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Abstract
We derive a producer-scrounger model with age-structure in scrounger and looks
into its dynamics. Using the methods of eigenvalue analysis and Lyapunov function,
we find sufficient and necessary conditions for globally asymptotical stability of
extinction equilibrium and scrounger-free equilibrium. A so-called basic reproduction
ratio R0 was established to determine whether the scrounger is extinct or uniformly
persistent. It is found that if R0 > 1, the mature time τ does change the dynamical
behavior of the model. We confirm that Hopf bifurcation happens if the mature time
τ increases.
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1 Introduction
There are three forms of basic interaction between two species: cooperation, competi-
tion, and predator-prey, which has been extensively investigated (e.g., see [, ] and the
references therein). However, interaction forms between species in nature are complex
and diverse. To forage foods, some species not only catch and feed on prey, but also can
scrounge foods from others. For example, Bugnyar and Kotrschal [] found that the free-
ranging ravens steal wolves’ food in a game park and the wolves prevent their food from
being stolen. This phenomenon is called kleptoparasitism and describes an interaction
form between two species, scrounger and producer. Here, scrounger steals food from pro-
ducer.

To describe the kleptoparasitism interaction, Cosner and Nevai [] recently established
the following diffusive model:

⎧
⎨

⎩

∂P
∂t = d�P + (–b – aP)P + m(x) dP

S+d , t ≥ ,
∂S
∂t = d�S + (–b – aS)S + θm(x) PS

S+d , t ≥ .
(.)

Here x ∈ �, � is a bounded domain in R
n with smooth boundary, P and S are the densities

of producer and scrounger, respectively, m(x) denotes the producer’s ability to discover
food at x ∈ �, and d >  represents the producer’s ability to avoid food to be stolen, bi is
the natural mortality rate, ai is the death rate caused by intraspecies competition, di >  is
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the spatial diffusive rate, and θ is the energy transition rate. Note that letting S =  in the
first equation of (.), we have

∂P
∂t

= d�P +
[
m(x) – b – aP

]
P,

and thus we can regard m(x) as the birth rate of producer without scourging. Furthermore,
m(x) d

S+d is the birth rate of producer with scounging.
General speaking, all individuals always have two stages, immature and mature, and they

perform very differently in some aspects. For example, the immature ravens are incapable
to fly and have to stay in the nest while the mature ravens undertake the task of search-
ing for food. In mathematics, a model with delay τ (being the maturation period) can be
established to describe the population dynamics with age-structure (e.g., see [–]). In
the current paper, we try to establish a producer-scrounger model with age-structure in
scrounger, and study the dynamics and the influence of maturation period in the scrounge
interaction.

The paper is organized as follows. In Section , a producer-scrounger model with age-
structure in scrounger is derived. In Section , the basic theory, including existence,
uniqueness, positivity and boundedness of solutions for the model are discussed. The
stability of equilibriums, uniform persistence, and Hopf bifurcation are investigated in
Section . Some numerical simulations and concluding discussions are given in the last
section.

2 Model derivation
Let P(t) remain the density of producer at time t ≥ , and positive numbers b, a, m, d,
and θ be of the same meaning as in system (.). Assume that S(t) and I(t) express the
densities of mature scrounger and immature scrounger, respectively, b (b) is the natural
mortality rate of mature (immature) scrounger, a (a) is the death rate of mature (im-
mature) scrounger caused by intraspecies competition. Furthermore, assume that there
exists neither competition between the immature scrounger and mature scrounger nor
intraspecies competition between the immature scroungers (i.e., a = ). For simplicity,
we assume that the spatial environment is homogeneous, and thus m(x) ≡ m is a constant.

Firstly, we see that the producer fits an equation as follows:

dP(t)
dt

= –bP(t) – aP(t) + m
dP(t)

S(t) + d
.

Now we derive equations for scrounger. Let i(t, a) be the density of immature scrounger
at time t and age a. Then i(t, a) satisfies

∂i(t, a)
∂t

+
∂i(t, a)

∂a
= –bi(t, a). (.)

Let I(t) =
∫ τ

 i(t, a) da, where τ ≥  is a constant number that denotes the time period for
an immature to become mature from its birth. Integrating equation (.) from  to τ with
respect to the variable a, we get

dI(t)
dt

= i(t, ) – i(t, τ ) – bI(t). (.)
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Here, i(t, ) denotes the density of new-born scrounger at time t, and i(t, τ ) is the recruit-
ment term, coinciding with those of maturation age.

Suppose that there is a resource of one. If the proportion of this resource ultimately ac-
quired by the producers is d

S(t)+d , and the mature scroungers have resource accounted for
 – d

S(t)+d = S(t)
S(t)+d . Considering the producer’s ability to discover food, the number of pro-

ducers, and the energy transition rate, we can regard θm P(t)
S(t)+d as the birth rate of mature

scrounger, and then i(t, ) = θm P(t)
S(t)+d S(t).

To calculate i(t, τ ), denote iξ (a) = i(a + ξ , a). Then

diξ (a)
da

= –biξ (a). (.)

Solving (.), we get

iξ (a) = iξ ()e–ba. (.)

Let a = τ and ξ = t – τ in (.). Then

i(t, τ ) = i(t – τ , )e–bτ = θm
P(t – τ )S(t – τ )

S(t – τ ) + d
e–bτ .

Therefore, equation (.) can be rewritten as

dI(t)
dt

= –bI(t) + θm
P(t)S(t)
S(t) + d

– θm
P(t – τ )S(t – τ )

S(t – τ ) + d
e–bτ ,

and further the equation about the mature scrounger follows:

dS(t)
dt

= –bS(t) – aS(t) + θm
P(t – τ )S(t – τ )

S(t – τ ) + d
e–bτ .

Summarizing the discussion, we obtain the following producer-scrounger model with
age-structure:

⎧
⎪⎪⎨

⎪⎪⎩

dP(t)
dt = –bP(t) – aP(t) + m dP(t)

S(t)+d ,
dI(t)

dt = –bI(t) + θm P(t)S(t)
S(t)+d – θm P(t–τ )S(t–τ )

S(t–τ )+d e–bτ ,
dS(t)

dt = –bS(t) – aS(t) + θm P(t–τ )S(t–τ )
S(t–τ )+d e–bτ .

(.)

Note that in (.), I(t) is independent of the first and third equations. Therefore, we only
need to study the following system with two equations:

⎧
⎨

⎩

dP(t)
dt = –bP(t) – aP(t) + m dP(t)

S(t)+d ,
dS(t)

dt = –bS(t) – aS(t) + θm P(t–τ )S(t–τ )
S(t–τ )+d e–bτ .

(.)

Remark . If τ = , then system (.) yields to (.) with homogeneous spatial environ-
ment.
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Remark . If there exists competition between immature scroungers (i.e., a > ), then
(.) is replaced by

∂i(t, a)
∂t

+
∂i(t, a)

∂a
= –bi(t, a) – ai(t, a)I(t).

Similar analysis leads to a model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP(t)
dt = –bP(t) – aP(t) + m dP(t)

S(t)+d ,
dI(t)

dt = –bI(t) – aI(t) + θm P(t)S(t)
S(t)+d

– θm P(t–τ )S(t–τ )
S(t–τ )+d exp[–

∫ t
t–τ

(b + aI(η)) dη],
dS(t)

dt = –bS(t) – aS(t) + θm P(t–τ )(t–τ )
S(t–τ )+d exp[–

∫ t
t–τ

(b + aI(η)) dη].

(.)

3 Basic theory of solutions
In this section, we study the existence, uniqueness, positivity, and boundedness of solu-
tions of (.).

Denote X = C([–τ , ],R
+), R

+ = {(x, y)T : x ≥ , y ≥ }. Then X is a Banach space with
norm ‖φ‖ = max{|φ(ξ )| : ξ ∈ [–τ , ]}, where | · | is the standard norm in R

. For σ >  and
φ ∈ C([–τ ,σ ),R), define φt ∈ X as φt(ξ ) = φ(t + ξ ) for t ∈ [,σ ) and ξ ∈ [–τ , ].

Define f : X →R
 by

f (φ) =

(
–bφ() – aφ


 () + m dφ()

φ()+d

–bφ() – aφ

 () + θm φ(–τ )φ(–τ )

φ(–τ )+d e–bτ

)

,

where φ = (φ,φ)T ∈ X. It is easy to see that f is continuous and Lipschitz on φ in every
compact set of X. In view of the basic theory of functional differential equations ([], The-
orem ..), we know that for any initial function φ = (φ,φ)T ∈ X, there exists a unique
local solution (P(t), S(t))T = (P(t;φ), S(t;φ))T of (.).

For biological significance, we consider the initial function satisfying

P(ξ ) = φ(ξ ) ≥ , S(ξ ) = φ(ξ ) ≥ , ξ ∈ [–τ , ],

φ() > , φ() > .
(.)

In the discussion of boundedness of solutions, we need the positivity of the immature
scrounger. Therefore, in the following, to express the initial value condition of immature
scrounger, we use

I(ξ ) = φ(ξ ) ≥ , ξ ∈ [–τ , ], φ() > .

Then we have the following conclusion.

Lemma . (Positivity) The solution (P(t), S(t), I(t))T of (.) with initial function φ ≥  is
nonnegative on its existence interval. Furthermore, if φ() > , φ() > , then (P(t), S(t)) >
(, ) as long as the solution (P(t), S(t)) exists.

Proof Assume that the maximal existing interval of (P(t), S(t), I(t)) is [, T). Without loss
of generality, we may assume that τ < T . For t ∈ [, τ ], we have P(t –τ ) ≥  and S(t –τ ) ≥ .
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Thus, for t ∈ [, τ ], we have

dS(t)
dt

= –bS(t) – aS(t) + θm
P(t – τ )S(t – τ )

S(t – τ ) + d
e–bτ ≥ –bS(t) – aS(t).

Comparing S(t) with the solution V (t) of the initial problem

dV (t)
dt

≥ –bV (t) – aV (t), V () = S() ≥ ,

we have S(t) ≥  for t ∈ [, τ ]. By using the induction argument, S(t) ≥  holds as long as
it exists.

Assume that there exists t such that P(t) < . Since P() ≥ , by continuity and without
loss of generality, we can find some t < to with P(t) ≥  for t ∈ [, t] and P(t) <  for
t ∈ (t, t). From the fact S(t) ≥  and the first equation of (.) we have

dP(t)
dt

≥ –bP(t) – aP(t) + mP(t), t ∈ (t, t).

Actually, the solution of dZ(t)
dt = –bZ(t)–aZ(t)+mZ(t) with Z(t) =  is the zero solution.

Then the comparison principle leads to P(t) ≥  for t ≥ t, in contradiction with P(t) < ,
t ∈ (t, t), that is, P(t) ≥  if P() ≥ , also on its maximal existence interval.

Note that the second equation in (.) can be rewritten as

d
dt

[
I(t)ebt] =

d
dt

[

θm
∫ t+τ

t

P(ξ – τ )S(ξ – τ )
S(ξ – τ ) + d

eb(ξ–τ ) dξ

]

,

I(t)ebt = I() + θm
∫ t



[∫ s+τ

s

P(ξ – τ )S(ξ – τ )
S(ξ – τ ) + d

eb(ξ–τ ) dξ

]

ds.

Thus, the nonnegativity of P(t) and S(t) leads to the nonnegativity of I(t). Furthermore,
I(t) ≥  if I() ≥ .

If φ() >  and φ() > , then a similar argument leads to (P(t), S(t)) > (, ) on its
maximal existence interval. The proof is complete. �

The following lemma will lead to the global existence of solution (P(t;φ), S(t;φ)).

Lemma . (Boundedness) The solution (P(t), S(t))T of (.) satisfying the initial condition
(.) is bounded as long as it exists.

Proof We consider (.) with the initial conditions (.), where (φ,φ,φ)T ∈ C([τ , ],R
+).

In view of Lemma ., we can obtain the existence of a unique local positive solution of
(.), defined on its maximal interval [, T). Note that

θ
dP(t)

dt
+

dI(t)
dt

+
dS(t)

dt

= –θbP(t) – θaP(t) + θm
dP(t)

S(t) + d
– bI(t) + θm

P(t)S(t)
S(t) + d

– bS(t) – aS(t)

= θ (m – b)P(t) – θaP(t) – bI(t) – bS(t) – aS(t).
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Then, for any positive constant number β < min{b, b}, by the positivity of solution we
have

θ
dP(t)

dt
+

dI(t)
dt

+
dS(t)

dt
+ β

(
θP(t) + I(t) + S(t)

)

≤ θ (β + m – b)P(t) – θaP(t)

= –θa

(

P(t) –
β + m – b

a

)

+
θ (β + m – b)

a

≤ θ (β + m – b)

a
:= C.

Furthermore, we have

θP(t) + S(t) + I(t) <
C

β
+

(

θP() + S() + I() –
C

β

)

e–βt ,

which implies that (P(t), S(t)) is bounded as long as it exists. �

In view of Lemmas . and ., we can draw the following conclusion.

Theorem . There exists a positive solution of (.) defined on [,∞) with the initial
condition (.), which is unique. Furthermore, the solution semiflow �(t) of (.), defined
by [�(t)φ](ξ ) = (Pt(ξ ), St(ξ ))T , is well defined and has a global attractor in X.

4 Global dynamical properties
In this section, we look into the stability and Hopf bifurcation of system (.). Firstly, we
investigate the existence of equilibria.

Lemma . The following conclusions for (.) hold.
() The zero equilibrium (extinction equilibrium) E = (, ) always exists.
() A unique nonzero boundary equilibrium (scrounger-free equilibrium)

E = ( m–b
a

, ) := (p, ) exists if and only if m > b.
() A unique positive equilibrium (coexistence equilibrium) E∗ = (p∗, s∗) exists if and only

if

θme–bτ (m – b) > dab,

where E∗ = (p∗, s∗) satisfies

–b – ap∗ + m
d

s∗ + d
= , –b – as∗ + θm

p∗

s∗ + d
e–bτ = .

In addition, if E∗ exists, then E also exists.

Proof The proof of () and () is obvious, so we omit it here. Now we prove (). A coexis-
tence equilibrium E∗ exists if and only if the following algebraic system (.) has a pair of
positive roots:

–b – ap + m
d

s + d
= , –b – as + θm

p
s + d

e–bτ = . (.)
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Solving (.) is equivalent to that two curves have a cross-point in the first quadrant of R.
Note that the curve p = 

a
(–b + m d

s+d ) decreases as s ≥  increases and has a unique
cross-point ( m–b

a
, ) with the p-axis. We know that p = ebτ

θm (b + as)(s + d) increases to
+∞ as s increases to +∞ and also has a unique cross-point ( ebτ

θm bd, ) with the p-axis.
Thus, their p-intercepts are m–b

a
and ebτ

θm bd, respectively. Thus, a unique positive cross-
point of the two curves exists if and only if their p-intercepts satisfy m–b

a
> ebτ

θm bd, that
is, θme–bτ (m – b) > dab. The proof is complete. �

4.1 Basic reproduction ratio and stability of boundary equilibria
The following theorem describes the stability of extinction equilibrium E.

Theorem . If m ≤ b, then the extinction equilibrium E = (, ) is globally asymptoti-
cally stable; if m > b, then the extinction equilibrium E is unstable.

Proof The linearized system of (.) at E is

⎧
⎨

⎩

dP(t)
dt = –bP(t) + mP(t),

dS(t)
dt = –bS(t),

(.)

and the corresponding characteristic equation takes the form

(λ – m + b)(λ + b) = . (.)

It easy to see that (.) has and only has two roots, –b + m and –b. If m > b, then
–b + m is positive. Thus, E is unstable if m > b.

Now assume that m ≤ b. Let

V(P, S)(t) = θe–bτ P(t) + S(t) + θme–bτ

∫ τ



P(t – η)S(t – η)
S(t – η) + d

dη.

Note that

d
dt

∫ τ



P(t – η)S(t – η)
S(t – η) + d

dη =
∫ τ



d
dt

P(t – η)S(t – η)
S(t – η) + d

dη

= –
∫ τ



d
dη

P(t – η)S(t – η)
S(t – η) + d

dη

= –
P(t – τ )S(t – τ )

S(t – τ ) + d
+

P(t)S(t)
S(t) + d

. (.)

Then

dV(P, S)(t)
dt

= θe–bτ P′(t) + S′(t) + θme–bτ

(
P(t)S(t)
S(t) + d

–
P(t – τ )S(t – τ )

S(t – τ ) + d

)

= θe–bτ

(

–bP(t) – aP(t) + m
dP(t)

S(t) + d

)

+
(

–bS(t) – aS(t) + θm
P(t – τ )S(t – τ )

S(t – τ ) + d
e–bτ

)
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+ θme–bτ

(

–
P(t – τ )S(t – τ )

S(t – τ ) + d
+

P(t)S(t)
S(t) + d

)

= –aθe–bτ P(t) – bS(t) – aS(t) + θe–bτ (m – b)P(t).

Since m ≤ b, it follows that dV(P,S)(t)
dt ≤ , and dV(P,S)(t)

dt =  if and only if (P, S)(t) ≡ (, ).
The proof is complete. �

Now, we define a basic reproduction ratio R for (.) (see []). Linearizing the second
equation at the scrounger-free equilibrium E = (p, ), we obtain

dS(t)
dt

= θme–bτ p

d
S(t – τ ) – bS(t) = θme–bτ p

d
St(–τ ) – bS(t).

We then separate the last equation into two parts: dS(t)
dt = F(St) – VS(t). The first part

F(St) describes the newly growth mature scroungers at time t depending linearly on the
scrounging interaction over [t – τ , t], and the second part –VS(t) describes the internal
evolution of mature scroungers. Here, we define the function F mapping C([–τ , ],R) into
R by F(φ) = θme–bτ p

d φ(–τ ) and use VS(t) = bS(t). It is easy to see F is a nonnegative op-
erator and the one-dimensional matrix –V is cooperative. Denote F̂ mapping R in R by
F̂u = F(û), where û(θ ) ≡ u for ∀θ ∈ [–τ , ]. Thus, F̂ = θme–bτ p

d . Then, according to [],
Corollary ., we have

R = r
(
F̂V –) = θme–bτ p

d
· 

b
,

where r(M) denotes the spectral radius of matrix M, and M– denotes the inverse matrix
of M.

Remark . With R defined as before, we see that R >  is consistent with the condi-
tion for the existence of a unique coexistence equilibrium. Further, R is in proportion to
the birth rate of producer without mature scrounger’s effect (θm p

d ), the survival rate for
immature scrounger (e–bτ ), and the average lifetime of mature scrounger ( 

b
).

Theorem . Assume that m > b. If R ≤ , then the scrounger-free equilibrium E =
(p, ) is globally asymptotically stable; if R > , then the scrounger-free equilibrium is un-
stable.

Proof The linearized system of (.) at E is

⎧
⎨

⎩

dP(t)
dt = –apP(t) – m p

d S(t),
dS(t)

dt = –bS(t) + θm pS(t–τ )
d e–bτ ,

(.)

and the corresponding characteristic equation takes the form

(λ + ap)
(

λ + b – θm
p

d
e–bτ e–λτ

)

= . (.)

Note that g(λ) := λ + b – θm p
d e–bτ e–λτ → ∞ as λ → ∞. If R > , that is, g() = b –

θm p
d e–bτ < , then we can confirm that g(λ) =  has a positive root. Thus, E is unstable.
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Now assume that R ≤ . Let

V(P, S)(t) = θe–bτ

(

P(t) – p – p ln
P(t)
p

)

+ S(t) + θme–bτ

∫ τ



P(t – η)S(t – η)
S(t – η) + d

dη.

We have from (.) that

dV(P, S)(t)
dt

= θe–bτ P′(t)
(

 –
p

P(t)

)

+ S′(t)

+ θme–bτ

(

–
P(t – τ )S(t – τ )

S(t – τ ) + d
+

P(t)S(t)
S(t) + d

)

= θe–bτ

(

–bP(t) – aP(t) + m
dP(t)

S(t) + d

)(

 –
p

P(t)

)

+
(

–bS(t) – aS(t) + θm
P(t – τ )S(t – τ )

S(t – τ ) + d
e–bτ

)

+ θme–bτ

(

–
P(t – τ )S(t – τ )

S(t – τ ) + d
+

P(t)S(t)
S(t) + d

)

= θe–bτ

(

–m + m
d

S(t) + d

)
(
P(t) – p

)
– aθe–bτ

(
P(t) – p

)

+
(

–b + θm
P(t)

S(t) + d
e–bτ

)

S(t) – aS(t)

= –θme–bτ S(t)(P(t) – p)
S(t) + d

– aθe–bτ
(
P(t) – p

)

+ θme–bτ

(

–
p

Rd
+

p

d
–

p

d
+

P(t)
S(t) + d

)

S(t) – aS(t)

= –θme–bτ S(t)(P(t) – p)
S(t) + d

– aθe–bτ
(
P(t) – p

) – aS(t)

+ θme–bτ p

Rd
(R – )S(t) + θme–bτ (P(t) – p)d – pS(t)

d(S(t) + d)
S(t)

= –aθe–bτ
(
P(t) – p

) – aS(t)

+
θme–bτ p

Rd
(R – )S(t) –

θme–bτ p

d(S(t) + d)
S(t).

Since R ≤ , it follows that dV(P,S)(t)
dt ≤ , and dV(P,S)(t)

dt =  if and only if (P, S)(t) ≡ (p, ).
The proof is complete. �

4.2 Persistence
Now we study the uniform persistence of system (.) (see []). Denote X = {φ =
(φ,φ) ∈ X : φ() > ,φ() > } and ∂X = X\X. Obviously, X is an open set in X.
Let �(t)φ = (Pt , St)(φ) be the solution semiflow of (.) defined in Theorem .. Further-
more, (.) and the boundedness of (P(t), S(t)) yield the boundedness of (P′(t), S′(t)) for
t ≥ . Now, by the Arzéla-Ascoli theorem we know that every positive half-orbit of �:
γ +φ = {�(t)φ : t ≥ } is precompact. As usual, for every equilibrium E of (.), we call

W s(E) =
{
φ ∈ X : lim

t→∞
∥
∥�(t)φ – E

∥
∥ = 

}

‘the stable set of E’.
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Theorem . Assume that R > . Then system (.) is uniformly persistent. That is, there
exists a positive number ε such that lim inft→∞ P(t) > ε and lim inft→∞ S(t) > ε.

Proof Denote by ω(φ) the omega limit set of the positive half-orbit γ +φ = {�(t)φ : t ≥ }
and X∂ = {φ ∈ ∂X : �(t)φ ∈ ∂X, t ≥ }.

For all φ ∈ X∂ , we have �(t)φ ∈ ∂X = X\X = {φ = (φ,φ) ∈ X : φ() =  or φ() = }
for any t ≥ . This implies that either P(t) =  or S(t) =  for t ≥ . If P(t) =  for some t,
then for t ≥ , P(t) ≡ , and further we have ω(φ) = E. Otherwise, P(t) >  and S(t) ≡ 
for any t ≥ , and then ω(φ) = E. Thus,

⋃
φ∈X∂

ω(φ) ⊂ M := {E, E}, and no subset of M
forms a cycle in ∂X.

We now prove that there exists δ >  such that lim supt→∞ S(t) ≥ δ for all solutions
(P(t), S(t)). If it is false, then for any δ > , there exists a solution (P(t), S(t)) such that
lim supt→∞ S(t) < δ. This leads to S(t) < δ for sufficiently large t. By the first equation of
(.), for sufficiently large t, we have

dP(t)
dt

= –bP(t) – aP(t) + m
dP(t)

S(t) + d
> –bP(t) – aP(t) + m

dP(t)
δ + d

.

Therefore, lim inft→∞ P(t) ≥ 
a

(–b + m d
δ+d ) and P(t) ≥ 

a
(–b + m d

δ+d ) – δ for sufficiently
large t.

From the second equation of (.), for sufficiently large t, we have

dS(t)
dt

= –bS(t) – aS(t) + θm
P(t – τ )S(t – τ )

S(t – τ ) + d
e–bτ

≥ –bS(t) – aS(t) + θm
( 

a
(–b + m d

δ+d ) – δ)S(t – τ )
S(t – τ ) + d

e–bτ .

Note the characteristic equation of

dV (t)
dt

= –bV (t) – aV (t) + θm
( 

a
(–b + m d

δ+d ) – δ)V (t – τ )
V (t – τ ) + d

e–bτ (.)

is

λ = –b + θm
( 

a
(–b + m d

δ+d ) – δ)
d

e–λτ e–bτ . (.)

In view of the assumption θme–bτ (m – b) > dab, we can choose δ small enough such
that θme–bτ ( m–b

a
– mδ

a(δ+d) – δ) > db. This implies that (.) has a positive root and the
solution V (t) of (.) grows exponentially. Furthermore, by comparison argument, S(t)
can also grow exponentially, in contradiction with the boundedness of S(t). Therefore,
lim supt→∞ S(t) ≥ δ for all solutions (P(t), S(t)). This leads to

lim sup
t→∞

∥
∥�(t)φ – E

∥
∥ ≥ δ, lim sup

t→∞

∥
∥�(t)φ – E

∥
∥ ≥ δ.

For any φ = (φ,φ) ∈ X, define the generalized distance function d mapping X into R+

by

d(φ) = min
{
φ(),φ()

}
.
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Then it follows that E and E are both isolated in X and

W s(E) ∩ d–(,∞) = ∅, W s(E) ∩ d–(,∞) = ∅,

where d–(,∞) = {φ ∈ X : d(φ) > }.
According to [], Theorem , there exists a positive number ε such that lim inft→∞ P(t) >

ε and lim inft→∞ S(t) > ε. The proof is complete. �

4.3 Stability of coexistence equilibrium and Hopf bifurcation
In this section, we need some notation:

u := ap∗ + as∗ + θm
p∗

s∗ + d
e–bτ , u := ap∗

(

as∗ + θm
p∗

s∗ + d
e–bτ

)

,

v := –θm
dp∗

(s∗ + d) e–bτ , v := –θm
ad(p∗)

(s∗ + d) e–bτ + θm dp∗s∗

(s∗ + d) e–bτ ,

ω :=

√
√
√
√–(u

 – v
 – u) +

√

(u
 – v

 – u) – (u
 – v

)


,

τ :=


ω
arccos

v(ω
 – u) – uvω




v
 + v

ω



.

Our main results in this subsection are described in the following theorem concerning the
stability of coexistence equilibrium and Hopf bifurcation.

Theorem . Assume that R > . Then we have the following conclusions.
() The coexistence equilibrium E∗ is globally asymptotic stable for τ = .
() If u > v, then the coexistence equilibrium E∗ is locally asymptotic stable for any

τ ≥ .
() If u < v, then the coexistence equilibrium E∗ is locally asymptotic stable for

 ≤ τ < τ and unstable for τ > τ. Furthermore, (.) undergoes a Hopf bifurcation
at E∗ when τ = τ. Here u, v, τ are constants defined previously.

Proof The linearized system of (.) at E∗ is

⎧
⎨

⎩

dP(t)
dt = –bP(t) – ap∗P(t) + m dP(t)

s∗+d – m dp∗S(t)
(s∗+d) ,

dS(t)
dt = –bS(t) – as∗S(t) + θm s∗P(t–τ )

s∗+d e–bτ + θm dp∗S(t–τ )
(s∗+d) e–bτ ,

(.)

and the characteristic equation of (.) takes the form

(
λ + ap∗)

[

λ + as∗ + θm
(

p∗

s∗ + d
–

dp∗e–λτ

(s∗ + d)

)

e–bτ

]

+ θm dp∗s∗

(s∗ + d) e–bτ e–λτ = . (.)

Case . If τ = , then (.) becomes

(
λ + ap∗)

(

λ + as∗ + θm
p∗s∗

(s∗ + d)

)

+ θm dp∗s∗

(s∗ + d) = .
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It is easy to see this equation has exactly two negative roots, and thus the coexistence
equilibrium E∗ is locally asymptotic stable.

Define the Lyapunov function

V(P, S)(t) = θ

(

P(t) – p∗ – p∗ ln
P(t)
p∗

)

+
d

s∗ + d

(

S(t) – s∗ – s∗ ln
S(t)
s∗

)

.

Then the derivative along system (.) is

dV(P, S)(t)
dt

= θP′(t)
(

 –
p∗

P(t)

)

+
d

s∗ + d
S′(t)

(

 –
s∗

S(t)

)

= θ

(

–bP(t) – aP(t) + m
dP(t)

S(t) + d

)(

 –
p∗

P(t)

)

+
d

s∗ + d

(

–bS(t) – aS(t) + θm
P(t)S(t)
S(t) + d

)(

 –
s∗

S(t)

)

= –θa
(
P(t) – p∗) –

ad
s∗ + d

(
S(t) – s∗)

+ θmd
(


S(t) + d

–


s∗ + d

)
(
P(t) – p∗)

–
θmd
s∗ + d

(
p∗

s∗ + d
–

P(t)
S(t) + d

)
(
S(t) – s∗)

= –θa
(
P(t) – p∗) –

ad
s∗ + d

(
S(t) – s∗)

+ θmd
s∗ – S(t)

(s∗ + d)(S(t) + d)
(
P(t) – p∗)

–
θmd
s∗ + d

p∗(S(t) – s∗) + (s∗ + d)(p∗ – P(t))
(s∗ + d)(S(t) + d)

(
S(t) – s∗)

= –θa
(
P(t) – p∗) –

ad
s∗ + d

(
S(t) – s∗) –

θmd
s∗ + d

p∗(S(t) – s∗)

(s∗ + d)(S(t) + d)
≤ .

Furthermore, dV(P,S)(t)
dt =  if and only if (P, S)(t) ≡ (p∗, s∗). Thus, E∗ is globally asymptoti-

cally stable when τ = .
Case . If τ > , denote

u(λ) = λ + uλ + u, v(λ) = vλ + v.

Then (.) can be rewritten as g(λ, τ ) = , where

g(λ, τ ) := u(λ) + v(λ)e–λτ =
(
λ + uλ + u

)
+ (vλ + v)e–λτ .

By calculation we have

u
 – v

 – u

=
(
ap∗) +

(

as∗ + θm
p∗

s∗ + d
e–bτ

)

–
(

θm
dp∗

(s∗ + d) e–bτ

)
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=
(
ap∗) +

(

as∗ + θm
p∗

s∗ + d
e–bτ + θm

dp∗

(s∗ + d) e–bτ

)(

as∗ + θm
p∗s∗

(s∗ + d) e–bτ

)

> 

and

u + v = aap∗s∗ + θm
a(p∗)

s∗ + d
e–bτ – θm

ad(p∗)

(s∗ + d) e–bτ + θm dp∗s∗

(s∗ + d) e–bτ

= aap∗s∗ + θm
as∗(p∗)

(s∗ + d) e–bτ + θm dp∗s∗

(s∗ + d) e–bτ

> .

This leads to that the sign of u
 – v

 is consistent with the sign of u – v.
Assuming that ±iω is a pair of pure imaginary roots of (.) such that

g(iω, τ ) = u(iω) + v(iω)e–iωτ = ,

which yields u(iω) = –v(iω)e–iωτ , and thus |u(iω)| – |v(iω)| = . Now there exist two sub-
cases, u > v and u < v.

Subcase a. If u > v, according to [] (also see [], Theorem .),

G(ω) :=
∣
∣u(iω)

∣
∣ –

∣
∣v(iω)

∣
∣ = ω +

(
u

 – v
 – u

)
ω + u

 – v


has no positive roots, and thus no stability switch occurs, that is, the coexistence equilib-
rium E∗ is locally asymptotic stable for any τ ≥  from its stability for τ = .

Subcase b. If u < v, G(ω) has a unique simple positive root

ω =

√
√
√
√–(u

 – v
 – u) +

√

(u
 – v

 – u) – (u
 – v

)


,

and as τ increases, stability switch occurs. Eventually the coexistence equilibrium E∗ be-
comes unstable. In detail, ±iω is a pair of pure imaginary roots of (.) such that

g(iω, τ ) =
(
–ω

 + iuω + u
)

+ (ivω + v)e–iωτ = .

Separating its real and imaginary parts, we have

u – ω
 + vω sinωτ + v cosωτ = ,

uω + vω cosωτ – v sinωτ = .

Thus we obtain the following critical values for delay τ :

τk =


ω
arccos

v(ω
 – u) – uvω




v
 + v

ω



+
kπ

ω
, k = , , , . . . .
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By the differentiation method of implicit functions we obtain from g(λ, τ ) =  that

dτ

dλ
=

(
dλ

dτ

)–

=
λ + u

λ(vλ + v)e–λτ
+

v

λ(vλ + v)
–

τ

λ

= –
λ + u

λ(λ + uλ + u)
+

v

λ(vλ + v)
–

τ

λ
.

Note that

G(ω) = ω
 +

(
u

 – v
 – u

)
ω

 + u
 – v

 = u
ω


 +

(
u – ω


) –

(
v

ω

 + v


)

= ,

and then we have

Re

(
dλ

dτ

)–∣∣
∣
∣
τ=τk ,λ=iω

= Re

(

–
iω + u

iω(–ω
 + iωu + u)

+
v

iω(iωv + v)

)

= –
–u

 + (u – w
)

u
ω


 + (u – ω

) –
v


v

ω

 + v



=
(ω

 + u
 – v

 – u)(v
ω


 + v

) – v
 G(ω)

[u
ω


 + (u – ω

)](v
ω


 + v

)

=
ω

 + u
 – v

 – u

u
ω


 + (u – ω

) =

√

(u
 – v

 – u) – (u
 – v

)

u
ω


 + (u – ω

) > .

Combining the stability of E∗ for τ = , this implies that the transversal condition for Hopf
bifurcation holds at τ = τ. The proof is complete. �

In fact, we could discuss the direction and stability of the Hopf bifurcation by using the
normal form theory and the center manifold reduction introduced by Hassard et al. [].
However, the algorithm is standard, and the application of the result needs complex com-
putations. Therefore, we just do some numerical simulations in the next section instead.

5 Numerical simulations and concluding discussions
We now give numerical simulations as R >  for (.) with some different values of pa-
rameters (see Figures -). We can see from Figures  and  that the dynamical behavior
would be very complex when R >  and u < v with large τ . That is, the time delay τ has
really a huge impact on the dynamical behavior of (.).

In the following, we give some discussion on the influence of maturation period τ in the
scrounge interaction.

The existence of producer. The existence of producer is just determined by their ability
to discover food (m) and the natural mortality rate b. However, the mature time τ does
not determine the existence of producer.

The existence of scrounger. The basic reproduction ratio R determines the existence
of scrounger. Note that R = θm p

db
e–bτ decreases as τ increases, and it is a bounded

function of variable τ . We find that (i) if θmp < db, no matter how long the mature time
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(a) (b)

Figure 1 The case of R0 > 1 and u0 > v0, where b1 = 1, a1 = 1, b2 = 0.8, a2 = 2, m = 3, d = 1, θe–b3τ = 3,
τ = 0.5.

(a) (b)

(c)

Figure 2 The case of R0 > 1 and u0 = 60.3465, v0 = 112.4246, τ0 = 0.6461, where b1 = 10, a1 = 1,
b2 = 0.8, a2 = 10, m = 30, d = 1, θ = 3, τ = 0.5, b3 = 2, P(t) = 1, S(t) = 1.65 for t ∈ [–0.5, 0].

is, the scrounger finally extincts; (ii) if θmp > db, shorter mature time is in favor of the
existence of scrounger.

Global behaviors for R > . In the case R > , we have no results of the global stability
for τ > . But in view of the global convergence to the coexistence equilibrium E∗ at τ = 
and numerical simulations, we found that the mature time τ does change the dynamical
behavior of the model. We conjecture that (i) when u > v, the coexistence equilibrium
is globally asymptotically stable for τ > ; (ii) when u < v, the coexistence equilibrium
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(a) (b)

(c)

Figure 3 The case of R0 > 1 and u0 = 44.0951, v0 = 120.0637, τ0 = 0.5223, where b1 = 10, a1 = 1,
b2 = 0.8, a2 = 10, m = 30, d = 1, θ = 3, τ = 0.55, b3 = 1, P(t) = 0.9, S(t) = 1.7 for t ∈ [–0.55, 0].

(a) (b)

(c)

Figure 4 The case of R0 > 1 and u0 = 81.8961, v0 = 101.5272, τ0 = 1.1423, where b1 = 10, a1 = 1,
b2 = 0.8, a2 = 10, m = 30, d = 1, θ = 3, τ = 3, b3 = 0.5, P(t) = 2, S(t) = 1.5 for t ∈ [–3, 0].
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(a) (b)

(c)

Figure 5 The case of R0 > 1 and u0 = 50.9158, v0 = 116.9143, τ0 = 0.5647, where b1 = 10, a1 = 1,
b2 = 0.8, a2 = 10, m = 30, d = 1, θ = 3, τ = 3, b3 = 0.25, P(t) = 2, S(t) = 1.5 for t ∈ [–3, 0].

remains globally asymptotically stable for small τ > ; (iii) when u < v, the positive solu-
tions convergence to a periodic solution for large τ .

Note that we also derived another model (.) in Section , whereas there exists compe-
tition between immature scroungers. The investigation of this model seems challenging.
We leave it as an open problem.

We want to make some more comments on open problems. In this article and [], we
both assume that the proportion of the resource ultimately acquired by producer after
the interaction is d

S+d , where S is the number of scroungers. However, there may be some
other models for different species groups by using different proportion functions. In this
meaning, we can consider the following more general model for (.) with homogenous
spatial environment:

⎧
⎨

⎩

dP(t)
dt = –bP(t) – aP(t) + mg(P, S, d)P(t),

dS(t)
dt – bS(t) – aS(t) + θm( – g(P, S, d))P(t).

(.)

If g(P, S, d) ≡ , that is, the scrounger is incapable of stealing food from producer, (.)
becomes

⎧
⎨

⎩

dP(t)
dt = (m – b)P(t) – aP(t),

dS(t)
dt – bS(t) – aS(t).

(.)

If g(P, S, d) = d
S+d , (.) becomes (.) with homogenous spatial environment.
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We can also consider other cases such as g(P, S, d) = d

S+d for different species and such
that even g actually depends on the producer P. Furthermore, one can derive a new model
that involves a continuous immature age structure. We leave these problems for future
research.
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