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Abstract
We study an SIRS epidemic model with diffusion and nonlinear incidence rate is
studied. In the presence of spatial diffusion, we show that the local stability and the
global stability are completely determined by the basic reproduction ratio R0. Under
the so-called quasi-monotonicity assumption, we use the upper-lower solution
method and Schauder’s fixed point theorem to establish the existence of traveling
wave and obtain an explicit expression of the minimum wave speed c∗. Numerical
examples are given to confirm rich dynamical features of the model.
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1 Introduction
Since the Kermack-McKendrick epidemic SIR model [] was proposed in the s, in
which the total population is divided into three classes of susceptible individuals (S), infec-
tious individuals (I), and recovered individuals (R), the SIR and the SIRS types of epidemic
models have been studied by a great deal of researchers [–]. In most epidemic models,
the SIR (acquired immunity is permanent) and SIRS (acquired immunity is nonperma-
nent) models always make the assumption that the total population is constant in size if
the disease spreads quickly and dies out within a short time or the disease rarely causes
deaths, which can make the mathematical analysis easier by reducing the model into a
planar system. In modeling communicable diseases, one of the most important factors in
producing rich dynamics is the incidence rate. Indeed, bilinear interaction incidence and
standard incidence given by βIS or βIS

N are frequently used [–]. Such models always
admit a globally asymptotically stable disease-free equilibrium or endemic equilibrium,
corresponding to the disease-free steady state or endemic steady state. However, actual
data and evidences observed for many diseases (such as influenza, measles, mumps, chick-
enpox) show that dynamics of disease transmission are not always as simple as shown in
these models, and classical epidemic models also cannot explain lots of important phe-
nomena, such as periodic oscillations [] and so on.

Thus, in recent years, many scholars have taken into account oscillations caused by inci-
dence rates and proposed various nonlinear incidence rates [–]. With these nonlinear
incidence rates, many interesting and complicated transmission dynamics of epidemics
have been shown. The nonlinear incidence rate kIpSq (k, p, q > ) is investigated by Liu et
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al. []. van den Driessche and Watmough [, ] also studied an incidence rate of the
form bI( + mIk–)S, where b > , m ≥ , and k > . Capasso and Serio [] introduced
a saturated incidence rate g(I)S = βIS

+βδI (δ > ) in an epidemic model when they studied
the cholera epidemic in . Derrick and van den Driessche [] considered a gener-
alized form of nonlinear incidence rate in an epidemic model. The effect of behavioral
changes has been incorporated by Liu et al. [] using the nonlinear incidence rate kIlS

+αIh

with k, l,α, h > . Hu et al. [] considered the same nonlinear incidence rate. Ruan and
Wang [] considered the fixed infection force aI

b+I , which corresponds to a saturated in-
fection force, and obtained rich dynamical behaviors in an SIRS model.

Wang [] considered an SIRS epidemic model with nonlinear incidence of general form,

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = dN – dS – aI

f (I) S + bR,
dI
dt = aI

f (I) S – (d + γ )I,
dR
dt = γ I – (d + b)R,

(.)

where d is the birth rate and death rate of the population, b is the rate of removed indi-
viduals who lose immunity and return to the susceptible class, γ is the recovery rate of
infective individuals, 

f (I) represents the effect of intervention policies on the reduction
of valid contact coefficient a, and aI

f (I) is the infection force. He assumed that the popula-
tion size is a constant N = S + I + R and, to ensure a nonmonotonic infection force, that
(i) f () >  and f ′(I) >  for I >  and (ii) there exists ξ >  such that ( I

f (I) )′ >  for  < I < ξ

and ( I
f (I) )′ <  for I > ξ . Then he obtained the less-dimensional model

{
dI
dt = aI

f (I) (N – I – R) – (d + γ )I,
dR
dt = γ I – (d + b)R.

(.)

Studying this model, he found that intervention strategies decrease endemic levels and
tend to make the dynamical behavior of a disease evolution simpler.

However, spatial diffusion is an assignable phenomenon. At present, lots of scholars
have studied the epidemic models with spatial diffusion, and the traveling wave solutions
play an important role in understanding the long-time asymptotic property of reaction-
diffusion models [–]. In endemic systems, the existence of traveling wave solutions
indicates possible transition from infectious individuals to susceptible individuals from
the initial disease-free steady state to the endemic steady state. We consider some spa-
tial aspects of the model in order to estimate the propagation speed and to describe
the spation. Let � be a spatial habitat with smooth boundary ∂�. We now incorporate
the spatial content to the simplified model (.) and obtain the following PDE model
for which each variable is a function of both the spatial location x ∈ R and the time
t ∈R:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂I
∂t = dI

∂I
∂x + aI

f (I) (N – I – R) – (d + γ )I,
∂R
∂t = dR

∂R
∂x + γ I – (d + b)R,

∂I
∂n = ∂R

∂n = , t > , x ∈ ∂�,
I(, x) = I(x) ≥ , R(, x) = R(x) ≥ , ∀x ∈ �,

(.)
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where dI >  and dR >  are the diffusion coefficients of I and R, respectively, ∂
∂n de-

notes the outward normal derivative on ∂�; the Neumann boundary conditions im-
ply that the populations always move in � but do not move across the boundary
∂�.

Throughout the paper, we assume that the function f (I) satisfies the following condi-
tion:

(A) f (I) is increasing for I > , and f () > .

Furthermore, we make the different assumption from Wang []:

(A) The infection force I
f (I) satisfies ( I

f (I) )′ >  for I > , which is reasonable as a lot of
endemic diseases extend seriously along with the increase of infectious individuals.

In addition, we assume:

(A) There exists a constant L >  such that |f (I) – f (I)| ≤ L|I – I| for all I, I ∈ �.

The paper is organized as follows. In Section , we study the existence of equilibria and
show some well-posedness results for system (.). In Section , we present a qualitative
analysis of the model (.). We show the local and global stability of the associated steady
states. In Section , we prove the existence of traveling wave solutions of system (.)
by the upper-lower solution technique when  < R <  + b+d

γ
. Numerical simulations are

given to illustrate the analytical results in Section . A brief discussion and a summary of
the findings in the study are provided in the last section.

2 The well-posedness of system (1.3)
Throughout this paper, we use the usual notation for the standard ordering in R

 or X.
That is, for any φ = (φ,φ) and ω = (ω,ω), we denote φ ≤ ω if φi ≤ ωi and φ < ω if
φi ≤ ωi but φ �= ω. The cone R


+ denotes the subset of R with vectors x ≥ , X = C(�,R)

is the Banach space with the supremum norm ‖ · ‖X . Define X+ = C(�,R
+); then (X, X+)

is a strongly ordered space.
Obviously, the trivial equilibrium point E = (, ) is a disease-free equilibrium of (.).

By a similar argument as in [] it is easy to show that the basic reproduction number of
system (.) is R = Na

f ()(d+γ ) .

Lemma .
() If R < , then system (.) has a disease-free equilibrium E = (, ).
() If R > , then system (.) admits a unique endemic steady state E∗ = (I∗, R∗), where

R∗ =
γ I∗

d + b
,

and I∗ is the unique root of

γ I
d + b

= N – I –
d + γ

a
f (I).

By direct computations we can get

R∗ + I∗ = N –
d + γ

a
f
(
I∗) < N –

d + γ

a
f () =

(d + γ )f ()
a

(R – ),

that is,  < I∗ < N(b+d)
γ +b+d := M,  < R∗ < Nγ

γ +b+d := M, and M + M = N .
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Define QM = {ϕ = (ϕ,ϕ) ∈ X+ : ϕ + ϕ ≤ N ,∀x ∈ �}. For any ϕ = (ϕ,ϕ) ∈ QM and
x ∈ �, define G = (G, G) : QM → X by

G(ϕ)(x) =
aϕ

f (ϕ)
(N – ϕ – ϕ) – (d + γ )ϕ,

G(ϕ)(x) = γ ϕ – (d + b)ϕ.

Since f is Lipschitz continuous, G is Lipschitz continuous in any bounded subset of �M ,
and system (.) can be written as an abstract differential equation as follows:

du
dt

= Au + G(u), t > ,

u = ϕ ∈ QM,

where u = (I, R), Au := (dI
∂I
∂x , dR

∂R
∂x ), and ϕ = (ϕ,ϕ).

Theorem . For any given initial data ϕ = (ϕ,ϕ) ∈ QM , system (.) has a unique non-
negative solution u(t, x,ϕ) on [,∞) ×� with u(, ·,ϕ) = ϕ. Furthermore, u(t, ·,ϕ) ∈ QM for
t ≥ , and u(t, x,ϕ) for (t, x) ∈ [,∞) × � is a classical solution of system (.).

Proof For any ϕ = (ϕ,ϕ) ∈ QM and h ≥ , we can get

ϕ(x) + hG(ϕ)(x) =

(
ϕ + ahϕ

f (ϕ) (N – ϕ – ϕ) – h(d + γ )ϕ

ϕ + hγ ϕ – h(d + b)ϕ

)

.

For  ≤ h < min{ 
d+γ

, 
b+d }, it follows that

ϕ +
ahϕ

f (ϕ)
(N – ϕ – ϕ) – h(d + γ )ϕ ≥ ϕ

(
 – h(d + γ )

) ≥ ,

ϕ + hγ ϕ – h(d + b)ϕ ≥ ϕ
(
 – h(b + d)

) ≥ .

For sufficiently small h >  and all (ϕ,ϕ) ∈ QM , we have

ϕ +
ahϕ

f (ϕ)
(N – ϕ – ϕ) – h(d + γ )ϕ + ϕ + hγ ϕ – h(d + b)ϕ

= (ϕ + ϕ) +
ahϕ

f (ϕ)
(N – ϕ – ϕ) – hdϕ – h(b + d)ϕ

≤ (ϕ + ϕ) +
ahN
f ()

(N – ϕ – ϕ)

=
ahN

f ()
+ (ϕ + ϕ)

(

 –
ahN
f ()

)

≤ N .

Thus, it follows that ϕ(x) + hG(ϕ)(x) ∈ QM . This implies that

lim
h→+


h

dist
(
ϕ(x) + hF(ϕ)(x),�M

)
= , ∀ϕ ∈ QM.
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Therefore, the existence and uniqueness of u(t, x,ϕ) on [,∞)×� follow from [] (Corol-
lary  with zero delay) with u(, ·,ϕ) = ϕ and u(t, ·,ϕ) ∈ QM for t ≥ . �

3 Qualitative analysis
In this section, we establish conditions for the local and global stability of the equilibria
of system (.) by judging the symbol of the characteristic roots of Jacobian matrix and
constructing suitable Lyapunov functions.

3.1 Local dynamics of equilibria
In this subsection, we discuss the local stability of constant steady states E and E∗ of
system (.) by analyzing the corresponding characteristic equation.

Suppose that  = μ < μ < · · · are the eigenvalues of the operator –� on � with Neu-
mann boundary conditions and that E(μi) is the eigenspace corresponding to μi in C(�).
Denote X = [C(�)], let {φij : j = , , . . . , dim E(μi)} be an orthonormal basis of E(μi), and
Xij = {cφij : c ∈R

}. Then

X :=
∞⊗

i=

Xi, Xi :=
dim E(μi)⊗

j=

Xij.

Let

J =
(

aI
f (I)

(N – I – R) – (d + γ )I,γ I – (b + d)R
)

, E = (I, R).

Then the Jacobian matrix is

JE =

(
a( I

f (I) )′(N – I – R) – aI
f (I) – (d + γ ) – aI

f (I)

γ –(b + d)

)

.

Let D = diag(dI , dR), and let U = (I, R) be any feasible steady state of system (.). Then the
linearization of system (.) at U = (I, R) is of the form D� + JE(U). For each i ≥ , Xi is
invariant under the operator D� + JE(U), and λ is an eigenvalue of D� + JE(U) if and only
if it is an eigenvalue of the matrix –μiD + JE(U) for some i ≥ , in which case, there is an
eigenvector in Xi. Hence, we have the following characteristic matrix of system (.):

det
(
λI + μiD – JE(U)

)

=

∣
∣
∣
∣
∣

λ + μidI – a( I
f (I) )′(N – I – R) + aI

f (I) + (d + γ ) aI
f (I)

–γ λ + μidR + b + d

∣
∣
∣
∣
∣
. (.)

Theorem . If R < , then the disease-free equilibrium E = (, ) of system (.) is locally
asymptotically stable.

Proof Let (I, R) = (, ) in (.). Then the Jacobian determinant is given by

det(λI + μiD – JE )

=

∣
∣
∣
∣
∣

λ + μidI – aN
f () + (d + γ ) 

–γ λ + μidR + b + d

∣
∣
∣
∣
∣
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=
(

λ + μidI –
aN
f ()

+ (d + γ )
)

(λ + μidR + b + d)

= . (.)

Therefore, for any μi ≥ , (.) has a real root λ = –μidR – b – d < , and when R < , the
other root λ = –μidI + aN

f () – (d + γ ) < . Thus, both roots of (.) have negative real parts.
Hence, E(, ) is locally asymptotically stable when R < . �

Theorem . If R > , then the endemic equilibrium E∗ = (I∗, R∗) of system (.) is locally
asymptotically stable.

Proof Let (I, R) = (I∗, R∗). Then the Jacobian determinant is given by

det(λI + μiD – JE∗ )

=

∣
∣
∣
∣
∣

λ + μidI – a(N–I∗–R∗)
f (I∗) + d + γ + a(N–I∗–R∗)I∗f ′(I∗)

f (I∗)
aI∗

f (I∗)

–γ λ + μidR + b + d

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

λ + μidI – (d+γ )(N–I∗–R∗)
N–I∗–R∗ + d + γ + I∗f ′(I∗)(d+γ )

a(N–I∗–R∗)
I∗(d+γ )

N–I∗–R∗
–γ λ + μidR + b + d

∣
∣
∣
∣
∣

= λ + Aλ + A, (.)

where

A = μi(dI + dR) +
b(N – I∗ – R∗) + d(N – R∗) + γ I∗

N – I∗ – R∗ +
I∗f ′(I∗)(d + γ )

a(N – I∗ – R∗)
> ,

A =
[

μidI –
(d + γ )(N – I∗ – R∗)

N – I∗ – R∗ + d + γ (.)

+
I∗f ′(I∗)(d + γ )

a(N – I∗ – R∗)

]

(μidR + b + d) +
γ I∗(d + γ )
N – I∗ – R∗ .

Clearly, d + γ – (d+γ )(N–I∗–R∗)
N–I∗–R∗ = (d+γ )I∗

N–I∗–R∗ > , so A > . By Routh-Hurwitz criterion, both
roots of (.) have negative real parts. Therefore, the endemic equilibrium E∗(I∗, R∗) is
locally asymptotically stable when R > . �

3.2 Global stability
In this subsection, we study the global stability of the endemic equilibrium E∗ and the
disease-free equilibrium E of system (.). The technique of the proofs is based on con-
struction of appropriate Lyapunov functions. Anything else, the techniques of couple low-
upper solutions, monotone iteration, and so on are frequently used to work on the global
stability of the constant steady states of the diffusive model; see [, , ].

We have the following result.

Theorem . If R ≤ , then the disease-free steady state E = (, ) of system (.) is glob-
ally asymptotically stable.

Proof Define the Lyapunov function

V(t) =
∫

�

W(x, t) dx =
∫

�

I +
(d + γ )( – R)

γ
R dx.
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Then

∂V

∂t
=

∫

�

∂W

∂t
dx =

∫

�

[
∂I
∂t

+
(d + γ )( – R)

γ

∂R
∂t

]

dx

=
∫

�

[

dI�I +
(d + γ )( – R)

γ
dR�R +

aNI
f (I)

–
aI

f (I)
–

aIR
f (I)

– (d + γ )I + (d + γ )( – R)I –
(d + γ )( – R)(b + d)

γ
R
]

dx.

Clearly,

aNI
f (I)

– (d + γ )I + (d + γ )( – R)I

≤
[

aN
f ()

– (d + γ )R

]

I

= (d + γ )
[

aN
f ()(d + γ )

– R

]

I

= .

By the Neumann boundary conditions it is easy to show that

∫

�

�I dx =
∫

�

�R dx = .

Hence, for any t >  and all I, R ≥ , ∂V
∂t ≤  as R ≤ . Obviously, ∂V

∂t =  if and only
if I =  and R = . It is easy to get that the singleton E is the largest compact invari-
ant set in {(I, R) ∈ QM : ∂V

∂t = }. Because the forward orbit of system (.) is compact,
limt→∞(I(·, t), R(·, t)) = E by the LaSalle invariance principle [], Theorem ... Thus,
E = (, ) is globally asymptotically stable when R ≤ . �

Lemma . Let R > . Define the function

W (I) = f
(
I∗)

(

I – I∗ – I∗ ln
I
I∗

)

+
∫ I

I∗

(f (u) – f (I∗))(u – I∗)
u

du.

Then W (I) ≥ . Furthermore, the equality holds if and only if I = I∗.

Proof By immediate calculation,

dW
dI

=
f (I)

I
(
I – I∗).

Since f (I) >  and I > , we have dW
dI =  if I = I∗, that is, I = I∗ is a unique stationary point

of W . We have dW
dI >  for I > I∗ and dW

dt <  for I < I∗, that is, I∗ is the unique minimum
point of W . Further, W (I∗) = , so that W (I) ≥ W (I∗) = . �

Theorem . If R > , then the endemic equilibrium E∗ = (I∗, R∗) of system (.) is globally
asymptotically stable.
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Proof Define the Lyapunov function

V =
∫

�

W +



k
(
R – R∗) dx.

Then

∂V
∂t

=
∫

�

dW
dI

∂I
∂t

+ k
(
R – R∗)∂R

∂t
dx

=
∫

�

dIf (I)
I – I∗

I
�I dx +

∫

�

kdR
(
R – R∗)�R dx

+
∫

�

f (I)
I

(
I – I∗)

[
aI

f (I)

(

–
(
I – I∗) –

(
R – R∗) +

d + γ

a
(
f
(
I∗) – f (I)

)
)]

+ k
(
R – R∗)(γ

(
I – I∗) – (b + d)

(
R – R∗))dx

= –
∫

dI‖∇I‖f ′(I) dx –
∫

�

dII∗
(

f (I)
I

)( I
f (I)

)′
‖∇I‖ dx –

∫

�

kdR‖∇R‖ dx

–
∫

�

a
(
I – I∗) + k(b + d)

(
R – R∗) + (d + γ )

(
I – I∗)(f (I) – f

(
I∗))dx

+
∫

�

(kγ – a)
(
R – R∗)(I – I∗)dx.

Let k = a
γ

. Then ∂V
∂t ≤  for all t > , I > , R > , and ∂V

∂t =  iff (I, R) = (I∗, R∗). Obviously,
E∗ is the largest compact invariant set in {(I, R) ∈ QM : ∂V

∂t = }. Since the forward orbit
of system (.) is compact, limt→∞(I(·, t), R(·, t)) = E∗ by the LaSalle invariance principle
[], Theorem ... Thus, the equilibrium E∗ = (I∗, R∗) is globally asymptotically stable if
R > . �

4 Traveling wave solution
A traveling wave solution of system (.) is a special translation-invariant solution of the
form I(x, t) = φ(ξ ), R(x, t) = φ(ξ ), ξ = x + ct, where c >  is the wave speed, and φ, φ are
the profiles of the wave that propagates through the one-dimensional spatial domain. For
simplicity, denote dI , dR, ξ as d, d, t, respectively. Substituting this special solution into
system (.), we obtain the corresponding wave equation

dφ
′′
 (t) – cφ′

(t) +
aφ(t)

f (φ(t))
(
N – φ(t) – φ(t)

)
– (d + γ )φ(t) = ,

dφ
′′
 (t) – cφ′

(t) + γφ(t) – (b + d)φ(t) = .
(.)

Consider the nontrivial solution (φ(t),φ(t)) to system (.) with the following boundary
conditions:

lim
t→–∞

(
φ(t),φ(t)

)
= (, ), lim

t→+∞
(
φ(t),φ(t)

)
=

(
I∗, R∗), (.)

where (I∗, R∗) are defined in Lemma .. For convenience, set

h(φ,φ)(t) =
aφ(t)

f (φ(t))
(
N – φ(t) – φ(t)

)
– (d + γ )φ(t),

h(φ,φ)(t) = γφ(t) – (b + d)φ(t).
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Then system (.) can be rewritten as

{
dφ

′′
 (t) – cφ′

(t) + h(φ,φ)(t) = ,
dφ

′′
 (t) – cφ′

(t) + h(φ,φ)(t) = .
(.)

Definition . A pair of functions φ = (φ,φ) and φ = (φ,φ) ∈ C(R,R) are called a
couple of upper and lower solutions of system (.), respectively, if there exists a finite set
 = {t, t, . . . , tm} such that φ

′′(t), φ′(t), φ′′(t), φ′(t) are continuous on R\ and satisfy

{
dφ

′′
 (t) – cφ′

(t) + aφ(t)
f (φ(t)) (N – φ(t) – φ(t)) – (d + γ )φ(t) ≤ ,

dφ
′′
(t) – cφ′

(t) + γφ(t) – (b + d)φ(t) ≤ ,
(.)

{
dφ

′′
 (t) – cφ′

(t) + aφ(t)
f (φ(t)) (N – φ(t) – φ(t)) – (d + γ )φ(t) ≥ ,

dφ
′′
(t) – cφ′

(t) + γφ(t) – (b + d)φ(t) ≥ .
(.)

The functions φ, φ also satisfy the following conditions:

(B)  ≤ (φ,φ) ≤ (φ,φ) ≤ M = (M, M);
(B) limt→–∞(φ(t),φ(t)) = (, ), limt→∞(φ(t),φ(t)) = limt→∞(φ(t),φ(t)) = (I∗, R∗);
(B) φ

′
i(t+) ≤ φ

′
i(t–), φ′

i(t
–) ≤ φ′

i(t
+), t ∈ R, i = , .

Let D = (d +γ )R and dm = max{d, d}. When c > c∗ = 
√

dmD, the equation dmλ – cλ+
D =  has two roots

λ =
c –

√
c – dmD
dm

, λ =
c +

√
c – dmD
dm

,

and there exists λ such that dmλ
 – cλ + D ≤  when λ < λ < λ.

We can choose appropriate εi >  (i = , . . . , ), satisfying the following conditions:

ε < ε, ε < ε < I∗,

γ ε < ε(b + d), γ ε < ε(b + d),
(.)

and ε and ε also satisfy the following inequalities

M

I∗ <
ε

M – I∗ ,
M

R∗ <
ε

M – R∗ . (.)

Next, we construct a pair of upper and lower solutions for system (.). In consideration
of the above constant εi satisfying (.) and (.), we now define two continuous functions
φ(t) = (φ(t),φ(t)) and φ(t) = (φ(t),φ(t)) for all t ∈R as follows:

φ =

⎧
⎪⎨

⎪⎩

I∗eλt , t ≤ t,
M, t < t ≤ t,
I∗ + εe–λt , t > t,

φ =

⎧
⎪⎨

⎪⎩

R∗eλt , t ≤ t,
M, t < t ≤ t,
R∗ + εe–λt t > t,

φ =

{
, t ≤ t,
I∗ – εe–λt , t > t,

φ =

{
, t ≤ t,
R∗ – εe–λt , t > t,
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where

t = t =

λ

ln
M

I∗ =

λ

ln
M

R∗ ,

t =

λ

ln
ε

M – I∗ , t =

λ

ln
ε

M – R∗ ,

t =

λ

ln
ε

I∗ , t =

λ

ln
ε

R∗ ,

and λ ∈ (,λ) is a constant. It is obvious that t < t, t < t by (.). Clearly, φ, φ, φ,
φ satisfy (B), (B), (B). Next, we prove that φ(t), φ(t) are upper and lower solutions of
system (.) under some suitable conditions.

Lemma . If  < R <  + b+d
γ

, then φ = (φ,φ) is an upper solution of system (.).

Proof () For φ(t),

N(φ) = dφ
′′
 (t) – cφ′

(t) +
aφ(t)

f (φ(t))
(
N – φ(t) – φ(t)

)
– (d + γ )φ(t).

Case . When t ≤ t, φ(t) = I∗eλt , and

N(φ) = I∗eλt
(

dλ

 – cλ +

a(N – I∗eλt – φ(t))
f (I∗eλt)

– (d + γ )
)

≤ I∗eλt(dλ

 – cλ + (d + γ )(R – )

)

≤ I∗eλt(dmλ
 – cλ + D

)
= .

Case . When t < t ≤ t, φ(t) = M, and

N(φ) =  –  +
aM

f (M)
(
N – M – φ(t)

)
– (d + γ )M

≤ M

(
aM

f ()
– (d + γ )

)

= M(d + γ )
(

Rγ

γ + b + d
– 

)

≤ .

Case . When t > t, φ(t) = I∗ + εe–λt , and

N(φ) = dελ
e–λt + cελe–λt – (d + γ )

(
I∗ + εe–λt)

+
a(I∗ + εe–λt)
f (I∗ + εe–λt)

(
N – I∗ – εe–λt – R∗ + εe–λt)

≤ εdλ
e–λt + cελe–λt – (d + γ )

(
I∗ + εe–λt)

+
a(I∗ + εe–λt)

f (I∗)

(
d + γ

a
f
(
I∗) – (ε – ε)e–λt

)

≤ e–λt
(

εdλ
 + cελ –

a(I∗)
f (I∗)

(ε – ε)
)

.



Ma et al. Advances in Difference Equations  (2016) 2016:252 Page 11 of 19

Defining

L(λ) = εdλ
 + cελ –

a(I∗)
f (I∗)

(ε – ε),

by (.) we have L() = – a(I∗)
f (I∗) (ε – ε) < . Thus, there exists λ∗

 >  such that L(λ) ≤ 
for all λ ∈ (,λ∗

 ), that is, N(φ) ≤  for all λ ∈ (,λ∗
 ).

() For φ(t),

N(φ) = dφ
′′
(t) – cφ′

(t) + γφ(t) – (b + d)φ(t).

Case . When t ≤ t, φ = R∗eλt , and

N(φ) = R∗eλt(dλ

 – cλ

) ≤ R∗eλt(dmλ
 – cλ + D

) ≤ .

Case . When t < t ≤ t, φ(t) = M, and

N(φ) =  –  + γφ(t) – (b + d)M ≤ γ M – (b + d)M = .

Case . When t > t, φ = R∗ + εe–λt , and

N(φ) = εdλ
e–λt + cελe–λt + γ

(
I∗ + εe–λt) – (b + d)

(
R∗ + εe–λt)

= e–λt(εdλ
 + cελ + γ ε – (b + d)ε

)
.

Defining

L(λ) = εdλ
 + cελ + γ ε – (b + d)ε,

by the third inequality of (.) we have L() = γ ε – (b + d)ε < . Thus, there exists λ∗
 > 

such that L(λ) ≤  for all λ ∈ (,λ∗
), that is, N(φ) ≤  for all λ ∈ (,λ∗

). Consequently,
choosing  < λ < min{λ∗

 ,λ∗
}, we get that φ is an upper solution of system (.). �

Lemma . If R > , then φ = (φ,φ) is a lower solution of system (.).

Proof () For φ(t),

N(φ) = dφ
′′
 (t) – cφ′

(t) +
aφ(t)

f (φ(t))
(
N – φ(t) – φ(t)

)
– (d + γ )φ(t).

Case . When t ≤ t, φ(t) = , and N(φ) =  ≥ .
Case . When t > t, φ(t) = I∗ – εe–λt , and

N(φ) = –εdλ
e–λt – cελe–λt – (d + γ )

(
I∗ – εe–λt)

+
a(I∗ – εe–λt)
f (I∗ – εe–λt)

(
N – I∗ + εe–λt – R∗ – εe–λt)

≥ –εdλ
e–λt – cελe–λt – (d + γ )

(
I∗ – εe–λt)
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+
a(I∗ – εe–λt)

f (I∗)

(
d + γ

a
f
(
I∗) + (ε – ε)e–λt

)

≥ e–λt
(

–εdλ
 – cελ +

a(I∗ – εe–λ(t–t)e–λt )
f (I∗)

(ε – ε)
)

≥ e–λt
(

–εdλ
 – cελ +

a(I∗ – εe–λt )
f (I∗)

(ε – ε)
)

.

Defining

L(λ) = –εdλ
 – cελ +

a(I∗ – εe–λt )
f (I∗)

(ε – ε),

by (.) we have L() = a(I∗–ε)
f (I∗) (ε – ε) > . Thus, by the continuity of L(λ) in λ, there

exists λ∗
 >  such that L(λ) ≥  for all λ ∈ (,λ∗

), that is, N(φ) ≥  for all λ ∈ (,λ∗
).

() For φ(t),

N(φ) = dφ
′′
(t) – cφ′

(t) + γφ – (d + b)φ.

Case . When t ≤ t, φ(t) = , and N(φ) =  –  + γφ ≥ .
Case . When t > t, φ(t) = R∗ – εe–λt , and

N(φ) = –εdλ
e–λt – cελe–λt + γ

(
I∗ – εe–λt) – (b + d)

(
R∗ – εe–λt)

= e–λt(–εdλ
 – cελ – γ ε + ε(b + d)

)
.

Defining

L(λ) = –εdλ
 – cελ – γ ε + ε(b + d),

we have L() = –γ ε +ε(b+d) > . Thus, there exists λ∗
 >  such that L(λ) ≥  for all λ ∈

(,λ∗
), that is, N(φ) ≥  for all λ ∈ (,λ∗

). Consequently, choosing  < λ < min{λ∗
,λ∗

},
we get that φ is an upper solution of system (.). �

Next, we give our main results for the existence of traveling wave solutions for system
(.).

Choose two positive constants β ≥ d + γ + aNLM
f () + aM

f () , β ≥ b + d, and define H =
(H, H) : C(R,R) → C(R,R) by

Hi(φ,φ)(t) = hi(φ,φ)(t) + βiφi(t), i = , ,∀(
φ(t),φ(t)

) ∈ C
(
R,R).

Set C[,M](R,R) = {ϕ ∈ C(R,R),  ≤ ϕ(t) ≤ M,∀t ∈ R} and M = {M, M}. Then system
(.) can be rewritten as

dφ
′′
 (t) – cφ′

(t) – βφ(t) + H(φ,φ)(t) = ,

dφ
′′
 (t) – cφ′

(t) – βφ(t) + H(φ,φ)(t) = .
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Define

λ =
c –

√
c + βd

d
, λ =

c +
√

c + βd

d
,

λ =
c –

√
c + βd

d
, λ =

c +
√

c + βd

d
.

(.)

Define F = (F, F) : C[,M](R,R) → C(R,R) by

Fi(φ,φ)(t) =


di(λi – λi)

[∫ t

–∞
eλi(t–s)Hi(φ,φ)(s) ds +

∫ ∞

t
eλi(t–s)Hi(φ,φ)(s) ds

]

,

i = , . Then Fi(φ,φ) satisfies

diF ′′
i (φ) – cF ′

i (φ) – βiFi(φ) + Hi(φ) = , i = , .

Let ξ >  and ξ < min{–λ, –λ}. Denote Bξ (R,R) = {φ ∈ C[,M](R,R) : |φ|ξ < ∞}, where

|φ|ξ = sup
t∈R

∣
∣φ(t)

∣
∣e–ξ |t|

with | · | denoting the maximum norm in R
. It is easy to prove that Bξ (R,R) is a Banach

space.

Lemma . If (A) holds, then
() H(ω,φ) ≤ H(φ,φ) ≤ H(φ,ω),
() H(ω,ω) ≤ H(φ,φ),

where t ∈R, (ω,ω), (φ,φ) ∈ C[,M](R,R),  ≤ ωi ≤ φi ≤ Mi, i = , .

Proof The proof can given by direct calculations, so we omit it. �

From Lemma . it is easy to obtain the following conclusion.

Lemma . If (A) holds, then
() F(ω,φ) ≤ F(φ,φ) ≤ F(φ,ω),
() F(ω,ω) ≤ F(φ,φ),

where t ∈R, (ω,ω), (φ,φ) ∈ C[,M](R,R),  ≤ ωi ≤ φi ≤ Mi, i = , .

Lemma . The mapping F = (F, F) : C[,M](R,R) → C(R,R) is continuous with re-
spect to the norm | · |ξ in Bξ (R,R).

Proof First, we prove that H = (H, H) : C[,M](R,R) → C(R,R) is continuous with re-
spect to the norm | · |ξ in Bξ (R,R).

For any ω = (ω,ω) and ϕ = (ϕ,ϕ) ∈ C[,M](R,R) that satisfy |ω – ϕ|ξ = supt∈R |ω(t) –
ϕ(t)|e–ξ |t| < δ, we have

∣
∣H(ω,ω)(t) – H(ϕ,ϕ)(t)

∣
∣e–ξ |t|

=
∣
∣h(ω,ω)(t) + βω – h(ϕ,ϕ)(t) – βϕ

∣
∣e–ξ |t|
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=
∣
∣
∣
∣

aω

f (ω)
(N – ω – ω) –

aϕ

f (ϕ)
(N – ϕ – ϕ) +

(
β – (d + γ )

)
(ω – ϕ)

∣
∣
∣
∣e

–ξ |t|

=
∣
∣
∣
∣a

(ωf (ϕ) – ϕf (ω))(N – ϕ – ϕ)
f (ϕ)f (ω)

–
aω(ω – ϕ)

f (ω)
–

aω(ω – ϕ)
f (ω)

+ (β – d – γ )(ω – ϕ)
∣
∣
∣
∣e

–ξ |t|

≤
[

aN
|ω – ϕ|

f (ω)
+ aN

ϕ|f (ϕ) – f (ω)|
f (ω)f (ϕ)

+
(

aM

f ()
+ β – d – γ

)

|ω – ϕ|

+
aM

f ()
|ω – ϕ|

]

e–ξ |t|

≤
[

aN
f ()

|ω – ϕ| +
aNML

f ()
|ω – ϕ| +

(
aM

f ()
+ β – d – γ

)

|ω – ϕ|

+
aM

f ()
|ω – ϕ|

]

e–ξ |t|

≤
(

aN
f ()

+
aNML

f ()
+ 

aM

f ()
+ β – d – γ

)
∣
∣ω(t) – ϕ(t)

∣
∣
ξ
,

∣
∣H(ω,ω)(t) – H(ϕ,ϕ)(t)

∣
∣e–ξ |t|

=
∣
∣h(ω,ω)(t) + βω – h(ϕ,ϕ)(t) – βϕ

∣
∣e–ξ |t|

≤ [
γ |ω – ϕ| +

(
β – (b + d)

)|ω – ϕ|
]
e–ξ |t|

≤ (
γ + β – (b + d)

)∣
∣ω(t) – ϕ(t)

∣
∣
ξ
.

Now, for any ε > , choose δ = min{ ε
aN
f () + aNML

f ()
+ aM

f () +β–d–γ
, ε

γ +β–(b+d) }. If |ω(t) – ϕ(t)|ξ < δ,
then we have

∣
∣Hi(ω,ω)(t) – Hi(ϕ,ϕ)(t)

∣
∣e–ξ |t| < ε, i = , .

So H is continuous with respect to the norm | · |ξ in Bξ (R,R).
Next, we prove that F = (F, F) : C[,M](R,R) → C(R,R) is continuous with respect to

the norm | · |ξ in Bξ (R,R). When t ≥ ,

∣
∣F(ω,ω)(t) – F(ϕ,ϕ)(t)

∣
∣e–ξ |t|

=
∣
∣
∣
∣


d(λ – λ)

[∫ t

–∞
eλ(t–s)(H(ω,ω) – H(ϕ,ϕ)

)
ds

+
∫ ∞

t
eλ(t–s)(H(ω,ω) – H(ϕ,ϕ)

)
ds

]∣
∣
∣
∣e

–ξ |t|

≤ 
d(λ – λ)

[∫ t

–∞
eλ(t–s)∣∣H(ω,ω) – H(ϕ,ϕ)

∣
∣ds

+
∫ ∞

t
eλ(t–s)∣∣H(ω,ω) – H(ϕ,ϕ)

∣
∣ds

]

e–ξ |t|

=


d(λ – λ)

[∫ 

–∞
eλ(t–s)eξ |s|∣∣H(ω,ω) – H(ϕ,ϕ)

∣
∣e–ξ |s| ds

+
∫ t


eλ(t–s)eξ |s|∣∣H(ω,ω) – H(ϕ,ϕ)

∣
∣e–ξ |s| ds
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+
∫ ∞

t
eλ(t–s)eξ |s|∣∣H(ω,ω) – H(ϕ,ϕ)

∣
∣e–ξ |s| ds

]

e–ξ |t|

≤ 
d(λ – λ)

[∫ 

–∞
eλ(t–s)e–ξ s ds +

∫ t


eλ(t–s)eξ s ds +

∫ ∞

t
eλ(t–s)eξ s ds

]

· ∣∣H(ω,ω) – H(ϕ,ϕ)
∣
∣
ξ
e–ξ |t|

=


d(λ – λ)

[
(λ – λ)eξ t

(ξ – λ)(λ – ξ )
+

ξeλt

λ
 – ξ 

]

e–ξ t∣∣H(ω,ω) – H(ϕ,ϕ)
∣
∣
ξ

≤ 
d(λ – λ)

[
λ – λ

(ξ – λ)(λ – ξ )
+

ξ

λ
 – ξ 

]
∣
∣H(ω,ω) – H(ϕ,ϕ)

∣
∣
ξ
.

When t < ,

∣
∣F(ω,ω)(t) – F(ϕ,ϕ)(t)

∣
∣e–ξ |t|

≤ 
d(λ – λ)

[
λ – λ

–(ξ + λ)(λ + ξ )
+

ξ

λ
 – ξ 

]
∣
∣H(ω,ω) – H(ϕ,ϕ)

∣
∣
ξ
.

Hence, F is continuous with respect to the norm | · |ξ in Bξ (R,R). Using similar argu-
ments, we can show that F is continuous with respect to the norm | · |ξ in Bξ (R,R). Then
F is continuous with respect to the norm | · |ξ in Bξ (R,R). �

Define the set

� =
{
φ ∈ C[,M]

(
R,R) : φ ≤ φ ≤ φ

}
,

where φ and φ are a pair of upper and lower solutions satisfying (B), (B), (B). Obviously,
� is nonempty. Moreover, it is easy to check that � is a closed, bounded, and convex subset
of Bξ (R,R).

Lemma . The operator F = (F, F) maps � into �.

Proof For any (φ,φ) ≤ (φ,φ) ≤ (φ,φ), it follows from Lemma . that

F(φ,φ) ≤ F(φ,φ) ≤ F(φ,φ) ≤ F(φ,φ) ≤ F(φ,φ),

F(φ,φ) ≤ F(φ,φ) ≤ F(φ,φ).

So, it suffices to prove that

F(φ,φ) ≥ φ, F(φ,φ) ≤ φ,

F(φ,φ) ≥ φ, F(φ,φ) ≤ φ.

In fact,

F(φ,φ)

=


d(λ – λ)

[∫ t

–∞
eλ(t–s)H(φ,φ)(s) ds +

∫ ∞

t
eλ(t–s)H(φ,φ)(s) ds

]
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=


d(λ – λ)

[∫ t

–∞
eλ(t–s) +

∫ ∞

t
eλ(t–s)

]

H(φ,φ)(s) ds

≤ 
d(λ – λ)

[∫ t

–∞
eλ(t–s) +

∫ ∞

t
eλ(t–s)

]
[
–φ

′′(t) + cφ′
(t) + βφ

]
ds

= φ(t) +


d(λ – λ)

( k∑

j=

eλ(t–tj) +
m∑

j=k+

eλ(t–tj)

)
(
φ

′

(
t+
j
)

– φ
′

(
t–
j
))

≤ φ(t).

Furthermore, since F(φ,φ)(t) and φ(t) are both continuous for t ∈ R, we could take
t → t+

k in the inequality into F(φ,φ)(t+
k ) for all t+

k ∈ . Therefore, F(φ,φ) ≤ φ for
all t ∈ R. Using similar arguments, we can obtain that F(φ,φ) ≤ φ, F(φ,φ) ≥ φ,
F(φ,φ) ≤ φ in R. �

Lemma . The operator F = (F, F) : � → � is compact with respect to the norm | · |ξ in
Bξ (R,R).

Proof The proof of Lemma . is similar to that of [], Lemma ., so we also omit the
proof. �

Combining Lemmas .-. with the Schauder fixed point theorem, we get that there
exists a fixed point φ = (φ,φ) of F that is a solution of system (.), that is, F(φ,φ) =
(φ,φ).

Next, we verify the boundary conditions (.). Since (φ,φ) ⊂ �, we have

(, ) ≤ (φ,φ) ≤ (φ,φ) ≤ (φ,φ) ≤ (M, M).

Hence, by (B) we obtain

lim
t→–∞

(
φ(t),φ(t)

)
= (, ), lim

t→∞
(
φ(t),φ(t)

)
=

(
I∗, R∗).

So the fixed point (φ,φ) satisfies the asymptotic boundary conditions (.). Thus, φ =
(φ(t),φ(t)) is a traveling wave solution of system (.). Then we immediately have the
following conclusion.

Theorem . If system (.) has a pair of upper and lower solutions φ = (φ,φ), φ =
(φ,φ) satisfying (B), (B), (B), then system (.) admits a traveling wave solution con-
necting E = (, ) and E∗ = (I∗, R∗).

By Lemmas . and . and Theorem . we immediately obtain the following conclu-
sion.

Theorem . Let  < R <  + b+d
γ

. Then, for every c > c∗, there exists a traveling wave
solution of system (.) with speed c connecting (, ) and (I∗, R∗).

5 Sensitivity analysis
To illustrate the theoretical results obtained in this paper, we give some numerical simula-
tions. For simplicity, we take the function f (I) of the form  +βI . It is easy to prove that this
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function satisfies conditions (A)-(A). Consider system (.) under the Neumann bound-
ary conditions as follows:

∂I
∂n

=
∂R
∂n

= , t > , x = , .

Fix the parameter values a = ., β = ., d = ., γ = ., b = . and change the popula-
tion size N .

Example . Fix N = .. Then R = . < . Hence, system (.) has only a stable disease-
free equilibrium E = (, ); see Figure .

Example . Fix N = . Then R =  > . Hence, system (.) has only a stable disease
equilibrium E∗ = (., .); see Figure .

In order to illustrate the existence of travelling wave solution, we consider the following
piecewise functions as initial conditions:

(
I(, x), R(, x)

)
=

{
E∗, x ∈ [–, ),
E, x ∈ [, ],

where E = (, ), and E∗ is as in Lemma ..

Figure 1 Numerical simulations of system (1.3) with parameters of Example 5.1 and initial conditions
I(0, x) = R(0, x) = 1.6. The disease-free steady state is globally asymptotically stable.

Figure 2 Numerical simulations of system (1.3) with parameters of Example 5.2 and initial conditions
I(0, x) = R(0, x) = 0.6. The disease steady state is globally asymptotically stable.
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Figure 3 The travelling wave observed in system (1.3) with parameters d1 = 0.04, d2 = 0.02, a = 0.8,
N = 2.1, d = 0.4, γ = 0.3, b = 0.1, β = 0.5.

Example . Set d = ., d = ., a = ., N = ., d = ., γ = ., b = ., β = ..
Then  < R = . <  + b+d

γ
= .. It follows from Theorem . that system (.) exists a

travelling wave solution with speed c > c∗ connecting (, ) and (., .); see Figure .

6 Summary and discussion
The basic reproduction number R is the threshold of whether an endemic disease per-
sists or not. In this paper, an SIRS model with diffusion is studied. We make a more general
assumption that the infection force is aI

f (I) , which is satisfied with (A)-(A), and then our
conclusions are fit for a wider range. The existence of equilibria and their local stability
and global stability are established. We show that the disease-free equilibrium E is locally
asymptotically stable when R < , whereas the endemic steady state E∗ is local asymptot-
ically stable when R > . Furthermore, the E is globally asymptotically stable if R ≤ ,
that is, the disease always dies out eventually from the biological point of view. The state
E∗ is globally asymptotically stable if R > , which implies that the disease will persist. Ac-
cording to the stability results, we can design the intervention strategies to guard against
some endemic diseases. In the case of R > , some corresponding parameters are changed
so that the R is below one.

Furthermore, combining the technique of upper-lower solutions with the Schauder fixed
point theorem, we obtain the existence of traveling wave solution of system (.) con-
necting the disease free steady state E and the endemic steady state E∗, provided that
 < R <  + b+d

γ
and the spatial velocity of infection c is greater than the minimal wave

speed c∗ = max{√
dD, 

√
dD}, which depends on the diffusion parameters d and d.

The conclusion indicates that when epidemic spreading happens, the spatial velocity of
infection can be influenced by diffusion of infectious and recovered individuals. These
theoretical results may help to provide some prediction and prevention guide of infec-
tious diseases.
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