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Abstract
We propose a class of second and third order techniques based on off-step
discretizations for a general non-linear ordinary differential equation of order four,
subject to the Dirichlet and Neumann boundary conditions. Our approach uses only
three grid points and involves the construction of a quasi-variable mesh. This type of
a mesh is framed using a mesh ratio parameter η > 0 whose value is chosen in
accordance with the occurrence of boundary layer in the problem, and varies with
the number of grid points taken. The third order technique reduces to a fourth order
one when taken with η = 1. The stability and convergence analysis of the techniques
are discussed over a model problem. Computational results obtained upon the
application to seven linear as well as non-linear problems endorse the theoretically
claimed accuracies. We also provide a comparison with the computational results
using approaches of other authors, which shows that the proposed methods are
better.
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1 Introduction
Consider the following boundary value problem (BVP):

u()(x) = f
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
, a < x < b, (.)

subject to the prescribed natural boundary conditions:

u(a) = A, u′(a) = B, u(b) = A, u′(b) = B, (.)

where A, B, A, and B are real constants and –∞ < a ≤ x ≤ b < ∞.
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The equation (.) represents general form of a fourth order non-linear ordinary dif-
ferential equation (ODE), prescribed along with the Dirichlet and Neumann boundary
conditions viz. (.). These conditions are also referred to as the boundary conditions of
the first kind. Fourth order BVPs represent various physical problems that are related to
elastic stability theory. These appear in the modeling of viscoelastic inelastic flows [],
plate deflection theory [], and deformation of beams, arches, load bearing members like
street lights, and robotic arms in multi-purpose engineering systems where elastic mem-
bers serve as key members for shedding and transmitting loads [, ].

Another example of physical importance is the following fourth order ODE:

u()(x) – λu(x)u′′′(x) = , (.)

subject to the conditions (.). This arises from the time-independent Navier-Stokes equa-
tions for the axisymmetric flow of an incompressible fluid contained between infinite disks
which occupy planes z = –d and z = d. The disks are porous and fluid is injected or ex-
tracted normally with velocity A at z = –d and A at z = d. Here, λ is the kinematic vis-
cosity (Elcrat []).

Thus, due to the vast physical applications of fourth order BVPs, various techniques have
been proposed by researchers to solve these problems. On one hand, equations of type (.)
with boundary conditions of the second kind are transformable to coupled second order
equations [–], such type of a reduction is not possible with first kind boundary condi-
tions. Apart from these, a quartic non-polynomial spline approach has been proposed by
researchers for the solution of the fourth [] and sixth order [] ODEs with second kind
boundary conditions. In the past, several approaches have been sought for solving fourth
order BVPs with first kind boundary conditions. These include multi-derivative meth-
ods proposed by Twizell and Tirmizi [], collocation algorithms based on interpolating
and approximating subdivision schemes by Ma and Silva [], sinc collocation method by
Nurmuhammad et al. [], homotopy perturbation technique for a special fourth order
BVP by Momani and Noor [] and finite difference method by Usmani [], and Chen
and Li []. Some of the recently proposed approaches are the quintic spline by Akram
and Amin [], the septic spline by Akram and Naheed [], the Adomian decomposi-
tion by Kelesoglu [], and subdivision schemes based on collocation algorithms by Ejaz
et al. []. However, all these techniques are applicable to only a linear counterpart of the
problem (.)-(.). For the non-linear case, an iterative method was proposed by Agarwal
and Chow [] in . In the year , Mohanty [] developed a fourth order finite dif-
ference technique for solving one-dimensional non-linear biharmonic problem of the first
kind. Variational iteration and homotopy perturbation techniques were proposed by Noor
and Mohyud-Din [], Choobbasti et al. [] and Mirmoradi et al. [] in the years ,
 and , respectively. In , Talwar and Mohanty [] framed a finite difference
method for the solution of (.)-(.) using a uniform mesh size h > .

However, a uniform grid does not always result in stable solutions when applied to
the singularly perturbed boundary value problems (SPBVPs) [, ]. Formation of sharp
boundary layers in numerical methods when ε, the coefficient of highest order derivative,
approaches to zero creates trouble when used in conjunction with many classical tech-
niques. During the past decades, many approximate methods have been developed and
refined, including the method of averaging, methods of matched asymptotic expansion
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and multiple scales. In , Tirmizi et al. [] developed a non-polynomial spline tech-
nique for a second order self-adjoint SPBVP. In , Jiaqi [] proposed a boundary layer
correction technique for the linear fourth order SPBVPs. The recently proposed spline
techniques of Akram [, ] have also been successfully applied to linear problems with
boundary layer. To the best of the authors’ knowledge, no quasi-variable mesh methods
of order two and three for the solution of fourth order non-linear ODE with boundary
conditions of the first kind have been discussed in the literature so far.

In this article, with three grid points, we have derived two new methods of order two
and three for the solution of the BVP (.)-(.) using a quasi-variable mesh. We use step-
size hk = xk – xk– > , where k refers to the grid point number, with subsequent step-size
being hk+ = ηhk , where η is a positive constant whose value is chosen in accordance with
the occurrence of boundary layer. This approach enables a denser grid in the boundary
layer region i.e. when ε is very small, and hence successfully applicable to SPBVPs. We use a
combination of u(x) and its derivative u′(x) at each grid point, thereby obtaining the values
of u′(x) as a by-product. Since we ultimately need to solve the coupled non-linear system
of equations at each mesh point, the iterative methods pertaining to the complicated block
structure so obtained are used. We have solved the linear systems using Gauss-Seidel and
Gauss-Jacobi methods, and non-linear systems by the generalized Newton method ([–
]). Our finite difference techniques also show highly accurate results when applied to
coupled non-linear fourth order BVPs with boundary conditions of the first kind. The
numerical illustrations for the same are given below in this article.

This paper is organized into five sections: In Section , we present and derive our second
and third order quasi-variable mesh techniques, which are reducible to second and fourth
order techniques, respectively, upon setting the parameter η = . In Section , we discuss
the convergence and stability analysis of the fourth order technique applied to a model
problem. Section  comprises the numerical illustrations of the methods when applied to
seven fourth order BVPs of the type (.)-(.). All these problems are of physical interest,
as also discussed in this section. In Section , we give some concluding remarks about this
article.

2 Finite difference methods and derivation
For the sake of simplicity, let us take the domain of interest to be the closed interval [, ].
We divide this interval into N +  parts by introducing mesh points:  = x < x < · · · <
xN+ = , with hk+ = xk+ – xk > , k = ()N , being the step-size in the (k + )th interval,
and a parameter η = hk+

hk
> , k = ()N .

Then

 = xN+ – x = (xN+ – xN ) + (xN – xN–) + · · · + (x – x) + (x – x)

= hN+ + hN + · · · + h + h =
(
ηN + ηN– + · · · + η + 

)
h.

This yields h = /( + η + η + · · · + ηN ), which is the first step length, and the subsequent
step lengths can be determined using hk+ = ηhk for k = ()N . Let the off-step grid points
be given by xk+ 


= xk + ηhk

 for k = ()N , and xk– 


= xk – hk
 for k = ()N + .

Let uk = u(xk), u′
k = u′(xk) for k = ()N + , and the corresponding notations hold

true for higher order derivatives of u as well. Let fk = f (xk , uk , u′
k , u′′

k , u′′′
k ) and fk± 


=
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f (xk± 


, uk± 


, u′
k± 


, u′′

k± 


, u′′′
k± 


) for k = ()N . Throughout the rest of this article, we vary

k = ()N , unless otherwise specified. Clearly, at each grid point xk , (.) can be written as

u()
k = fk . (.)

Let us now define

u′′
k =


η( + η)h

k

[
uk+ – ( + η)uk + ηuk–

]
, (.a)

u′′′
k =


η( + η)h

k

[
uk+ –

(
 – η)uk – ηuk–

]
–


ηh

k
u′

k , (.b)

u′′
k =


η( + η)hk

[
u′

k+ –
(
 – η)u′

k – ηu′
k–

]
, (.c)

u′′′
k =


η( + η)h

k

[
u′

k+ – ( + η)u′
k + ηu′

k–
]
. (.d)

Expanding each of the equations (.a)-(.d) using a Taylor series expansion, we obtain
the following:

u′′
k = u′′

k +
(η – )hk


u′′′

k +
( – η + η)h

k


u()
k +

(– + η – η + η)h
k


u()

k

+
( – η + η – η + η)h

k


u()
k

+
(– + η – η + η – η + η)h

k
,

u()
k + O

(
h

k
)
, (.a)

u′′′
k = u′′′

k +
(η – )hk


u()

k +
( – η + η)h

k


u()
k

+
(– + η – η + η)h

k


u()
k +

( – η + η – η + η)h
k


u()

k + O
(
h

k
)
, (.b)

u′′
k = u′′

k +
ηh

k


u()
k +

η(η – )h
k


u()

k +
η( – η + η)h

k


u()
k

+
η(– + η – η + η)h

k


u()
k + O

(
h

k
)
, (.c)

u′′′
k = u′′′

k +
(η – )hk


u()

k +
( – η + η)h

k


u()
k +

(– + η – η + η)h
k


u()

k

+
( – η + η – η + η)h

k


u()
k + O

(
h

k
)
. (.d)

2.1 Second order technique
To discretize the left hand side of (.), let us assume

h
k fk = h

k u()
k = ah

ku′′
k + ah

ku′′′
k + ah

ku′′
k + ah

ku′′′
k + Tk , (.)

where a, a, a, a are parameters to be suitably determined and Tk is the truncation error.
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Substituting values from (.a)-(.d) in (.), and further equating to zero the coeffi-
cients of h

k , h
k , h

k , and h
k , so as to obtain Tk = O(h

k ), we get

a = –
( – η + η)

η( + η) , a =
(η – )( + η + η)

η( + η) ,

a =
( – η + η)

η( + η) , a =
( – η)
( + η) .

Since fk is a function of u′′
k and u′′′

k , we need second order approximations for them. It
can be seen from (.c) that u′′

k of (.c) is a second order approximation to u′′
k . Further,

eliminating the coefficient of hk from (.b) and (.d), we obtain the second order ap-
proximation to u′′′

k given by

u
′′′
k =


η( + η)h

k

[
uk+ –

(
 – η)uk – ηuk–

]

–


η( + η)h
k

[
u′

k+ + ( + η)u′
k + ηu′

k–
]
. (.)

Now, define

f k = f
(
xk , uk , u′

k , u′′
k , u

′′′
k
)
. (.)

Thus, we obtain the discretization

–
( – η + η)

h
kη( + η) u′′

k +
(η – )( + η + η)

hkη( + η) u′′′
k +

( – η + η)
h

kη( + η) u′′
k +

( – η)
hk( + η) u′′′

k

= f k + Tk , (.a)

where Tk = O(h
k).

Further, eliminating u′′′
k from (.b) and (.d), and using (.b) and (.d), we obtain


[
uk+ –

(
 – η)uk – ηuk–

]
– ηhk

[
u′

k+ + ( + η)u′
k + ηu′

k–
]

= O
(
h

k
)
. (.b)

Varying k over internal grid points  to N , equations (.a) and (.b) together form a
system of N equations in N unknowns viz. u, u, . . . , uN , u′

, u′
, . . . , u′

N , and hence can
be solved for a unique solution. We observe that for the uniform mesh case, i.e. when η = ,
the discretization (.a)-(.b) retains its order of accuracy.

2.2 Third order technique
To obtain the third order discretization to (.), let us consider for each k:

h
k
(
fk + h

kαf ′′
k
)

= h
k u()

k + αh
k u()

k

= bh
ku′′

k + bh
ku′′′

k + bh
ku′′

k + bh
ku′′′

k + T ()
k , (.)

where α, b, b, b, and b are the parameters to be suitably determined, and T ()
k is the

truncation error. Proceeding in a similar manner to the case of the second order technique,
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using equations (.a)-(.d), we obtain the following values of parameters consistent with
T ()

k = O(h
k):

b = –
( – η + η)

η( + η) , b =
(η – )( + η + η)

η( + η) , b =
( – η + η)

η( + η) ,

b =
( – η)
( + η) , and α =

– + η – η


.

(.)

Also, simply using the Taylor series expansions, it is easy to obtain

f ′′
k =


η( + η)h

k

[
fk+ 


– ( + η)fk + ηfk– 



]
+ O(hk). (.)

Using equations (.) and (.) in (.), we obtain

–
h

k( – η + η)
η( + η) u′′

k +
h

k(η – )( + η + η)
η( + η) u′′′

k

+
h

k( – η + η)
η( + η) u′′

k +
h

k( – η)
( + η) u′′′

k

= h
k

[
( – η + η)

η
fk +

(– + η – η)
η( + η)

(fk+ 


+ ηfk– 


)
]

+ O
(
h

k
)
. (.)

Now, eliminating u′′′
k from equations (.b) and (.d), we obtain


η( + η)h

k

[
–


η

(
uk+ –

(
 – η)uk – ηuk–

)
+ hk

(
u′

k+ + ( + η)u′
k + ηu′

k–
)
]

=
(η – )hk


fk +

( – η + η)h
k


f ′
k + O

(
h

k
)
. (.)

Again, with the Taylor series expansions, it is easy to obtain

f ′
k =


hkη( + η)

[
fk+ 


–

(
 – η)fk – ηfk– 



]
+ O

(
h

k
)
. (.)

Using equation (.) in (.), we obtain the following:


η( + η)h

k

[
–


η

(
uk+ –

(
 – η)uk – ηuk–

)
+ hk

(
u′

k+ + ( + η)u′
k + ηu′

k–
)]

=
(η – )(η + η + )hk

η
fk +

(η – η + )hk

η( + η)
(
fk+ 


– ηfk– 



)
+ O

(
h

k
)
. (.)

Let us now define

ûk+ 


= uk +
ηhk


u′

k +
ηh

k


u′′
k , (.a)

ûk– 


= uk –
hk


u′

k +
h

k


u′′
k , (.b)

û′
k+ 


= u′

k +
ηhk


u′′

k +
ηh

k


u′′′
k , (.c)
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û′
k– 


= u′

k –
hk


u′′

k +
h

k


u′′′
k . (.d)

Using Taylor series expansions, it can easily be observed that (.a)-(.d) are O(h
k)

approximations.
We now aim to find third order approximation for u′′′

k+ 


. For this purpose, let us consider

u′′′
k+ 


= u′′′

k +
ηhk


u()

k +
ηh

k


u()
k + O

(
h

k
)

=


hk

[
cu′′

k + hkcu′′′
k + cu′′

k + hkcu′′′
k
]

+ T ()
k , (.)

where c, c, c, and c are parameters to be determined, and T ()
k is the truncation error.

Substituting values from (.a)-(.d), the values of the parameters so obtained, such that
T ()

k = O(h
k), are as follows:

c = –
( + η + η + η)

η( + η) , c =
– – η – η + η + η

η( + η) ,

c =
( + η + η + η)

η( + η) , c =
( + η)
( + η) .

Thus, we define the third order approximation:

û′′′
k+ 


= –

( + η + η + η)
hkη( + η) u′′

k +
(– – η – η + η + η)

η( + η) u′′′
k

+
( + η + η + η)

hkη( + η) u′′
k +

( + η)
( + η) u′′′

k

= u′′′
k+ 


+ O

(
h

k
)
. (.a)

In a similar manner to above, we find the following third order approximations:

û′′′
k– 


=

( + η + η + η)
hkη( + η) u′′

k +
( + η – η – η – η)

η( + η) u′′′
k

–
( + η + η + η)

hkη( + η) u′′
k +

η( + η)
( + η) u′′′

k

= u′′′
k– 


+ O

(
h

k
)
, (.b)

ˆ̂u′′′
k =

(– + η – η + η)
hkη( + η) u′′

k –
( – η – η – η + η)

η( + η) u′′′
k

–
(– + η – η + η)

hkη( + η) u′′
k +

( – η + η)
( + η) u′′′

k

= u′′′
k + O

(
h

k
)
. (.c)

Now, for finding third order approximation to u′′
k+ 


, let us consider

u′′
k+ 


= u′′

k +
ηhk


u′′′

k +
ηh

k


u()
k + O

(
h

k
)

= du′′
k + dhku′′′

k + du′′
k + T ()

k , (.)
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where d, d, and d are the parameters to be determined, and T ()
k is the truncation error.

Substituting values from (.a)-(.c) in (.), and comparing the coefficients of hk and
h

k so as to induce T ()
k = O(h

k), we obtain

d =



, d =
 + η


, d =




.

Thus, we define the O(h
k) approximation to u′′

k+ 


as follows:

û′′
k+ 


=




u′′
k +

( + η)


hku′′′
k +




u′′
k

= u′′
k+ 


+ O

(
h

k
)
. (.a)

With the same approach as above, we define the following third order approximations:

û′′
k– 


=




u′′
k –

( + η)


hku′′′
k +




u′′
k

= u′′
k– 


+ O

(
h

k
)
, (.b)

ˆ̂u′′
k = u′′

k +
( – η)


hku′′′

k – u′′
k

= u′′
k + O

(
h

k
)
. (.c)

Now, define

f̂k+ 


= f
(
xk+ 


, ûk+ 


, û′

k+ 


, û′′
k+ 


, û′′′

k+ 


)
, (.a)

f̂k– 


= f
(
xk– 


, ûk– 


, û′

k– 


, û′′
k– 


, û′′′

k– 


)
, (.b)

ˆ̂fk = f
(
xk , uk , u′

k , ˆ̂u′′
k , ˆ̂u′′′

k
)
. (.c)

Then we claim that the third order discretization to equation (.), subject to the condi-
tions (.), is given by

–
( – η + η)

h
kη( + η) u′′

k +
(η – )( + η + η)

hkη( + η) u′′′
k

+
( – η + η)

h
kη( + η) u′′

k +
( – η)
hk( + η) u′′′

k

=
( – η + η)

η

ˆ̂fk +
(– + η – η)

η( + η)
(f̂k+ 


+ ηf̂k– 


) + T ()

k , (.a)


η( + η)h

k

[
–


η

(
uk+ –

(
 – η)uk – ηuk–

)
+ hk

(
u′

k+ + ( + η)u′
k + ηu′

k–
)]

=
(η – )(η + η + )hk

η

ˆ̂fk +
(η – η + )hk

η( + η)
(
f̂k+ 


– η f̂k– 



)
+ T ()

k , (.b)

where T ()
k = O(h

k) and T ()
k = O(h

k).
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To verify this, we observe that by the Taylor series expansions in (.a)-(.c) and
using equations (.a)-(.d), (.a)-(.c), and (.a)-(.c), we get

f̂k+ 


= fk+ 


+ O
(
h

k
)
, (.a)

f̂k– 


= fk– 


+ O
(
h

k
)
, (.b)

ˆ̂fk = fk + O
(
h

k
)
. (.c)

Substituting values from (.a)-(.c) in (.a), and further using (.), we obtain
T ()

k = O(h
k). Similarly, using equations (.a)-(.c) in (.b), from (.), we obtain

T ()
k = O(h

k). It is easily observable that upon setting η = , the mesh becomes uniform,
and the discretization (.a)-(.b) reduces to fourth order. Note that upon varying
k = ()N , equations (.a)-(.b) form a system of N equations in N unknowns viz.
u, u, . . . , uN , u′

, u′
, . . . , u′

N .
The system of N equations so obtained in both the second and the third order methods

is easily solvable by numerical techniques, as discussed in Section .

3 Convergence and stability analysis
3.1 Convergence analysis
Let us consider a simple counterpart of the problem (.):

u()(x) = f (x),  < x < , (.)

subject to the boundary conditions:

u() = A, u() = A,

u′() = B, u′() = B.
(.)

On setting the parameter η = , the discretization (.a)-(.b) reduces to fourth order
finite difference scheme. Applying this scheme on the model problem (.)-(.), we obtain

(uk– – uk + uk+) +
h

(
u′

k– – u′
k+

)

=
–h


(fk+ 


+ fk– 


+ fk) + T ()

k , (.a)


h

(uk– – uk+) +
(
u′

k– + u′
k + u′

k+
)

=
h


(fk+ 


– fk– 


) + T ()

k , (.b)

where k = ()N , h is the uniform step-size, and T ()
k and T ()

k are the truncation errors of
O(h).

Denote by P = [, , ], L = [, , ], and M = [, , –] the N × N tridiagonal matrices.
Then the system of equations (.a)-(.b) can be reformulated in matrix form:

[
(L – I) h

 M

h M (L + I)

][
u
u′

]

=

[
d1
d2

]

+

[
T (1)

T (2)

]

,
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where u = [u, u, . . . , uN ]t and u′ = [u′
, u′

, . . . , u′
N ]t are N-dimensional solution vectors, d1

and d2 are vectors with right side functions along with boundary conditions as compo-
nents, T (1) and T (2) are the truncation error vectors and I is the identity matrix. Assuming
U and U′ to be the approximate solution vectors corresponding to u and u′, respectively,
the modified block successive over relaxation (BSOR) method for the scheme (.a)-(.b)
is given by (see [])

U(n+) =
–ωh


(L – I)–MU′(n) + ( – ω)U(n) + ω(L – I)–d1, (.a)

U′(n+) =
–ω

h
(L + I)–MU(n) + ( – ω)U′(n) + ω(L + I)–d2, (.b)

where n = , , , , . . . , refers to the iteration number, and ω and ω are the relaxation
parameters.

The associated SOR iteration matrix of (.a)-(.b) is given by

S =

[
( – ω)I –ωh

 (L – I)–M
–ω

h (L + I)–M ( – ω)I

]

.

The associated Jacobi iteration matrix is given by

J =

[
 –h

 (L – I)–M
–
h (L + I)–M 

]

.

From the SOR theory [], we know that if θ is an eigenvalue of J, then λ is an eigenvalue
of S, where they are related by the following equation:

(λ + ω – )(λ + ω – ) = ωωλθ.

To evaluate the value of θ , we let
[ v

v

]
be a partitioned eigenvector of J. Then we have

–h


(L – I)–Mv = θv,

–
h

(L + I)–Mv = θv.

Eliminating v from the above two equations, we get




(L – I)–M(L + I)–Mv = θv.

The rate of convergence of the BSOR method is dependent on the eigenvalues of the Jacobi
matrix J, which in turn are given by

τ


= θ,

τ denoting the eigenvalues of (L – I)–M(L + I)–M.
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Hence, we determine the optimal parameter ω = ω = ω as

ω =


 +
√

 – ( 
 )τ̄

,

where τ = S((L – I)–M(L + I)–M), ‘S’ being the spectral radius.
The convergence factor is given by

λ̄ = ω –  =
 –

√
 – ( 

 )τ̄

 +
√

 – ( 
 )τ̄

.

For convergence, we must have |λ̄| < , which gives the range  < τ̄ < 
 . Thus, we establish

the following result.

Theorem  The iterative method of the form (.a)-(.b) for the solution of u()(x) = f (x)
converges if  < τ̄ < 

 , where τ̄ = S((L – I)–M(L + I)–M), ‘S’ being the spectral radius,
L = [, , ], and M = [, , –] being the N × N tridiagonal matrices, and I being the N × N
identity matrix.

3.2 Stability analysis
An iterative method for (.a)-(.b) can be written as

U(n+) =



PU(n) +
h


MU′(n) + r, (.a)

U′(n+) =
–
h

MU(n) –



PU′(n) + r, (.b)

where U(n) and U′(n) are approximate solution vectors at the nth iteration and r and r are
right hand side vectors consisting of the boundary conditions.

The above iterative method can be written in matrix form:
[

U(n+)

U′(n+)

]

= G

[
U(n)

U′(n)

]

+ R,

where

G =

[

 P h

 M
–
h M –

 P

]

and

R =

[
r

r

]

.

The eigenvalues of P and M are  cos( nπ
(N+) ) and i cos( nπ

(N+) ), respectively, where n =
, , . . . , N . The characteristic equation of matrix G is given by

det

[

 P – ζ I h

 M
–
h M –

 P – ζ I

]

= ,
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where ζ are the eigenvalues of G given by

(
det

[
–


P – ζ I
])

×
(

det

[(



P – ζ I
)

+



M
(

–


P – ζ I
)–])

= . (.)

The proposed iterative method (.a)-(.b) is stable, if maximum absolute eigenvalues of
the iteration matrix are less than or equal to . It has been verified computationally that
all the eigenvalues are less than . Hence, the scheme is stable.

4 Numerical illustrations
For the uniform mesh case, we know that the step size h is equal to 

(N+) , thereby giving
O(h) = O(N–). However, for the quasi-variable mesh case, we need to appropriately chose
the parameter so as to retain the claimed order of convergence as the number of intervals
are varied, taking also into account the region of boundary layer, if any. As discussed in
Section , if h, h, . . . , hN+ are the step-sizes over the N +  sub-intervals of the domain
[, ], then let

Hmax = max
≤k≤N+

hk . (.)

Let us choose, without loss of generality, η > . Then it is easy to observe the following:

Hmax = hN+

= ηN h

≤ ηN

(N + )

<
ηN

N
. (.)

Thus, if we fix C = ηN to be a constant, then we obtain Hmax < C/N . Further, let h = {hk}N+
k= .

Then

‖h‖∞ = Hmax < C/N . (.)

Table 1 Problem 1: Absolute errors with C = 1

x K = 1 K = 10

Second order
(2.7a)-(2.7b)

Fourth order
(2.21a)-(2.21b)

Absolute
error [17]

Second order
(2.7a)-(2.7b)

Fourth order
(2.21a)-(2.21b)

Absolute
error [17]

0.0 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
0.1 5.1e–07 2.1e–10 1.7e–09 2.2e–06 1.7e–09 1.2e–09
0.2 1.6e–06 6.4e–10 5.8e–09 7.2e–06 5.2e–09 4.3e–09
0.3 2.9e–06 1.1e–09 1.1e–08 1.3e–05 9.0e–09 8.2e–09
0.4 3.9e–06 1.5e–09 1.6e–08 1.7e–05 1.2e–08 1.2e–08
0.5 4.4e–06 1.7e–09 2.1e–08 2.0e–05 1.3e–08 1.5e–08
0.6 4.2e–06 1.6e–09 2.2e–08 1.9e–05 1.3e–08 1.6e–08
0.7 3.3e–06 1.3e–09 2.0e–08 1.6e–05 1.0e–08 1.5e–08
0.8 2.0e–06 7.5e–10 1.4e–08 9.5e–06 6.2e–09 1.1e–08
0.9 6.2e–07 2.3e–10 5.6e–08 3.2e–06 1.9e–09 4.5e–09
1.0 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
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(a) Absolute error of u vs. x with  nodal points

(b) Absolute error of u′ vs. x with  nodal points

(c) Exact and numerical solutions with  nodal points

Figure 1 Problem 1 with K = 106 and C = 1 using (2.21a)-(2.21b).

Hence, O(h) = O(N–) in the maximum absolute norm. Similarly, in the sense of the root
mean square norm, we have

‖h‖ =

√√√√
N+∑

k=

h
k

(N + )

≤ √
N + 

√
(N + )H

max
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Table 3 Problem 2: MAEs using (2.7a)-(2.7b) and (2.21a)-(2.21b) with C = 1

N Second order Fourth order Method
given by [20]

Method
given by [21]

ε = 1/16
16 5.7082e–07 4.94e–09 1.7094e–04 1.666e–06
32 4.0505e–08 7.72e–11 4.7425e–05 1.31e–07
64 2.6061e–09 1.06e–12 1.2094e–05 2.614e–09
128 1.6406e–10 1.20e–14 3.0303e–06 6.716e–11
Order 3.9896 6.47

ε = 1/32
16 2.9413e–07 2.51e–09 4.4022e–5 8.537e–07
32 2.0827e–08 3.78e–11 1.2203e–5 6.736e–08
64 1.3400e–09 4.66e–13 3.1220e–06 1.344e–09
128 8.4357e–11 5.10e–15 7.7974e–07 3.452e–11
Order 3.9896 6.51

ε = 1/64
16 1.5656e–07 1.29e–09 1.1706e–05 4.520e–07
32 1.1037e–08 1.81e–11 3.2459e–06 3.569e–08
64 7.1086e–10 1.99e–13 8.2662e–07 7.128e–10
128 4.4747e–11 – 2.0714e–07 1.829e–11
Order 3.9897 6.51

ε = 1/128
16 9.0137e–08 7.06e–10 – 2.60e–07
32 6.3500e–09 9.09e–12 – 2.049e–08
64 4.0842e–10 8.19e–14 – 4.092e–10
128 2.5709e–11 – – 1.05e–11
Order 3.9897 6.79

= hN+

= ηN h

≤ ηN /(N + )

= C/(N + )

< C/N , (.)

where C = ηN is a constant.
In a similar manner to above, it can be verified that if η < , then ‖h‖∞ ≤ /CN and

‖h‖ ≤ /CN , where C = ηN is taken as a constant. Thus, upon defining η as a function
of N , we are able to retain the order of accuracy upon varying N . It is to be noted that the
choice of constant C needs to be compatible with the range of η, which in turn needs to
be chosen so as to have a finer grid in the region of boundary layer. For η > , the mesh will
be finer near x = , and coarser on the other side, while for η < , the mesh will be finer
near x = , and coarser on the other side. If the boundary layer appears on both sides, the
domain can be decomposed into two equal parts, and η be chosen less than  on first half,
and greater than  on the second half of the domain. Then the method vice versa should
be followed in the case an interior layer appears in the middle. In the case of a uniform
mesh, C = η = .

We have tested our numerical methods on five linear and two non-linear problems. The
right hand side functions and the boundary conditions can be determined from the exact
solution. All the numerical computations are performed using double arithmetic. The iter-
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(a) Maximum absolute error vs. N

(b) Exact and numerical solutions with N = 

Figure 2 Problem 2 with ε = 1/128 and C = 1 using (2.21a)-(2.21b).

Table 4 Problem 3: MAEs using (2.7a)-(2.7b) with C = 1

λ 1 10 102 103 104

N u u′ u u′ u u′ u u′ u u′

8 7.11e–07 2.36e–05 1.61e–04 1.21e–03 5.25e–03 3.95e–02 3.48e–02 2.57e–01 1.29e–01 7.07e–01
16 4.61e–07 3.84e–06 4.46e–05 3.03e–04 1.31e–03 9.53e–03 7.96e–03 1.19e–01 3.89e–02 4.31e–01
32 1.36e–07 8.95e–07 1.15e–05 7.85e–05 3.27e–04 2.27e–03 1.94e–03 3.21e–02 7.36e–03 2.48e–01
64 3.51e–08 2.42e–07 2.90e–06 1.98e–05 8.21e–05 5.69e–04 4.84e–04 7.28e–03 1.83e–03 8.49e–02
128 8.86e–09 6.16e–08 7.27e–07 4.96e–06 2.05e–05 1.42e–04 1.21e–04 1.78e–03 4.58e–04 1.94e–02
256 2.29e–09 1.50e–08 1.82e–07 1.24e–06 5.13e–06 3.55e–05 3.03e–05 4.43e–04 1.14e–04 4.60e–03
Order 1.95 2.04 2.00 2.00 2.00 2.00 2.00 2.01 2.00 2.08

ations were stopped once the error tolerance ≤ – was achieved. The numerical results
support the theoretical order of accuracy of our methods.

Problem  Solve (see [])

u()(x) = ( + K)u′′(x) – Ku(x) +



x – ,  < x < . (.)

Here, K is a constant. The exact solution for this problem is given by

u(x) =  +



x + sinh(x).
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Table 5 Problem 3: MAEs using (2.7a)-(2.7b) with C =
√

λ for 0 < x < 1
2 and C = 1√

λ
for

1
2 ≤ x < 1

λ 102 104 106 108

N u u′ u u′ u u′ u u′

32 2.50e–04 2.15e–03 9.24e–04 2.71e–02 1.74e–02 1.36e–01 1.97e–01 1.48e+00
64 6.12e–05 5.72e–04 2.84e–04 7.84e–03 2.43e–04 1.74e–02 7.29e–02 7.06e–01
128 1.50e–05 1.45e–04 7.31e–05 1.96e–03 1.85e–05 4.65e–03 3.26e–06 8.23e–03
256 3.74e–06 3.64e–05 1.84e–05 4.91e–04 4.72e–06 1.16e–03 8.49e–07 2.07e–03
Order 2.01 1.99 1.99 2.00 1.97 2.00 1.94 1.99

Table 6 Problem 3: MAEs using (2.21a)-(2.21b) with C = 1

λ 102 103 104

N u u′ u u′ u u′

8 1.17e–05 9.57e–05 3.89e–04 4.67e–03 3.03e–03 2.43e–02
16 8.21e–07 6.06e–06 4.25e–05 6.63e–04 6.87e–04 1.37e–02
32 5.27e–08 3.67e–07 3.02e–06 4.94e–05 8.75e–05 2.98e–03
64 3.33e–09 2.31e–08 1.95e–07 2.93e–06 6.84e–06 3.08e–04
128 2.14e–10 1.46e–09 1.23e–08 1.81e–07 4.55e–07 1.90e–05
Order 3.96 3.98 3.99 4.02 3.91 4.01

Table 7 Problem 3: MAEs using (2.21a)-(2.21b) with C =
√

λ for 0 < x < 1
2 and C = 1√

λ
for

1
2 ≤ x < 1

λ 102 104 106 108

N u u′ u u′ u u′ u u′

32 3.08e–05 1.71e–04 1.11e–04 2.84e–03 5.24e–05 1.24e–02 1.25e–05 3.01e–02
64 3.96e–06 2.10e–05 8.40e–06 2.29e–04 4.06e–06 9.84e–04 1.22e–06 2.89e–03
128 5.28e–07 2.69e–06 7.38e–07 2.15e–05 3.18e–07 8.45e–05 9.06e–08 2.32e–04
256 6.91e–08 3.43e–07 7.49e–08 2.31e–06 2.91e–08 8.39e–06 7.76e–09 2.16e–05
Order 2.93 2.97 3.30 3.22 3.45 3.33 3.55 3.43

Tables  and  illustrate the absolute errors so obtained using our second and fourth or-
der methods, respectively, over a uniform mesh. We obtain successful results for value
of K as large as . The tables also draw a comparison between the proposed results
and the results of []. It is observed that on one hand, for large value of K , the accuracy
of the numerical results of [] deteriorates as the value of x increases from  to , our
methods are unaffected by the same. The proposed results are clearly better than that of
[]. Figure (a) and (b) provide the plots of absolute error vs. x and Figure (c) depicts a
comparison of the exact and numerical solutions so obtained with the fourth order tech-
nique.

Problem  Solve

–εu(x) + u(x) = –ε
(
sin(εx)

(
,x – ,x + ,x – ,x

+ ,x – εx(x – )

– εx(x – ) – εx(x – ) + εx(x – ))

+ cos(εx)
(
εx(x – )

+ ,εx(x – ) + ,εx(x – ) + ,εx(x – )
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(a) Exact and numerical solutions with λ =  and  nodal points

(b) Exact and numerical solutions with λ =  and  nodal points

(c) MAE (in logarithmic scale) vs. N with  to  nodal points and λ = 

Figure 3 Problem 3 with C =
√

λ for 0 < x < 1
2 and C = 1√

λ
for 1

2 ≤ x < 1 using (2.21a)-(2.21b).

– εx(x – ) – εx(x – )))

+ x sin(εx)(x – ),  < x < . (.)

The exact solution is given by

u(x) = x(x – ) sin(εx).

The maximum absolute errors (MAEs) corresponding to different values of ε with a uni-
form mesh are tabulated in Table , along with a comparison drawn with the results of
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Table 8 Problem 4: MAEs using (2.7a)-(2.7b) with C = 1

λ 1 10 102

N u u′ u u′ u u′

16 9.83e–06 3.37e–05 3.25e–03 2.03e–02 7.81e–02 8.71e–01
32 2.49e–06 8.22e–06 8.19e–04 4.93e–0332 1.48e–02 4.98e–01
64 6.23e–07 2.04e–06 2.05e–04 1.24e–03 3.68e–03 1.70e–01
128 1.56e–07 5.10e–07 5.12e–05 3.08e–04 9.20e–04 3.89e–02
256 3.90e–08 1.27e–07 1.28e–05 7.70e–05 2.30e–04 9.21e–03
Order 2.00 2.00 2.00 2.00 2.00 2.08

Table 9 Problem 4: MAEs using (2.7a)-(2.7b) with C = λ

λ 10 102 103 104 105

N u u′ u u′ u u′ u u′ u u′

32 3.10e–04 2.13e–03 1.54e–04 8.59e–03 3.56e–05 1.91e–02 3.44e–05 3.37e–02 1.43e–02 6.35e–02
64 7.77e–05 5.34e–04 3.87e–05 2.16e–03 8.95e–06 4.83e–03 1.59e–06 8.60e–03 2.47e–07 1.33e–02
128 1.94e–05 1.33e–04 9.68e–06 5.41e–04 2.24e–06 1.22e–03 3.99e–07 2.16e–03 6.24e–08 3.37e–03
256 4.86e–06 3.33e–05 2.42e–06 1.35e–04 5.60e–07 3.05e–04 9.98e–08 5.41e–04 1.56e–08 8.46e–04
Order 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99

Table 10 Problem 4: MAEs using (2.21a)-(2.21b) with C = 1

λ 10 102

u u′ u u′

8 3.06e–04 2.11e–03 9.80e–02 5.45e–01
16 2.08e–05 1.29e–04 1.99e–02 2.66e–01
32 1.33e–06 7.98e–06 2.00e–03 5.80e–02
64 8.32e–08 5.02e–07 1.43e–04 6.10e–03
128 5.23e–09 3.14e–08 9.23e–06 3.80e–04
Order 3.99 4.00 3.95 4.01

Table 11 Problem 4: MAEs using (2.21a)-(2.21b) with C = λ

λ 102 103 104

u u′ u u′ u u′

32 2.49e–05 7.22e–04 2.38e–02 1.02e–01 4.70e–01 2.00e+00
64 5.35e–06 1.50e–04 1.58e–06 4.13e–04 1.00e–02 4.45e–02
128 8.32e–07 2.33e–05 2.83e–07 7.34e–05 1.60e–05 9.37e–05
256 1.15e–07 3.22e–06 4.15e–08 1.07e–05 1.42e–08 2.41e–05
512 1.49e–08 4.23e–07 5.52e–09 1.43e–06 1.32e–09 3.35e–06
Order 2.95 2.93 2.91 2.90 3.43 2.85

[] and []. The tables clearly depict a better result with the proposed techniques. A
plot of MAE vs. N and exact and numerical solutions vs. x, obtained with the fourth order
method, are presented in Figure (a) and (b), respectively.

Problem  Solve

–

λ

u()(x) + u′′(x) = ,  < x < . (.)
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(a) Maximum absolute error vs. N

(b) Exact and numerical solutions with N = 

Figure 4 Problem 4 with C = λ and λ = 104 using (2.21a)-(2.21b).

This is a reaction type equation, which arises in beam theory. The exact solution is given
by

u(x) =
exp(–

√
λx) – exp(–

√
λ( – x)) +

√
λ(exp(–

√
λ) + )x + exp(–

√
λ) – √

λ + ( +
√

λ) exp(–
√

λ) – 
.

The MAEs obtained for a range of values of λ, using the second order technique with a
uniform mesh are given in Table  and that with the fourth order technique are given in
Table . Using the second and third order quasi-variable mesh methods, the MAEs so
obtained are depicted in Tables  and , respectively. In the quasi-variable mesh case, we
have chosen C =

√
λ for the first half of the domain and C = √

λ
for the rest half. It is

observed that while uniform mesh methods fail for high values of λ, the quasi-variable
mesh methods are successful. Figure  provides the plots using the third order technique.

Problem  Solve


λ

u()(x) + u′′′(x) = ,  < x < . (.)

This is a convection type equation. The exact solution is given by

u(x) =
 exp(–λx) + λ(exp(–λ) – )x + λx – 

λ + (λ + ) exp(–λ) – 
.
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Table 12 Problem 5: MAEs and RMSEs using (2.7a)-(2.7b) with different values of C

λ N Uniform Mesh (C = 1) Quasi-Variable Mesh (C = 0.6)

MAE RMSE MAE RMSE

1 8 u 1.79e–04 1.13e–04 4.34e–05 2.60e–05
u′ 6.45e–04 4.21e–04 1.35e–04 8.96e–05

16 u 4.65e–05 2.95e–05 9.98e–06 5.92e–06
u′ 1.52e–04 1.04e–04 3.33e–05 2.18e–05

32 u 1.17e–05 7.46e–06 2.44e–06 1.45e–06
u′ 3.75e–05 2.60e–05 8.57e–06 5.41e–06

64 u 2.94e–06 1.87e–06 6.07e–07 3.59e–07
u′ 9.35e–06 6.51e–06 2.15e–06 1.35e–06

128 u 7.36e–07 4.68e–07 1.52e–07 8.97e–08
u′ 2.33e–06 1.63e–06 5.40e–07 3.38e–07

256 u 1.84e–07 1.17e–07 2.69e–08 1.51e–08
order 2.00 2.00 2.49 2.57
u′ 5.83e–07 4.06e–07 1.04e–07 6.32e–08
order 2.00 2.00 2.38 2.42

10 8 u 1.40e–03 8.98e–04 1.29e–03 8.40e–04
u′ 4.36e–03 3.12e–03 4.05e–03 2.91e–03

16 u 3.47e–04 2.22e–04 3.26e–04 2.06e–04
u′ 1.11e–03 7.68e–04 1.00e–03 7.18e–04

32 u 8.64e–05 5.53e–05 8.11e–05 5.14e–05
u′ 2.75e–04 1.91e–04 2.51e–04 1.79e–04

64 u 2.16e–05 1.38e–05 2.03e–05 1.28e–05
u′ 6.89e–05 4.78e–05 6.29e–05 4.47e–05

128 u 5.40e–06 3.46e–06 5.06e–06 3.21e–06
u′ 1.72e–05 1.19e–05 1.57e–05 1.12e–05

256 u 1.35e–06 8.64e–07 1.26e–06 7.95e–07
order 2.00 2.00 2.01 2.01
u′ 4.30e–06 2.99e–06 3.90e–06 2.77e–06
order 2.00 2.00 2.01 2.01

100 8 u 4.03e–03 2.70e–03 4.04e–03 2.72e–03
u′ 1.34e–02 8.99e–03 1.41e–02 9.05e–03

16 u 9.68e–04 6.46e–04 9.80e–04 6.46e–04
u′ 3.21e–03 2.16e–03 3.20e–03 2.18e–03

32 u 2.40e–04 1.60e–04 2.42e–04 1.60e–04
u′ 8.06e–04 5.35e–04 7.87e–04 5.38e–04

64 u 5.99e–05 3.98e–05 6.04e–05 3.98e–05
u′ 2.01e–04 1.33e–04 1.96e–04 1.34e–04

128 u 1.50e–05 9.95e–06 1.51e–05 9.93e–06
u′ 5.02e–05 3.33e–05 4.89e–05 3.35e–05

256 u 3.74e–06 2.49e–06 3.77e–06 2.48e–06
order 2.00 2.00 2.00 2.00
u′ 1.25e–05 8.33e–06 1.22e–05 8.37e–06
order 2.00 2.00 2.00 2.00

The MAEs obtained with a uniform mesh are given in Table  using the proposed second
order method and in Table  using the fourth order method. The MAEs obtained using
second order quasi-variable mesh method are shown in Table , and that using third order
method in Table . Here, we have chosen C = λ. It is observed that as λ increases, quasi-
variable mesh methods produce successful results while the uniform mesh methods fail.
The plots of MAE vs. N and the exact and numerical solutions vs. x with the third order
technique are presented in Figure (a) and (b), respectively.

Problem  Solve (see [])

u()(x) – λu(x)u′′′(x) = f (x),  < x < . (.)
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Table 13 Problem 5: MAEs and RMSEs using (2.21a)-(2.21b) with different values of C

λ N Uniform mesh (C = 1) Quasi-variable mesh (C = 0.7)

MAE RMSE MAE RMSE

1 16 u 1.59e–07 1.20e–08 1.01e–06 4.22e–08
u′ 5.68e–07 3.72e–07 3.29e–06 1.59e–06

32 u 1.00e–08 2.13e–10 1.11e–07 1.20e–09
u′ 3.55e–08 1.34e–08 3.52e–07 9.15e–08

64 u 6.29e–10 3.54e–12 1.29e–08 3.57e–11
order 4.00 5.91 3.10 5.07
u′ 2.23e–09 4.49e–10 4.10e–08 5.47e–09
order 4.00 4.90 3.10 4.06

10 16 u 9.90e–07 1.24e–07 2.08e–06 1.58e–07
u′ 4.63e–06 3.69e–06 8.43e–06 5.61e–06

32 u 6.20e–08 2.25e–09 1.82e–07 3.64e–09
u′ 2.85e–07 1.40e–07 7.32e–07 2.70e–07

64 u 3.88e–09 3.79e–11 1.82e–08 9.09e–11
order 4.00 5.89 3.33 5.32
u′ 1.77e–08 4.78e–09 7.18e–08 1.38e–08
order 4.01 4.87 3.35 4.30

100 16 u 5.57e–06 1.55e–06 7.17e–06 1.33e–06
u′ 3.70e–05 3.70e–05 3.99e–05 3.99e–05

32 u 3.30e–07 3.14e–08 4.53e–07 2.65e–08
u′ 2.18e–06 1.77e–06 2.55e–06 1.82e–06

64 u 2.03e–08 5.59e–10 3.36e–08 5.33e–10
order 4.02 5.81 3.75 5.64
u′ 1.34e–07 6.76e–08 1.89e–07 7.79e–08
order 4.02 4.71 3.75 4.55

The exact solution is given by u(x) = ( – x) exp(x). The physical significance of this non-
linear problem has been discussed in Section . The MAEs and the root mean square
errors (RMSEs) are tabulated in Tables  and  using second, and third and fourth order
techniques, respectively. When used with a quasi-variable mesh, we have fixed C = . for
the second, and C = . for the third order discretization. The tables clearly illustrate the
accuracy of our methods. Figure  provides a comparative plot of the exact and numerical
solutions.

Problem  Solve

�u(r) ≡
(

d

dr +

r

d
dr

)

u(r) = f (r),  < r < , (.)

or, equivalently,

u()(r) = –

r

u′′′(r) +

r u′′(r) –


r u′(r) + f (r),  < r < .

This is a fourth order singular problem in cylindrical polar coordinates. The exact solu-
tion is given by u(r) = r sin(r). The MAEs and RMSEs so obtained are tabulated in Ta-
ble  using a uniform mesh and in Table  using a quasi-variable mesh. In the case of
quasi-variable mesh, we have taken C = . for the second and C = . for the third order
techniques, respectively. The plots of the exact and numerical solutions and MAE vs. N
with the third order method are presented in Figure .
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Figure 5 Exact and numerical solutions of
Problem 5 with 17 nodal points and C = 0.7
using (2.21a)-(2.21b).

Table 14 Problem 6: MAEs and RMSEs using (2.7a)-(2.7b) and (2.21a)-(2.21b) with C = 1

N Second order method Fourth order method

u u′ u u′

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

8 9.512e–04 6.737e–04 3.162e–03 2.137e–03 5.80e–05 3.97e–05 1.55e–04 9.83e–05
16 2.212e–04 7.021e–04 1.501e–04 4.995e–04 3.68e–06 2.44e–06 1.94e–05 7.78e–06
32 5.410e–05 1.729e–04 3.576e–05 1.206e–04 2.36e–07 1.54e–07 1.67e–06 5.65e–07
64 1.339e–05 4.298e–05 8.769e–06 2.972e–05 1.51e–08 9.75e–09 1.23e–07 3.86e–08
128 3.337e–06 1.073e–05 2.175e–06 7.386e–06 9.64e–10 6.19e–10 8.43e–09 2.54e–09
256 8.335e–07 2.682e–06 5.421e–07 1.841e–06 3.66e–11 2.45e–11 5.37e–10 1.68e–10
Order 2.0015 2.0001 2.0046 2.0038 4.72 4.66 3.97 3.92

Table 15 Problem 6: MAEs and RMSEs using (2.7a)-(2.7b) and (2.21a)-(2.21b)

N Second order scheme (C = 0.5) Third order scheme (C = 0.6)

u u′ u u′

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

8 2.254e–03 8.560e–03 1.521e–03 5.047e–03 2.40e–04 1.67e–04 7.48e–04 4.76e–04
16 5.225e–04 1.969e–03 3.401e–04 1.164e–03 2.17e–05 1.45e–05 8.88e–05 4.60e–05
32 1.259e–04 4.542e–04 7.999e–05 2.754e–04 2.19e–06 1.43e–06 8.30e–06 4.76e–06
64 3.091e–05 1.112e–04 1.945e–05 6.718e–05 2.43e–07 1.57e–07 8.73e–07 5.29e–07
Order 2.0266 2.0301 2.0395 2.0356 3.17 3.19 3.25 3.17

Problem  Solve

u()(r) =

r
[
u′(r)v′′(r) + v′(r)u′′(r)

]
+ f (r),  < r < , (.a)

v()(r) = –

r

u′(r)u′′(r) + g(r),  < r < . (.b)

The exact solution is given by u(r) = cos(r), v(r) = exp(r). These coupled non-linear
equations represent a model of equilibrium for a load symmetric about the center (see
[]). With a quasi-variable mesh, we have used C = . for the second and C = . for
the third order method. The MAEs and RMSEs obtained with the uniform mesh methods
are tabulated in Table  and that obtained with quasi-variable mesh methods in Table .
Comparative plots of the exact and numerical solutions obtained with the third order tech-
nique are presented in Figure .
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(a) Exact and numerical solutions with  nodal points

(b) MAE (in logarithmic scale) vs. N with  to  nodal points

Figure 6 Problem 6 with C = 0.6 using (2.21a)-(2.21b).

Table 16 Problem 7: MAEs and RMSEs using (2.7a)-(2.7b) and (2.21a)-(2.21b) with C = 1

N Second order Fourth order

MAE RMSE MAE RMSE

10 u 7.1411e–06 4.8598e–06 1.5183e–08 1.0322e–08
u′ 2.4886e–05 1.6832e–05 4.8261e–08 3.5393e–08
v 3.3399e–06 2.2408e–06 2.0788e–08 1.4229e–08
v′ 1.1264e–05 8.1372e–06 7.3344e–08 4.6608e–08

20 u 1.8060e–06 1.1822e–06 9.4738e–10 6.2681e–10
u′ 6.4868e–06 4.1284e–06 3.0174e–09 2.1522e–09
v 8.5494e–07 5.5949e–07 1.2768e–09 8.4967e–10
v′ 2.6592e–06 1.9574e–06 4.7506e–09 2.9017e–09

40 u 4.5147e–07 2.9169e–07 5.9265e–11 3.8611e–11
u′ 1.6208e–06 1.0204e–06 1.8898e–10 1.3259e–10
v 2.1498e–07 1.3896e–07 8.0073e–11 5.2627e–11
v′ 6.7508e–07 4.8234e–07 3.0237e–10 1.8155e–10

Order u 2.0046 2.0092 4.00 4.02
Order u′ 2.0020 2.0087 4.00 4.02
Order v 2.0253 2.0288 4.00 4.01
Order v′ 2.0268 2.0305 3.97 4.00

5 Concluding remarks
In this article, we derived finite difference techniques (.a)-(.b) of second and (.a)-
(.b) of third order accuracies for the fourth order BVPs of the type (.)-(.), using a
quasi-variable mesh. While the second order method retained its accuracy, the third or-
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Table 17 Problem 7: MAEs and RMSEs using (2.7a)-(2.7b) and (2.21a)-(2.21b)

N Second order (C = 0.45) Third order (C = 1.1)

MAE RMSE MAE RMSE

10 u 2.3524e–06 1.2294e–06 3.3425e–09 2.1271e–09
u′ 1.6070e–05 6.8720e–06 1.5594e–08 1.0533e–08
v 1.2026e–05 8.0087e–06 1.9955e–08 1.2704e–08
v′ 3.9650e–05 2.8558e–05 1.0046e–07 5.9011e–08

20 u 7.4405e–07 3.8633e–07 1.5475e–09 1.0102e–09
u′ 4.0111e–06 1.9062e–06 4.8890e–09 3.5842e–09
v 3.0216e–06 1.9569e–06 3.8218e–09 2.4468e–09
v′ 9.9398e–06 6.9784e–06 1.3573e–08 8.9719e–09

40 u 1.9760e–07 1.0079e–07 2.7490e–10 1.7786e–10
u′ 1.0611e–06 4.8541e–07 8.6380e–10 6.1758e–10
v 7.5983e–07 4.8342e–07 5.2919e–10 3.3868e–10
v′ 2.4813e–06 1.7237e–06 1.7523e–09 1.1953e–09

Order u 1.9128 1.9385 2.49 2.51
u′ 1.9185 1.9734 2.50 2.54
v 1.9916 2.0172 2.85 2.85
v′ 2.0021 2.0173 2.95 2.91

(a) Exact and numerical solutions of u and v with  nodal points

(b) Exact and numerical solutions of u′ and v′ with  nodal points

Figure 7 Problem 7 with C = 1.1 using (2.21a)-(2.21b).

der method transformed into a fourth order technique, upon setting the parameter η = .
Further, we conducted the convergence and stability analysis of the fourth order technique
applied to a model problem. We solved seven physical problems, including a singular and
a coupled non-linear BVP. The developed methods were directly applicable to problems
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in polar coordinates. As a by-product of our methods, we obtained the high order approx-
imations to the values of u′ as well, at each grid point. The numerical results confirmed
that the proposed quasi-variable mesh schemes yield results of desired accuracies, as the-
oretically claimed. Also, we observed that while in some cases, for higher values of the
perturbation parameter λ, the uniform mesh techniques failed, the quasi-variable mesh
techniques still yielded good results. A comparison of the proposed techniques with that
of previously developed techniques clearly depicted the superiority of our methods.
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