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Abstract
In this paper, we study the existence of positive solutions to a class of higher-order
nonlinear fractional functional differential system with Riemann-Stieltjes integral
boundary conditions. Our method relies upon the upper and lower solutions and the
Schauder fixed point theorem. Furthermore, we constructed an iterative scheme to
approximate the positive solution. We also give an example to illustrate the main
results.
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1 Introduction
In , Fermi and Thomas studied the problem of how to determine the electric potential
in an atom. They found that this problem can be translated into the following second order
differential equation, that is, two point singular boundary value problems:

{
u′′ – t– 

 u 
 = ,

u() = , u(b) = ,

where

lim
t→+

u′′(t) = lim
t→+

t– 
 u


 = ∞.

Since then, many scholars began to research this kind of singular boundary value problem.
Consequently, the differential equation singular boundary value problem and its applica-
tions in various fields of science has received much attention (see [–]). It should be
noted that most of the papers are devoted to the solvability of the existence of positive
solutions for a singular differential equation boundary value problem. However, there are
few papers to deal with the existence of a high-order singular differential equation system
boundary value problem, especially with Riemann-Stieltjes integral boundary condition.
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In [], Zhang and Han investigated the following singular fractional differential equa-
tion boundary value problem:

{
–Dα

+x(t) = f (t, x(t)),  < t < ,α ∈ (n – , n],α ≥ ,
x() = x′() = · · · = x(n–)() = , x() =

∫ 
 x(s) dA(s),

where f (t, x) satisfies some decreasing conditions. The authors obtained the existence and
uniqueness of the positive solutions of the above boundary value problem.

In [], the authors studied the following nonlinear fractional differential equations:

⎧⎪⎨
⎪⎩

Dα
+u(t) + f (t, v(t)) = ,  < t < ,  < α ≤ ,

Dβ
+v(t) + g(t, u(t)) = ,  < t < ,  < β ≤ ,

u() = u() = u′() = v() = v() = v′() = ,

where f , g : (, ) × R → R are continuous, limt→+ f (t, ·) = +∞, limt→+ g(t, ·) = +∞. They
established the existence of solutions of the above boundary value problem by using the
Krasnoselskii fixed point theorem.

Motivated by the results mentioned above, we study the following system of high-order
nonlinear fractional differential equations with Riemann-Stieltjes integral boundary con-
ditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

–Dα
+u(t) = λf (t, v(t)),  < t < , n –  < α ≤ n,

–Dβ
+v(t) = μg(t, u(t)),  < t < , m –  < β ≤ m,

u() = u′() = · · · = u(n–)() = , u() =
∫ 

 u(s) dH(s),
v() = v′() = · · · = v(m–)() = , v() =

∫ 
 v(s) dK(s),

()

where n, m ∈ N , n, m ≥ , Dα
+, Dβ

+ are the standard Riemann-Liouville fractional deriva-
tive, λ and μ are two positive parameters. f : (, ) × (,∞) → [,∞) and g : [, ] ×
[,∞) → (,∞) are continuous functions and f (t, v) may be singular at t = ,  and v = .∫ 

 u(s) dH(s) and
∫ 

 v(s) dK(s) are Riemann-Stieltjes integrals. H , K : [, ] → R are the
function of bounded variation with

∫ 
 sα– dH(s) �=  and

∫ 
 sβ– dK(s) �= , dH and dK can

be signed measures. Webb and Infante [, ] were first to use the idea of Riemann-
Stieltjes integral with a signed measure.

Obviously, system () is more general than the problems discussed in some recent litera-
ture. Firstly, the system depends on two parameters; secondly, the nonlinear terms f and g
are allowed to have different nonlinear character; finally, the boundary conditions involve
the Riemann-Stieltjes integral. This case covers the multi-point boundary conditions and
integral boundary conditions as special cases.

The rest of this paper is organized as follows. In Section , we recall some definitions
and facts. In Section , the main results are discussed. Finally, in Section , an illustrative
example is also presented.

2 Preliminaries
For convenience, we use the following notations in this paper:

hα =
∫ 


tα– dH(t), kβ =

∫ 


tβ– dK(t).
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Now we begin this section with some preliminaries of fractional calculus.

Definition  ([]) Let α >  with α ∈ R. Suppose that x : [,∞) → R. Then the Riemann-
Liouville fractional integral is defined to be

Iα
+x(t) =


�(α)

∫ t


(t – s)α–x(s) ds,

whenever the right side is defined. Similarly, α >  with α ∈ R, we define the αth Riemann-
Liouville fractional derivative to be

Dα
+x(t) =


�(n – α)

(
d
dt

)(n) ∫ t


(t – s)n–α–x(s) ds,

whenever the right side is defined, where n = [α] + , [α] denotes the integer part of the
number α and t > .

Lemma  ([]) Given y ∈ L[, ], if hα �= , then the problem
{

–Dα
+u(t) = y(t),  < t < , n –  < α ≤ n, n ≥ ,

u() = u′() = · · · = u(n–)() = , u() =
∫ 

 u(s) dH(s),

has a unique solution,

u(t) =
∫ 


Gα(t, s)y(s) ds,

where

Gα(t, s) = gα(t, s) +
tα–

 – hα

Hα(s),

gα(t, s) =

{
[t(–s)]α–

�(α) ,  ≤ t ≤ s ≤ ,
[t(–s)]α––(t–s)α–

�(α) ,  ≤ s ≤ t ≤ ,

Hα(s) =
∫ 


gα(t, s) dH(t).

By Lemma , similar results are valid for the problem
{

–Dβ
+v(t) = y(t),  < t < , m –  < β ≤ m, m ≥ ,

v() = v′() = · · · = v(m–)() = , v() =
∫ 

 v(s) dK(s).

If hβ �= , we adopt the following corresponding notations:

Gβ (t, s) = gβ (t, s) +
tβ–

 – kβ

Kβ (s),

gβ (t, s) =

{
[t(–s)]β–

�(β) ,  ≤ t ≤ s ≤ ,
[t(–s)]β––(t–s)β–

�(β) ,  ≤ s ≤ t ≤ ,

Kβ (s) =
∫ 


gβ (t, s) dK(t).
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Lemma  ([]) Let hα , kβ ∈ [, ) and Hα(s), Kβ (s) >  for s ∈ [, ]. Then the Green func-
tion Gα(t, s) and Gβ (t, s) satisfy the following properties:

() Gα(t, s) >  and Gβ (t, s) >  for all t, s ∈ (, );
() there exist functions mα(s), mβ (s), Mα(s), and Mβ (s) such that

mα(s)tα– ≤ Gα(t, s) ≤ Mα(s)tα–, for t, s ∈ [, ], ()

mβ (s)tβ– ≤ Gβ (t, s) ≤ Mβ (s)tβ–, for t, s ∈ [, ], ()

where

mα(s) =
Hα(s)
 – hα

, Mα(s) =
‖Hα(s)‖
 – hα

+


�(α – )
,

mβ (s) =
Kβ (s)
 – kβ

, Mβ (s) =
‖Kβ (s)‖
 – kβ

+


�(β – )
.

Lemma  Assume n –  < α ≤ n, u ∈ C([, ], R) satisfies u() = u′() = · · · = u(n–)() = ,
u() =

∫ 
 u(s) dH(s), and –Dα

+u(t) ≥  for any t ∈ (, ). Then u(t) ≥ , t ∈ (, ).

Proof From Lemma , it is easy to see that Lemma  holds. �

It is easy to see that (u, v) ∈ C[, ] × C[, ] is a pair of solution to the system () if and
only if (u, v) is a pair of solution of the following nonlinear integral system:

{
u(t) = λ

∫ 
 Gα(t, s)f (s, v(s)) ds,

v(t) = μ
∫ 

 Gβ (t, s)g(s, u(s)) ds.
()

Obviously, we can convert the system () to the following equivalent integral equation:

u(t) = λ

∫ 


Gα(t, s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , u(τ )

)
dτ

)
ds, t ∈ [, ].

We consider operator T defined by

(Tu)(t) = λ

∫ 


Gα(t, s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , u(τ )

)
dτ

)
ds, t ∈ [, ]. ()

It is simple to show that if u∗(t) is a fixed point of T in C[, ], then the system () has a
pair of solutions (u(t), v(t)) expressed as

{
u(t) = u∗(t),
v(t) = μ

∫ 
 Gβ (t, s)g(s, u∗(s)) ds.

In the following, we consider the following boundary value problem:

{
–Dα

+u(t) = λf (t,μ
∫ 

 Gβ (t, s)g(s, u(s))) ds,  < t < , n –  < α ≤ n, n ≥ ,
u() = u′() = · · · = u(n–)() = , u() =

∫ 
 u(s) dH(s).

()

Firstly, we recall the definitions of the upper solution and the lower solution for the system
().
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Definition  A continuous function ϕ(t) is said to be an upper solution of the problem
() if it satisfies

{
–Dα

+ϕ(t) ≥ λf (t,μ
∫ 

 Gβ (t, s)g(s,ϕ(s))) ds,
ϕ() ≤ ,ϕ′() ≤ , . . . ,ϕ(n–)() ≤ , ϕ() ≤ ∫ 

 ϕ(s) dH(s).

Definition  A continuous function φ(t) is said to be a lower solution of the problem ()
if it satisfies

{
–Dα

+φ(t) ≤ λf (t,μ
∫ 

 Gβ (t, s)g(s,φ(s))) ds,
φ() ≥ ,φ′() ≥ , . . . ,φ(n–)() ≥ , φ() ≥ ∫ 

 φ(s) dH(s).

3 Main results
In this section, we establish the existence of positive solutions results for the system ().

Let E = C[, ]. It is easy to see that E is a Banach space with the norm ‖x‖ = sup{|x(t)| :
t ∈ [, ]} for any x ∈ E. Let P = {x ∈ E | x(t) ≥ , t ∈ [, ]}. Clearly P is a normal cone in
Banach space E. The normality constant is . The space E can be equipped with a partial
order as follows: x, y ∈ E, x ≤ y ⇐⇒ x(t) ≤ y(t) for t ∈ [, ]. Define

P∗ =
{

x ∈ P : there exist two positive numbers Lx >  > lx,

such that lxtα– ≤ x(t) ≤ Lxtα–, t ∈ [, ]
}

.

Obviously, P∗ is nonempty since tα– ∈ P∗.
Now, we give the existence of positive solutions to the system ().

Theorem  Assume that:

(H) H and K are two functions of bounded variation such that hα , kβ ∈ [, ) and
Hα(s), Kβ (s) >  for t ∈ [, ];

(H) f (t, v) : [, ] × [, +∞) → [, +∞) is continuous and decreasing with respect to the
second argument, and g(t, u) : [, ]× [, +∞) → [, +∞) is continuous and increasing
with respect to the second argument;

(H) for any real numbers l, μ > ,

∫ 


Mα(s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , lτα–)dτ

)
ds < +∞.

Then for any (λ,μ) ∈ (, +∞) × (, +∞), the system () has at least one pair of positive
solution (u∗, v∗) and there exist positive constants rα , Rα , rβ , and Rβ such that

rαtα– ≤ u∗(t) ≤ Rαtα–, t ∈ [, ],

rβ tβ– ≤ v∗(t) ≤ Rβ tβ–, t ∈ [, ].

Proof It is easy to see that the existence of solutions to the system of () is equivalent to
the existence of fixed point of the nonlinear operator T . Therefore it suffices to prove the
existence of fixed point of the operator T . To begin with, we assert that the operator T is
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well defined and T(P∗) ⊂ P∗. For any u ∈ P∗, there exist two positive numbers lu <  < Lu

such that lutα– ≤ u(t) ≤ Lutα–. From (), (), (H), and (H) we have

(Tu)(t) = λ

∫ 


Gα(t, s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , u(τ )

)
dτ

)
ds

≤ λtα–
∫ 


Mα(s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , luτ

α–)dτ

)
ds

< +∞,

(Tu)(t) ≥ λtα–
∫ 


mα(s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , Luτ

α–)dτ

)
ds.

Let

l′u = min

{
,λ

∫ 


mα(s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , Luτ

α–)dτ

)
ds

}
,

L′
u = max

{
,λ

∫ 


Mα(s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , luτ

α–)dτ

)
ds

}
.

Thus

l′utα– ≤ (Tu)(t) ≤ L′
utα–.

Therefore (Tu)(t) is well defined and T(P∗) ⊆ P∗. Taking (H) into consideration, we see
that the operator (Tu)(t) is decreasing on u. Moreover, using Lemma , we obtain

⎧⎪⎨
⎪⎩

–Dα
+(Tu)(t) = λf (t,μ

∫ 
 Gβ (t, s)g(s, u(s)) ds),

(Tu)() = , (Tu)′() = , . . . , (Tu)(n–)() = ,
(Tu)() =

∫ 
 (Tu)(s) dH(s).

()

Let

ϕ(t) = min
{

tα–, T
(
tα–)}, φ(t) = max

{
tα–, T

(
tα–)}. ()

If tα– = T(tα–), then

u∗(t) = tα–, v∗(t) = μ

∫ 


Gβ (t, s)g

(
s, sα–)ds ()

is a pair of positive solution of (). If tα– �= T(tα–), we find

ϕ(t),φ(t) ∈ P∗(t), ϕ(t) ≤ tα– ≤ φ(t). ()

Take

ξ (t) = (Tϕ)(t), ψ(t) = (Tφ)(t), ()
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together with (H), we know that T is non-increasing on u. Using () and () we can show
that

ψ(t) = (Tφ)(t) ≤ (Tϕ)(t) = ξ (t), ()

(Tφ)(t) ≤ T
(
tα–) ≤ φ(t), (Tϕ)(t) ≥ T

(
tα–) ≥ ϕ(t), ()

and ξ (t),ψ(t) ∈ P∗. According to ()-(), it follows that

Dα
+ξ (t) + λf

(
t,μ

∫ 


Gβ (t, s)g

(
s, ξ (s)

)
ds

)

= Dα
+(Tϕ)(t) + λf

(
t,μ

∫ 


Gβ (t, s)g

(
s, (Tϕ)(s)

)
ds

)

≤ Dα
+(Tϕ)(t) + λf

(
t,μ

∫ 


Gβ (t, s)g

(
s,ϕ(s)

)
ds

)

= , ()

ξ () = ξ ′() = · · · = ξ (n–)() = , ξ () =
∫ 


ξ (s) dH(s), ()

Dα
+ψ(t) + λf

(
t,μ

∫ 


Gβ (t, s)g

(
s,ψ(s)

)
ds

)

= Dα
+(Tφ)(t) + λf

(
t,μ

∫ 


Gβ (t, s)g

(
s, (Tφ)(s)

)
ds

)

≥ Dα
+(Tφ)(t) + λf

(
t,μ

∫ 


Gβ (t, s)g

(
s,φ(s)

)
ds

)

= , ()

ψ() = ψ ′() = · · · = ψ (n–)() = , ψ() =
∫ 


ψ(s) dH(s). ()

From ()-() we see that ξ (t),ψ(t) ∈ P∗ are an upper solution and a lower solution of the
problem (), respectively. Define a function F : (, ) × E → E:

F
(
t, u(t)

)
=

⎧⎪⎨
⎪⎩

f (t,μ
∫ 

 Gβ (t, s)g(s,ψ(s)) ds), u(t) < ψ(t),
f (t,μ

∫ 
 Gβ (t, s)g(s, u(s)) ds), ψ(t) ≤ u(t) ≤ ξ (t),

f (t,μ
∫ 

 Gβ (t, s)g(s, ξ (s)) ds), u(t) > ξ (t).

Clearly, F ∈ C((, ) × E, E). Now, we define an operator T in E by

(Tu)(t) = λ

∫ 


Gα(t, s)F

(
s, u(s)

)
ds.

Consider the following boundary value problem:

{
–Dα

+u(t) = λF(t, u(t)),
u() = , u′() = , . . . , u(n–)() = , u() =

∫ 
 u(s) dH(s).

()
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Applying Lemma , the existence of solutions to the boundary value problem () is equiv-
alent to the existence of a fixed point of the nonlinear operator T . Thanks to () and (H),
we have

(Tu)(t) ≤ λtα–
∫ 


Mα(s)F

(
s, u(s)

)
ds

≤ λtα–
∫ 


Mα(s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ ,ψ(τ )

)
dτ

)
ds

≤ λtα–
∫ 


Mα(s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , lφτα–)dτ

)
ds

< +∞,

that is, T is bounded. It is easy to see that T : E → E is continuous from the continuity of
Gα(t, s). Let � ⊂ E be bounded, together with the uniform continuity of Gα(t, s) and the
Lebesgue dominated convergence theorem, we see that T(�) is equicontinuous. From the
Arzela-Ascoli theorem, we see that T : E → E is completely continuous. An application of
Schauder’s fixed point theorem shows that T has at least one fixed point u∗(t) such that
u∗(t) = (Tu∗)(t). Our task now is to prove

ψ(t) ≤ u∗(t) ≤ ξ (t), ∀t ∈ [, ]. ()

Since u∗(t) is a fixed point of T , we obtain

u∗() = ,
(
u∗)′() = , . . . ,

(
u∗)(n–)() = , u∗() =

∫ 


u∗(s) dH(s).

Firstly, we verify u∗(t) ≤ ξ (t). Otherwise, there exists some t such that u∗(t) > ξ (t); to-
gether with the definition of F , we get

–Dα
+u∗(t) = λF

(
t, u∗(t)

)
= λf

(
t,μ

∫ 


Gβ (t, s)g

(
s, ξ (s)

)
ds

)
. ()

On the other hand, since ξ is an upper solution of (), we find

–Dα
+ξ (t) ≥ λf

(
t,μ

∫ 


Gβ (t, s)g

(
s, ξ (s)

)
ds

)
. ()

Taking x(t) = ξ (t) – u∗(t), it follows from () and () that

–Dα
+x(t) = Dα

+u∗(t) – Dα
+ξ (t) ≥ ,

x() = x′() = · · · = x(n–)() = , x() =
∫ 


x(s) dH(s).

According to Lemma , we have x(t) ≥ , this means u∗(t) ≤ ξ (t), which contradicts
u∗(t) > ϕ(t). Thus we conclude that ξ (t) ≥ u∗(t) for any t ∈ (, ). In the same way, we
obtain u∗(t) ≥ ψ(t). Consequently, we infer that () holds, and then u∗(t) is a positive
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solution of the problem (). As ξ (t), ψ(t) ∈ P∗, there exist four numbers  < lξ , lψ < ,
Lξ , Lψ > , such that

lξ tα– ≤ ξ (t) ≤ Lξ tα–, lψ tα– ≤ ψ(t) ≤ Lψ tα–. ()

It follows from () and () that

rαtα– = lψ tα– ≤ u∗(t) ≤ Lξ tα– = Rαtα–.

Taking

rβ = min

{



,μ
∫ 


mβ (s)g

(
s, rαsα–)ds

}
,

Rβ = max

{
,μ

∫ 


Mβ (s)g

(
s, Rαsα–)ds

}
.

From () we have

rβ tβ– ≤ μtβ–
∫ 


mβ (s)g

(
s, rαsα–)ds

≤ y∗(t)

≤ μtβ–
∫ 


Mβ (s)g

(
s, Rαsα–)ds

≤ Rβ tβ–.

The proof of Theorem  is now complete. �

Remark  In Theorem , we cannot only give the result of the existence of positive solu-
tions, but also can take rα , Rα , rβ , and Rβ such that

rαtα– ≤ u∗(t) ≤ Rαtα–, t ∈ [, ],

rβ tβ– ≤ v∗(t) ≤ Rβ tβ–, t ∈ [, ].

So the properties of the positive solution are clearer.

4 Example
To illustrate how our main results can be used in practice we present an example. Consider
the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

–D


+u(t) = λ[sin t + v– 

 (t)],  < t < , n = ,

–D


+v(t) = μ[t– 

 + u(t)],  < t < , m = ,
u() = u′() = , u() =

∫ 
 u(s) dH(s),

v() = v′() = v′′() = , v() =
∫ 

 v(s) dK(s),

()
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where λ,μ >  are two parameters and H(t) = t, K(t) = t for all t ∈ [, ]. In this case,
α = 

 , β = 
 . Problem () can be regarded as a system of form () with

f (t, v) = sin t + v– 
 (t) ()

and

g(t, u) = t– 
 + u(t). ()

Now we verify that conditions (H)-(H) are satisfied. By a simple computation, we have

∫ 


t


 dH(t) = 

∫ 


t


 dt =




, ()

∫ 


t


 dK(t) = 

∫ 


t


 dt =




,

∫ 


g 


(t, s) dH(t) =


�( 

 )

{∫ 


t
[
t( – s)

] 
 dt –

∫ 

s
t(t – s)


 dt

}

=


�( 
 )

[



( – s)

 –




( – s)

 +




( – s)



]
, s ∈ [, ], ()

∫ 


g 


(t, s) dK(t) =


�( 

 )

{∫ 


t[t( – s)

] 
 dt –

∫ 

s
t(t – s)


 dt

}

=


�( 
 )

[



( – s)

 –




( – s)

 +




( – s)

 –




( – s)



]
,

s ∈ [, ].

This means (H) holds. Thanks to () and (), we conclude that (H) is proved. It follows
from Lemma  that there exists a positive number m < +∞ such that

Gβ (t, s) ≥ mβ (s)t

 ≥ mt


 . ()

Moreover, for any constants μ, l > , we obtain

f
(

t,μ
∫ 


Gβ (t, s)g

(
s, lsα–)ds

)

= sin t +
(

μ

∫ 


Gβ (t, s)g

(
s, lsα–)ds

)– 


= sin t +
(

μ

∫ 


G 


(t, s)

(
s– 

 + ls


)

ds
)– 



≤ sin t + (μm)– 


(∫ 



[
s– 

 + ls


]

ds
)– 



≤ sin  + (μm)– 


(
 +




l
)– 



< sin  + (μm)– 
 . ()
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According to (), (), and (), we obtain

Mα(s) =


�( 
 )

+

∫ 
 g 


(t, s) dH(t)

 –
∫ 

 t 
 dH(t)

=


�( 
 )

+
( – s) 

 [ 
 + 

 (s – 
 )]

�( 
 )

<


�( 
 )

+


�( 
 )

and

∫ 


Mα(s)f

(
s,μ

∫ 


Gβ (s, τ )g

(
τ , lτα–)dτ

)
ds

<
∫ 



(
sin  + (μm)– 


)( 

�( 
 )

+


�( 
 )

)
ds

< +∞,

which implies that (H) is satisfied. Thus from Theorem , for any (λ,μ) ∈ (, +∞) ×
(, +∞), we can show that the system () has at least one pair of positive solutions (u∗, v∗)
and there exist four positive constants r 


, r 


, R 


, and R 


such that

r 


t

 ≤ u∗(t) ≤ R 


t


 ,

r 


t

 ≤ v∗(t) ≤ R 


t


 .
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