corresponding constant sequence cx is a solution of our equation.

From now on, we assume that the sum on the right hand side of equation (E) is not
always . Define T : �∞(X) → �∞(X) as T = G + S where G(x) = cg(x), and each component
of S = (S, S, . . .) is Sn(x) = –

∑∞
k=n+ P(n, k)f (k, x(k)). Observe that G is well defined, and

so is each Sn because conditions (H), (H), and (H) tell us that the series defining Sn

converges absolutely for each x ∈ �∞(X), and does it uniformly on each bounded set of
�∞(X). Clearly, by (HH), G is compact and bounded.

The plan for the rest of the proof consists in showing that S is α∞-condensing. This
will be achieved using the first part of Theorem . From here, it will be clear that T =
G + S is α∞-condensing. Finally, we shall show that T satisfies a Leray-Schauder boundary
condition (LS) on some closed ball, concluding that T has a fixed point, which necessarily
is a solution to equation (E).

We initiate our route map showing that S = (S, S, . . .) satisfies the conditions in The-
orem . We start checking that S maps bounded sets into bounded sets. If R > , and
x ∈ �∞(X), ‖x‖∞ ≤ R, then conditions (H), (H), (H), and the fact that ϕ is nondecreas-
ing, by (H), give, for n ∈N,

∥∥Sn(x)
∥∥

X =

∥∥∥∥∥–
∞∑

k=n+

P(n, k)f
(
k, x(k)

)∥∥∥∥∥
X

≤ ϕ(R)
∞∑

k=n+

p(k)a(k), ()

concluding that S(B�∞(X)(, R)) ⊂ B�∞(X)(,ϕ(R)
∑

n p(n)a(n)).
The diameter condition on a bounded set, say contained in a ball of radius R, also follows

from the above argument, for the right hand side in () goes to zero as n → ∞.
Next, for fixed n ∈ N, we show the continuity of Sn at a fixed x ∈ �∞(X). Let ε > 

be given. Take R ≥ ‖x‖∞ + . Since
∑

k p(k)a(k) < ∞, there exists k ≥ n +  such that
ϕ(R)

∑∞
k=k+ p(k)a(k) < ε

 . Now there exists δ >  such that for each k ∈ {n + , . . . , k}, as
the function f (k, ·) is continuous at x(k),

p(k)
∥∥f (k, x) – f

(
k, x(k)

)∥∥
X <

ε

k
, whenever x ∈ X, and

∥∥x – x(k)
∥∥

X < δ.

All this implies that if x ∈ �∞(X) is such that ‖x‖∞ < R, and ‖x – x‖∞ < δ, then

‖Snx – Snx‖X ≤
∞∑

k=n+

P(n, k)
∥∥f

(
k, x(k)

)
– f

(
k, x(k)

)∥∥
X

≤
k∑

k=n+

p(k)
∥∥f

(
k, x(k)

)
– f

(
k, x(k)

)∥∥
X + ϕ(R)

∞∑
k=k+

p(k)a(k)

<
k∑

k=n+

ε

k
+

ε


≤ ε,

proving the continuity of Sn at x.
Now, for fixed n ∈ N, we prove the condensing property of Sn. Let A be a bounded set

in �∞(X) with α∞(A) > . Then Sn(A) is bounded in X. Write Ak for the kth projection
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of A onto X, and notice that αX(Ak) ≤ α∞(A), for if ε >  is such that there exists a finite
ε-cover of A, then the kth projections of this cover provide a finite ε-cover (in X this time)
of Ak . Also notice that

Sn(A) =

{
–

∞∑
k=n+

P(n, k)f
(
k, x(k)

)
: x ∈ A

}
⊆ –

∞∑
k=n+

P(n, k)f (k, Ak),

and that this last set is bounded; so, using (H) and the algebraic properties of the Kura-
towski measure of noncompactness, we have for any N ∈N, N ≥ n + ,

αX
(
Sn(A)

) ≤
N∑

k=n+

P(n, k)αX
(
f (k, Ak)

)
+ αX

( ∞∑
k=N+

P(n, k)f (k, Ak)

)

≤
∞∑

k=n+

p(k)αX
(
f (k, Ak)

)
+ diam

( ∞∑
k=N+

P(n, k)f (k, Ak)

)
.

Observe that as N → ∞, the summand on the right goes to . So, by condition (H) and
the fact that αX(Ak) ≤ α∞(A), k ∈N, obtain

αX
(
Sn(A)

) ≤
∞∑

k=n+

p(k)αX
(
f (k, Ak)

) ≤
∞∑

k=n+

p(k)LkαX(Ak)

≤
∞∑

k=n+

p(k)Lkα∞(A) < α∞(A).

According to our route map, to finish the proof, we just need to show that T satisfies the
Leray-Schauder boundary condition on B�∞(X)(, R) for some R > . To find what condi-
tions must satisfy such R > , assume that there exist λ >  and y ∈ �∞(X), with ‖y‖∞ = R
and Ty = λy.

By (H), g is bounded, so there is Mg >  such that ‖g(x)‖X ≤ Mg for all x ∈ �∞(X). Now,
for n ∈N, using the hypotheses at our disposal,

∥∥y(n)
∥∥

X =

λ

∥∥Ty(n)
∥∥

X ≤ 
λ

∥∥Gy(n)
∥∥

X +

λ

∥∥Sy(n)
∥∥

X

≤ 
λ

∥∥g(y)
∥∥

X +

λ

∥∥∥∥∥–
∞∑

k=n+

P(n, k)f
(
k, y(k)

)∥∥∥∥∥
X

< Mg +

λ

∞∑
k=n+

p(k)
∥∥f

(
k, y(k)

)∥∥
X

≤ Mg +

λ

∞∑
k=n+

p(k)a(k)ϕ
(∥∥y(k)

∥∥
X

)
. ()

The technique we are about to use now consists in applying an infinite discrete analog of
the well-known Gronwall-Bellman-Bihari inequality, which has extensively been studied
by Pachpatte (see, for instance, []), especially for finite difference equations. We just
show the method for the sake of completeness.
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Let z : N →R be defined, for each n, as the rightmost member of (). Observe first that
z(n) > ‖y(n)‖X ≥ , for all n, and that z(n) → Mg as n → ∞ because

∑
k p(k)a(k) < ∞ and

ϕ(‖y(k)‖X) ≤ ϕ(‖y‖∞). Also, z is a nonincreasing sequence, for

z(n) – z(n + ) =

λ

p(n + )a(n + )ϕ
(∥∥y(n + )

∥∥
X

) ≥ . ()

Since ϕ is nondecreasing, ϕ(‖y(n)‖X) ≤ ϕ(z(n)) for all n, and since ϕ is positive on positive
numbers, dividing by ϕ(z(n + )) >  in (), and using again the nondecreasing property of
ϕ, we obtain


λ

p(n + )a(n + ) ≥ z(n) – z(n + )
ϕ(z(n + ))

≥
∫ z(n)

z(n+)


ϕ(s)

ds.

Summing up to ∞ in the above inequality, we get, putting 	(t) =
∫ t




ϕ(s) ds,


λ

∞∑
k=n+

p(k)a(k) ≥
∞∑

k=n

∫ z(k)

z(k+)


ϕ(s)

ds =
∫ z(n)

Mg


ϕ(s)

ds = 	
(
z(n)

)
– 	(Mg).

Observe that 	 is a strictly increasing function from [,∞) onto [,∞), because∫ ∞



ϕ(s) ds = ∞, so 	– is a well-defined strictly increasing function from [,∞) onto

[,∞). Therefore, for n ∈N,

∥∥y(n)
∥∥

X ≤ z(n) ≤ 	–

(
	(Mg) +


λ

∞∑
k=n+

p(k)a(k)

)

≤ 	–
(

	(Mg) +
∑

k

p(k)a(k)
)

.

So it just suffices to take at the beginning R > 	–(	(Mg) +
∑

k p(k)a(k)) so as to arrive at
the contradiction of assuming also ‖y‖∞ = R. This finishes the proof of the theorem. �

As an easy consequence of this theorem, we present now a result about existence of
solutions for the second order difference problem ().

Corollary  With P(n, k) =
∑k–

j=n


q(j) , for k ≥ n + , where q is a sequence of positive num-
bers, under conditions (H)-(H), the second order difference problem () has a solution
x ∈ �∞(X).

For the proof, first find a solution of the corresponding difference equation (E) or, for
the case, of equation (). Then this solution is also a solution of ().

Remark  As we mentioned before, Corollary  includes the well-known problem on the
existence of asymptotically constant solutions, just taking g(x) = C, with C a constant.
Obviously, the situation covered by our result is more general, and this can be seen con-
sidering a bounded, continuous, and nonconstant g : �∞(X) → X. To obtain an explicit
example of this type, take a continuous and bounded map g : R → R and u ∈ X, and de-
fine g : �∞(X) → X as g(x) = g(‖x‖∞)u, or g(x) = g(‖x()‖X)u. Then it is easily checked
that g is bounded and compact.
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