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Abstract
This research work is devoted to investigations of the existence and uniqueness of the
solution of a non-local boundary value problem with discontinuous matching
condition for the loaded equation. Considering parabolic-hyperbolic type equations
involves the Caputo fractional derivative and loaded part joins in Riemann-Liouville
integrals. The uniqueness of a solution is proved by the method of integral energy
and the existence is proved by the method of integral equations.
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1 Introduction and formulation of a problem
It is well known that fractional derivatives have been successfully applied to problems in
system biology [], physics [–] and hydrology [, ]. Physical models fractional differ-
ential operators have recently renewed attention from scientist which is mainly due to
applications as models for physical phenomena exhibiting anomalous diffusion.

Note that investigations of fractional analogs of main ODE and PDEs appear as a result
of the mathematic models for real-life processes [], and they have recently been proved
to be valuable tools in the modeling of many phenomena in various fields of science and
engineering [, ].

In the monographs of Kilbas et al. [], Miller and Ross [], Podlubny [], and Samko
et al. [] we can see significant development of fractional differential equations.

Very recently some basic theory for the initial boundary value problem (BVP)s of frac-
tional differential equations involving a Riemann-Liouville differential operator of order
 < α ≤  has been discussed by Lakshmikantham and Vatsala [, ]. In a series of papers
(see [, ]) the authors considered some classes of initial value problems for functional
differential equations involving Riemann-Liouville and Caputo fractional derivatives of
order  < α ≤ .
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It is well known that most fractional differential equations do not have exact analytic
solutions, so approximation and numerical techniques must be used. The numerical so-
lutions based on finite difference methods and several spectral algorithms for fractional
differential equations were reported in Refs. [–].

It should be noted that problems for a class of fractional differential system and for the
non-line differential equations with integral conditions were investigated in [–] and
BVPs for the mixed type equations involving the Caputo and the Riemann-Liouville frac-
tional differential operators were investigated by many authors; see for instance [–].

BVPs discounting matching conditions for the loaded equations with fractional deriva-
tive have not been investigated yet.

This paper deals the existence and uniqueness of a solution of the non-local problem
with discontinuous matching condition for a loaded mixed type equation:

 =

⎧
⎨

⎩

uxx – CDα
oyu + p(x, y)

∫ 
x (t – x)β–u(t, ) dt, at y > ,

uxx – uyy + q(x, y)
∫ 

x+y(t – x – y)γ –u(t, ) dt, at y < 
()

involving the Caputo fractional derivative operator []:

CDα
oyf =


�( – α)

∫ y


(y – t)–αf ′(t) dt, ()

where  < α,β ,γ < .

Definition The Riemann-Liouville integral-differential operator of fractional order α

(α ∈ R), starting from the point a, is represented as follows []:

Dα
axf (x) =

sign(x – a)
�(–α)

∫ x

a

f (t)
|x – t|α+ dt, α < ; ()

Dα
axf (x) = f (x), α = ;

Dα
axf (x) = signk(x – a)

dk

dtk Dα–k
ax f (x), k –  < α ≤ k, k ∈ N .

Definition The Caputo differential operator of fractional order α (α > ) is represented
as follows []:

CDα
axf (x) = signk(x – a)Dα–k

ax f (k)(x), k –  < α ≤ k, k ∈ N .

Let us take �, a domain, bounded with segments : AA = {(x, y) : x = ,  < y < h}, BB =
{(x, y) : x = ,  < y < h}, BA = {(x, y) : y = h,  < x < } at the y > , and characteristics:
AC : x – y = ; BC : x + y =  of equation () at y < , where A(; ), A(; h), B(; ),
B(; h), C( 

 ; – 
 ).

Introduce the notations: θ (x) = x+
 + i · x–

 , i = –. We have

�+ = � ∩ (y > ), �– = � ∩ (y < ), I =
{

x :



< x < 
}

, I = {y :  < y < h}.

In the domain of � the following problem is investigated.
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Problem I Find a solution u(x, y) of equation () from the following class of functions:

W =
{

u(x, y) : u(x, y) ∈ C(�̄) ∩ C(�–)
, uxx ∈ C

(
�+)

, CDα
oyu ∈ C

(
�+)}

satisfying the boundary conditions

u(x, y)|AA = ϕ(y),  ≤ y ≤ h, ()

u(x, y)|BB = ψ(y),  ≤ y ≤ h, ()

d
dx

u
(
θ (x)

)
= a(x)uy(x, ) + b(x)ux(x, ) + c(x)u(x, ) + d(x), x ∈ I, ()

and the gluing condition:

lim
y→+

y–αuy(x, y) = λ(x)uy(x, –), (x, ) ∈ AB, ()

where ϕ(y), ψ(y), a(x), b(x), c(x), d(x), and λ(x) (λ(x) �= ) are given functions.

2 Results and discussion
The uniqueness of solution of Problem I.

In the sequel, we assume that q(x, y) = –q(x + y)q(x – y). In fact, equation () at y ≤ 
and on the characteristics coordinate ξ = x + y and η = x – y in summary looks like:

uξη =
q(ξ )q(η)



∫ 

ξ

(t – ξ )γ –u(t, ) dt. ()

Let us denote u(x, ) = τ (x),  ≤ x ≤ ; uy(x, –) = ν–(x),  < x < ;

lim
y→+

y–αuy(x, y) = ν+(x),  < x < .

It is well known that a solution of the Cauchy problem for equation () in the domain �–

can be represented as follows:

u(x, y) =
τ (x + y) + τ (x – y)


–




∫ x–y

x+y
ν–(t) dt

+



∫ x–y

x+y
q(ξ ) dξ

∫ x–y

ξ

q(η) dη

∫ 

ξ

(t – ξ )γ –τ (t) dt. ()

After using condition () and taking () into account from () we will get

(
a(x) – 

)
ν–(x) = �(γ )q(x)q̃(x)D–γ

x τ (x) +
(
 – b(x)

)
τ ′(x) – c(x)τ (x) – d(x), ()

where q̃(x) =
∫ 

x q(η) dη.
Considering the notations and gluing condition () we have

ν+(x) = λ(x)ν–(x). ()
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Further from equation () at y → + taking (), () into account, and

lim
y→

Dα–
y f (y) = �(α) lim

y→
y–αf (y)

we get []

τ ′′(x) – λ(x)�(α)ν–(x) + �(β)p(x, )D–β
x τ (x) = . ()

Theorem  If the following conditions are satisfied:

λ()q()q̃()
a() – 

≥ , p(, ) ≤ , p′(x, ) ≤ ; ()

(
q(x)q̃(x)
a(x) – 

λ(x)
)′

≥ ,
λ(x)c(x)
a(x) – 

≤ ,
(

 – b(x)
a(x) – 

λ(x)
)′

≤ , ()

then the solution u(x, y) of Problem I is unique.

Proof It is well known that, if a homogeneous problem has only a trivial solution, then
we can state that the original problem has a unique solution. To this aim we assume that
Problem I has two solutions, then denoting the difference of these as u(x, y) we will get an
appropriate homogeneous problem.

We multiply equation () by τ (x) and integrate from  to :

∫ 


τ ′′(x)τ (x) dx – �(α)

∫ 


λ(x)τ (x)ν–(x) dx + �(β)

∫ 


τ (x)p(x, )D–β

x τ (x) dx = . ()

We will investigate the integral

I = �(α)
∫ 


λ(x)τ (x)ν–(x) dx – �(β)

∫ 


τ (x)p(x, )D–β

x τ (x) dx.

Taking () into account d(x) =  we get

I =
�(α)�(γ )



∫ 



q(x)q̃(x)
a(x) – 

λ(x)τ (x)D–γ
x τ (x) dx

+ �(α)
∫ 



( – b(x))λ(x)
a(x) – 

τ (x)τ ′(x) dx

– �(α)
∫ 



λ(x)c(x)
a(x) – 

τ (x) dx – �(β)
∫ 


τ (x)p(x, )D–β

x τ (x) dx

=
�(α)



∫ 



q(x)q̃(x)
a(x) – 

λ(x)τ (x) dx
∫ 

x
(t – x)γ –τ (t) dt

–
�(α)



∫ 



 – b(x)
a(x) – 

λ(x) d
(
τ (x)

)

– �(α)
∫ 



λ(x)c(x)
a(x) – 

τ (x) dx –
∫ 


τ (x)p(x, ) dx

∫ 

x
(t – x)β–τ (t) dt. ()
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Considering τ () = , τ () =  (deduced from the conditions (), () in the homogeneous
case) and on the base of the formula [] we have

|x – t|–γ =


�(γ ) cos πγ



∫ ∞


zγ – cos

[
z(x – t)

]
dz,  < γ < .

After some simplifications from () we will get

I =
�(α)q()q̃()λ()

(a() – )�( – γ ) sin πγ



∫ ∞


z–γ

[(∫ 


τ (t) cos zt dt

)

+
(∫ 


τ (t) sin zt dt

)]

dz

+
�(α)

�( – γ ) sin πγ



∫ ∞


z–γ dz

∫ 



∂

∂x

[

λ(x)
q(x)q̃(x)
a(x) – 

]

×
[(∫ 

x
τ (t) cos zt dt

)

+
(∫ 

x
τ (t) sin zt dt

)]

dx

–
�(α)



∫ 


τ (x)

(

λ(x)
 – b(x)
a(x) – 

)′
dx – �(α)

∫ 



λ(x)c(x)
a(x) – 

τ (x) dx

–
p(, )

�( – β) sin πβ



∫ ∞


z–β

[(∫ 


τ (t) cos zt dt

)

+
(∫ 


τ (t) sin zt dt

)]

dz

–


 sin πβ

 �( – β)

∫ ∞


z–β dz

∫ 



∂

∂x
[
p(x, )

]

×
[(∫ 

x
τ (t) cos zt dt

)

+
(∫ 

x
τ (t) sin zt dt

)]

dx. ()

Thus, due to conditions (), () from () we infer that τ (x) ≡ . Hence, based on the
solution of the first boundary problem for equation () [, ] by using conditions ()
and () we will get u(x, y) ≡  in �

+. Further, from the functional relations (), taking into
account τ (x) ≡ , we deduce that ν–(x) ≡ . Consequently, based on the solution () we
obtain u(x, y) ≡  in a closed domain �

–. �

The existence of a solution of Problem I.

Theorem  If conditions (), () are satisfied and

ϕ(y),ψ(y) ∈ C(I) ∩ C(I), p(x, ) ∈ C(AB) ∩ C(AB), ()

q(x, y) ∈ C
(
�–

) ∩ C(�–)
, a(x), b(x), c(x), d(x) ∈ C(I) ∩ C(I), ()

then the solution of the investigated problem exists.

Proof Taking () into account, from equation () we will obtain

τ ′′(x) – A(x)τ ′(x) = f (x) – B(x)τ (x), ()
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where

f (x) =
�(α)�(γ )λ(x)q(x)q̃(x)

(a(x) – )
D–γ

x τ (x) – �(β)p(x, )D–β
x τ (x) –

�(α)λ(x)d(x)
a(x) – 

, ()

A(x) =
�(α)λ(x)( – b(x))

a(x) – 
, B(x) =

�(α)λ(x)c(x)
a(x) – 

. ()

The solution of equation () together with the conditions

τ () = ψ(), τ () = ϕ() ()

has the form

τ (x) = A(x)
(∫ 

x

(
B(t)τ (t) – f (t)

)
A′

(t) dt +
ϕ() – ψ()

A()

)

–
A(x)
A()

∫ 



(
B(t)τ (t) – f (t)

)A(t)
A′

(t)
dt

+
∫ x



(
B(t)τ (t) – f (t)

)A(t)
A′

(t)
dt + ψ(), ()

where

A(x) =
∫ x


exp

(∫ t


A(z) dz

)

dt. ()

Further, considering () and using () from () we will get

τ (x) = A(x)
[∫ 

x
A′

(t)B(t)τ (t) dt –
�(α)



∫ 

x

λ(t)q(t)q̃(t)
a(t) – 

A′
(t) dt

∫ 

t
(s – t)γ –τ (s) ds

]

+ A(x)
∫ 

x
A′

(t)p(t, ) dt
∫ 

t
(s – t)β–τ (s) ds –

A(x)
A()

∫ 



A(t)
A′

(t)
B(t)τ (t) dt

+
�(α)


A(x)
A()

∫ 



A(t)λ(t)q(t)q̃(t)
(a(t) – )A′

(t)
dt

∫ 

t
(s – t)γ –τ (s) ds

–
A(x)
A()

∫ 



A(t)
A′

(t)
p(t, ) dt

∫ 

t
(s – t)β–τ (s) ds +

∫ x



A(t)
A′

(t)
B(t)τ (t) dt

–
�(α)



∫ x



A(t)λ(t)q(t)q̃(t)
(a(t) – )A′

(t)
dt

∫ 

t
(s – t)γ –τ (s) ds

+
∫ x



A(t)
A′

(t)
p(t, ) dt

∫ 

t
(s – t)β–τ (s) ds + f(x), ()

where

f(x) =
(

 –
A(x)
A()

)∫ x



�(α)d(t)A(t)λ(t)
A′

(t)(a(t) – )
dt + �(α)A(x)

∫ 

x

d(t)A′
(t)λ(t)

a(t) – 
dt

–
A(x)
A()

∫ 

x

�(α)d(t)A(t)λ(t)
A′

(t)(a(t) – )
dt –

A(x)
A()

(
ψ() – ϕ()

)
+ ψ(). ()
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After some simplifications () we will rewrite our expression in the form

τ (x) = A(x)
[∫ 

x
A′

(t)B(t)τ (t) dt –
�(α)



∫ 

x
τ (s) ds

∫ s

x
(s – t)γ – λ(t)q(t)q̃(t)

a(t) – 
A′

(t) dt
]

+ A(x)
∫ 

x
τ (s) ds

∫ s

x
(s – t)β–A′

(t)p(t, ) dt –
A(x)
A()

∫ 



A(t)
A′

(t)
B(t)τ (t) dt

+
�(α)


A(x)
A()

∫ 


τ (s) ds

∫ s


(s – t)γ – A(t)λ(t)q(t)q̃(t)

(a(t) – )A′
(t)

dt

–
A(x)
A()

∫ 


τ (s) ds

∫ s


(s – t)β– A(t)

A′
(t)

p(t, ) dt +
∫ x



A(t)
A′

(t)
B(t)τ (t) dt

–
�(α)



(∫ x


τ (s) ds

∫ s



A(t)λ(t)q(t)q̃(t)
A′

(t)(a(t) – )(s – t)–γ
dt

+
∫ 

x
τ (s) ds

∫ x



A(t)λ(t)q(t)q̃(t)
A′

(t)(a(t) – )(s – t)–γ
dt

)

+
∫ x


τ (s) ds

∫ s



A(t)(s – t)β–

A′
(t)

p(t, ) dt

+
∫ 

x
τ (s) ds

∫ x



A(t)(s – t)β–

A′
(t)

p(t, ) dt + f(x)

i.e., in summary, we have the integral equation

τ (x) =
∫ 


K(x, t)τ (t) dt + f(x). ()

Here

K(x, t) =

⎧
⎨

⎩

K(x, s),  ≤ t ≤ x,

K(x, s), x ≤ t ≤ ,
()

K(x, s) =
(

A(x)
A()

– 
)[

�(α)


∫ s


(s – t)γ – A(t)λ(t)q(t)q̃(t)

(a(t) – )A′
(t)

dt –
A(s)
A′

(s)
B(s)

]

–
(

A(x)
A()

– 
)∫ s


(s – t)β– A(t)

A′
(t)

p(t, ) dt, ()

K(x, s) = A(x)
(

A′
(s)B(s) –

�(α)


∫ s

x
(s – t)γ – λ(t)q(t)q̃(t)

a(t) – 
A′

(t) dt
)

+ A(x)
∫ s

x
(s – t)β–A′

(t)p(t, ) dt –
A(x)
A()

A(s)
A′

(s)
B(s)

+
�(α)


A(x)
A()

∫ s


(s – t)γ – A(t)λ(t)q(t)q̃(t)

(a(t) – )A′
(t)

dt

–
�(α)



∫ x



A(t)λ(t)q(t)q̃(t)
A′

(t)(a(t) – )
(s – t)γ – dt

+
(

 –
A(x)
A()

)∫ x



A(t)(s – t)β–

A′
(t)

p(t, ) dt. ()

Due to the class (), () of the given functions and after some evaluations, from (),
() and (), () we will conclude that |K(x, t)| ≤ const, |f(x)| ≤ const.
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Since the kernel K(x, t) is continuous and the function on the right-hand side F(x) is
continuously differentiable, we can write the solution of integral equation () via the
resolvent-kernel:

τ (x) = f(x) –
∫ 


�(x, t)f(t) dt, ()

where �(x, t) is the resolvent-kernel of K(x, t).
The unknown functions ν–(x) and ν+(x) we will find accordingly from () and ():

ν–(x) =
q(x)q̃(x)

( – a(x))

∫ 

x
(t – x)γ – dt

∫ 


�(t, s)f(s) ds

+
q(x)q̃(x)

(a(x) – )

∫ 

x
(t – x)γ –f(t) dt

+
 – b(x)
a(x) – 

f ′
 (x) –

 – b(x)
a(x) – 

∫ 



∂�(x, t)
∂x

f(t) dt –
c(x)

a(x) – 
f(x)

+
c(x)

a(x) – 

∫ 


�(x, t)f(t) dt –

d(x)
a(x) – 

and ν+(x) = λ(x)ν–(x).
Considering the solution of Problem I in the domain �+ we write our expression as

follows [, ]:

u(x, y) =
∫ y


Gξ (x, y, ,η)ψ(η) dη –

∫ y


Gξ (x, y, ,η)ϕ(η) dη +

∫ 


G(x – ξ , y)τ (ξ ) dξ

–
∫ y



∫ 


G(x, y, ,η)p(ξ ) dξ dη

∫ 

ξ

(t – ξ )β–τ (t) dt. ()

Here G(x – ξ , y) = 
�(–α)

∫ y
 η–αG(x, y, ξ ,η) dη,

G(x, y, ξ ,η) =
(y – η)α/–



∞∑

n=–∞

[

e,α/
,α/

(

–
|x – ξ + n|
(y – η)α/

)

– e,α/
,α/

(

–
|x + ξ + n|
(y – η)α/

)]

.

Here the Green’s function of the first boundary problem equation () in the domain �+

with the Riemanne-Liouville fractional differential operator instead of the Caputo ones
[],

e,δ
,δ(z) =

∞∑

n=

zn

n!�(δ – δn)
,

is a Wright type function []. �

3 Conclusion
If conditions (), (), (), and () are satisfied, then the solution of Problem I is unique
and exists, and this solution in the domains �– and �+ will be found by equations () and
(), respectively.



Sadarangani and Abdullaev Advances in Difference Equations  (2016) 2016:241 Page 9 of 10

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The two authors have participated into the results obtained. The collaboration of each one cannot be separated in
different parts of the paper. Both of them have made substantial contributions to the theoretical results. The two authors
have been involved in drafting the manuscript and revising it critically for important intellectual content. Both authors
have given final approval of the version to be published.

Author details
1University of Las-Palmas de Gran Canaria, Las Palmas, Spain. 2National University of Uzbekistan, Tashkent, Uzbekistan.

Acknowledgements
The authors are grateful to the reviewers for useful suggestions, which improved the contents of this paper.

Received: 7 March 2016 Accepted: 8 September 2016

References
1. Diethelm, K, Freed, AD: On the solution of nonlinear fractional order differential equations used in the modeling of

viscoelasticity. In: Keil, F, Mackens, W, Voss, H, Werther, J (eds.) Scientific Computing in Chemical Engineering II:
Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217-224. Springer, Heidelberg
(1999)

2. El-Sayed, AMA: Fractional order evolution equations. J. Fract. Calc. 7, 89-100 (1995)
3. El-Sayed, AMA: Fractional order diffusion-wave equations. Int. J. Theor. Phys. 35(2), 311-322 (1996)
4. Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
5. Mainardi, F: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A,

Mainardi, F (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291-348. Springer, Wien (1997)
6. Glockle, WG, Nonnenmacher, TF: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46-53

(1995)
7. Kirchner, JW, Feng, X, Neal, C: Fractal stream chemistry and its implications for contaminant transport in catchments.

Nature 403, 524-526 (2000)
8. Anastasio, TJ: The fractional order dynamics of brainstem vestibule-oculomotor neurons. Biol. Cybern. 72, 69-79

(1994)
9. Koh, CG, Kelly, JM: Application of fractional derivatives to seismic analysis of base-isolated models. Earthq. Eng. Struct.

Dyn. 19, 229-241 (1990)
10. Magin, R: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32(1), 1-104 (2004)
11. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
12. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
13. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
14. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integral and Derivatives: Theory and Applications. Gordon & Breach,

Longhorne (1993)
15. Lakshmikantham, V, Vatsala, AS: Basic theory of fractional differential equations. Nonlinear Anal. 69(8), 2677-2682

(2008)
16. Lakshmikantham, V, Vatsala, AS: Theory of fractional differential inequalities and applications. Commun. Appl. Anal.

11(3-4), 395-402 (2007)
17. Belarbi, A, Benchohra, M, Ouahab, A: Uniqueness results for fractional functional differential equations with infinite

delay in Fréchet spaces. Appl. Anal. 85(12), 1459-1470 (2006)
18. Benchohra, M, Henderson, J, Ntouyas, SK, Ouahab, A: Existence results for fractional order functional differential

equations with infinite delay. J. Math. Anal. Appl. 338(2), 1340-1350 (2008)
19. Ding, Z, Xiao, A, Li, M: Weighted finite difference methods for a class of space fractional partial differential equations

with variable coefficients. J. Comput. Appl. Math. 233, 1905-1914 (2010)
20. Wang, H, Du, N: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion

equations. J. Comput. Phys. 258, 305-318 (2014)
21. Bhrawy, AH, Alhamed, Y, Baleanu, D, Al-Zahrani, A: New spectral techniques for systems of fractional differential

equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17, 1137-1157
(2014)

22. Bhrawy, AH, Taha, TM, Alzahrani, E, Baleanu, D, Alzahrani, A: Correction: New operational matrices for solving
fractional differential equations on the half-line. PLoS ONE 10(9), e0138280 (2015). doi:10.1371/journal.pone.0138280

23. Bhrawy, AH, Doha, EH, Baleanu, D, Ezz-eldein, SS: A spectral tau algorithm based on Jacobi operational matrix for
numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142-156 (2015)

24. Bhrawy, AH, Zaky, MA, Gorder, RAV: A space-time Legendre spectral tau method for the two-sided space-time
Caputo fractional diffusion-wave equation. Numer. Algorithms 71, 151-180 (2016)

25. Bhrawy, AH, Doha, EH, Ezz-Eldien, SS, Abdelkawy, MA: A numerical technique based on the shifted Legendre
polynomials for solving the time-fractional coupled KdV equation. Calcolo 53, 1-17 (2016)

26. Cabada, A, Wang, G: Positive solutions of nonlinear fractional differential equations with integral boundary value
conditions. J. Math. Anal. Appl. 389, 403-411 (2012)

27. Caballero, J, Cabrera, I, Sadarangani, K: Positive solutions of nonlinear fractional differential equations with integral
boundary value conditions. Abstr. Appl. Anal. 2012, Article ID 303545 (2012)

28. Harjani, J, Rocha, J, Sadarangani, K: Existence and uniqueness of solutions for a class of fractional differential coupled
system with integral boundary conditions. Appl. Math. Inf. Sci. 9(2L), 401-405 (2015)

29. Baleanu, D, Mehdi, M, Hakimeh, B: A fractional derivative inclusion problem via an integral boundary condition.
J. Comput. Anal. Appl. 21(3), 504-514 (2016)

http://dx.doi.org/10.1371/journal.pone.0138280


Sadarangani and Abdullaev Advances in Difference Equations  (2016) 2016:241 Page 10 of 10

30. Selvaraj, S, Baleanu, D, Palaniyappan, K: On fractional neutral integro-differential systems with state-dependent delay
and non-instantaneous impulses. Adv. Differ. Equ. 2015, Article ID 372 (2015)

31. Kadirkulov, BJ, Turmetov, BK: On a generalisation of the heat equation. Uzbek. Mat. Zh. 3, 40-46 (2006)
http://uzmj.mathinst.uz/files/uzmj-2006_3.pdf

32. Kadirkulov, BJ: Boundary problems for mixed parabolic-hyperbolic equations with two lines of changing type and
fractional derivative. Electron. J. Differ. Equ. 2014, 57 (2014)

33. Karimov, ET, Akhatov, J: A boundary problem with integral gluing condition for a parabolic-hyperbolic equation
involving the Caputo fractional derivative. Electron. J. Differ. Equ. 2014, 14 (2014)

34. Pskhu, AV: Uravneniye v chasnykh proizvodnykh drobnogo poryadka [Partial differential equation of fractional order].
Nauka, Moscow (2005) (in Russian), 200 pp.

35. Smirnov, MM: Mixed Type Equations. Nauka, Moscow (2000)
36. Pskhu, AV: Solution of boundary value problems fractional diffusion equation by the Green function method. Differ.

Equ. 39(10), 1509-1513 (2003)

http://uzmj.mathinst.uz/files/uzmj-2006_3.pdf

	A non-local problem with discontinuous matching condition for loaded mixed type equation involving the Caputo fractional derivative
	Abstract
	MSC
	Keywords

	Introduction and formulation of a problem
	Results and discussion
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


