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Abstract
A two species non-autonomous competitive phytoplankton system with nonlinear
inter-inhibition terms and one toxin producing phytoplankton is studied in this paper.
Sufficient conditions which guarantee the extinction of a species and the global
attractivity of the other one are obtained. Some parallel results corresponding to Yue
(Adv. Differ. Equ. 2016:1, 2016, doi:10.1007/s11590-013-0708-4) are established.
Numeric simulations are carried out to show the feasibility of our results.
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1 Introduction
Given a function g(t), let gL and gM denote inf–∞<t<∞ g(t) and sup–∞<t<∞ g(t), respectively.

The aim of this paper is to investigate the extinction property of the following two
species non-autonomous competitive phytoplankton system with nonlinear inter-inhi-
bition terms and one toxin producing phytoplankton:

ẋ(t) = x(t)
[

r(t) – a(t)x(t) –
b(t)x(t)
 + x(t)

– c(t)x(t)x(t)
]

,

ẋ(t) = x(t)
[

r(t) –
b(t)x(t)
 + x(t)

– a(t)x(t)
]

,
(.)

where ri(t), ai(t), bi(t), i = , , c(t) are assumed to be continuous and bounded above and
below by positive constants, and x(t), x(t) are population density of species x and x at
time t, respectively. ri(t), i = ,  are the intrinsic growth rates of species; ai (i = , ) are the
rates of intraspecific competition of the first and second species, respectively; bi (i = , )
are the rates of interspecific competition of the first and second species, respectively. The
second species could produce a toxic, while the first one has a non-toxic product.

The traditional two species Lotka-Volterra competition model takes the form:

ẋ(t) = x(t)
[
r – ax(t) – ax(t)

]
,

ẋ(t) = x(t)
[
r – bx(t) – bx(t)

]
.

(.)

© 2016 Xie et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-016-0974-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-016-0974-4&domain=pdf
mailto:latexfzu@126.com
http://doi.org/10.1007/s11590-013-0708-4


Xie et al. Advances in Difference Equations  (2016) 2016:258 Page 2 of 13

Chattopadhyay [] studied a two species competition model, each species produces a
substance toxic to the other only when the other is present. The model takes the form

ẋ(t) = x(t)
[
r – ax(t) – ax(t) – dx(t)x(t)

]
,

ẋ(t) = x(t)
[
r – bx(t) – bx(t) – dx(t)x(t)

]
.

(.)

He investigated the local stability and global stability of the equilibrium. Obviously, system
(.) is more realistic than that of (.). After the work of Chattopadhyay [], the compet-
itive system with toxic substance became one of the most important topic in the study of
population dynamics, see [–] and the references cited therein. Li and Chen [] stud-
ied the non-autonomous case of system (.), a set of sufficient conditions which guar-
antee the extinction of the second species and the globally attractive of the first species
are obtained. Li and Chen [] studied the extinction property of the following two species
discrete competitive system:

x(n + ) = x(n) exp
[
r(n) – a(n)x(n) – a(n)x(n)

– b(n)x(n)x(n)
]
,

x(n + ) = x(n) exp
[
r(n) – a(n)x(n) – a(n)x(n)

– b(n)x(n)x(n)
]
.

(.)

Recently, Solé et al. [] and Bandyopadhyay [] considered a Lotka-Volterra type of
model for two interacting phytoplankton species, where one species could produce toxic,
while the other one has a non-toxic product. The model takes the form

ẋ(t) = x(t)
[
r – ax(t) – ax(t) – dx(t)x(t)

]
,

ẋ(t) = x(t)
[
r – bx(t) – bx(t)

]
.

(.)

Corresponding to system (.), Chen et al. [] proposed the following two species discrete
competition system:

x(n + ) = x(n) exp
[
r(n) – a(n)x(n) – a(n)x(n)

– b(n)x(n)x(n)
]
, (.)

x(n + ) = x(n) exp
[
r(n) – a(n)x(n) – a(n)x(n)

]
.

They investigated the extinction property of the system.
Some scholars argued that the more appropriate competition model should with non-

linear inter-inhibition terms. Indeed, Wang et al. [] proposed the following two species
competition model:

ẋ(t) = x(t)
[

r(t) – a(t)x(t) –
b(t)x(t)
 + x(t)

]
,

ẋ(t) = x(t)
[

r(t) –
b(t)x(t)
 + x(t)

– a(t)x(t)
]

.
(.)
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By using a differential inequality, the module containment theorem, and the Lyapunov
function, the authors obtained sufficient conditions which ensure the existence and global
asymptotic stability of positive almost periodic solutions.

Again, corresponding to system (.), several scholars [, ] investigated the dy-
namic behaviors of the discrete type two species competition system with nonlinear inter-
inhibition terms,

x(k + ) = x(k) exp

{
r(k) – a(k)x(k) –

b(k)x(k)
 + x(k)

}
,

x(k + ) = x(k) exp

{
r(k) –

b(k)x(k)
 + x(k)

– a(k)x(k)
}

.
(.)

Wang and Liu [] studied the almost periodic solution of the system (.). Yu [] fur-
ther incorporated the feedback control variables to the system (.) and investigated the
persistent property of the system.

During the lase decade, many scholars [–, , –, –] investigated the extinction
property of the competition system. Maybe stimulating by this fact, Yue [] proposed the
following two species discrete competitive phytoplankton system with nonlinear inter-
inhibition terms and one toxin producing phytoplankton:

x(k + ) = x(k) exp

{
r(k) – a(k)x(k) –

b(k)x(k)
 + x(k)

– c(k)x(k)x(k)
}

, (.)

x(k + ) = x(k) exp

{
r(k) –

b(k)x(k)
 + x(k)

– a(k)x(k)
}

.

By further developing the analysis technique of Chen et al. [], the author obtained some
sufficient conditions which guarantee the extinction of one of the components and the
global attractivity of the other one.

It is well known that if the amount of the species is large enough, the continuous model is
more appropriate, and this motivated us to propose the system (.). The aim of this paper
is, by developing the analysis technique of [, , ], to investigate the extinction property
of the system (.). The remaining part of this paper is organized as follows. In Section ,
we study the extinction of some species and the stability property of the rest of the species.
Some examples together with their numerical simulations are presented in Section  to
show the feasibility of our results. We give a brief discussion in the last section.

2 Main results
Following Lemma . is a direct corollary of Lemma . of Chen [].

Lemma . If a > , b > , and ẋ ≥ x(b – ax), when t ≥  and x() > , we have

lim inf
t→+∞ x(t) ≥ b

a
.

If a > , b > , and ẋ ≤ x(b – ax), when t ≥  and x() > , we have

lim sup
t→+∞

x(t) ≤ b
a

.
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Lemma . Let x(t) = (x(t), x(t))T be any solution of system (.) with xi(t) > , i = , ,
then xi(t) > , t ≥ t and there exists a positive constant M such that

lim sup
t→+∞

xi(t) ≤ M, i = , ,

i.e., any positive solution of system (.) are ultimately bounded above by some positive
constant.

Proof Let x(t) = (x(t), x(t))T be any solution of system (.) with xi(t) > , i = , , then

x(t) = x(t) exp

{∫ t

t

(
r(s) – a(s)x(s) –

b(s)x(s)
 + x(s)

– c(s)x(s)x(s)
)

ds
}

> , (.)

x(t) = x(t) exp

{∫ t

t

(
r(s) –

b(s)x(s)
 + x(s)

– a(s)x(s)
)

ds
}

> .

From the first equation of system (.), we have

ẋ(t) ≤ x(t)
[
r(t) – a(t)x(t)

] ≤ x(t)
[
rM – aLx(t)

]
. (.)

By applying Lemma . to differential inequality (.), it follows that

lim sup
t→+∞

x(t) ≤ rM

aL

def= M. (.)

Similarly to the analysis of (.) and (.), from the second equation of system (.), we
have

lim sup
t→+∞

x(t) ≤ rM

aL

def= M. (.)

Set M = max{M, M}, then the conclusion of Lemma . follows. This ends the proof of
Lemma .. �

Lemma . (Fluctuation lemma []) Let x(t) be a bounded differentiable function on
(α,∞), then there exist sequences τn → ∞, σn → ∞ such that

(a) ẋ(τn) →  and x(τn) → lim sup
t→∞

x(t) = x as n → ∞,

(b) ẋ(σn) →  and x(σn) → lim inf
t→∞ x(t) = x as n → ∞.

For the logistic equation

ẋ(t) = x(t)
(
r(t) – a(t)x(t)

)
. (.)

From Lemma . of Zhao and Chen [], we have the following.
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Lemma . Suppose that r(t) and a(t) are continuous functions bounded above and
below by positive constants, then any positive solutions of equation (.) are defined on
[, +∞), bounded above and below by positive constants and globally attractive.

Our main results are Theorems .-..

Theorem . Assume that

rL
bL

 + M
> rMaM, rLaL > rMbM (.)

hold, further assume that the inequality

cM <


MM
min

{
rL –

aM
bL

+M

rM, rL –
bM

aL
rM

}
(.)

holds, then the species x will be driven to extinction, that is, for any positive solution
(x(t), x(t))T of system (.), x(t) →  as t → +∞.

Proof It follows from (.) that one could choose a small enough positive constant ε > 
such that

cM <


(M + ε)(M + ε)
min

{
rL –

aM
bL

+(M+ε)

rM, rL –
bM

aL
rM

}
. (.)

Equation (.) is equivalent to

aM
bL

+(M+ε)

<
rL – cM(M + ε)(M + ε)

rM
,

bM

aL
<

rL – cM(M + ε)(M + ε)
rM

.

(.)

Therefore, there exist two constants α, β such that

aM
bL

+(M+ε)

<
β

α
<

rL – cM(M + ε)(M + ε)
rM

,

bM

aL
<

β

α
<

rL – cM(M + ε)(M + ε)
rM

.

(.)

That is,

αaM –
βbL

 + (M + ε)
< , αbM – βaL < ,

–αrL + βrM + αcM(M + ε)(M + ε) def= –δ < .
(.)

Let x(t) = (x(t), x(t))T be a solution of system (.) with xi() > , i = , . For the above
ε > , from Lemma . there exists a large enough T such that

x(t) < M + ε, x(t) < M + ε for all t ≥ T. (.)
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From (.) we have

ẋ(t)
x(t)

= r(t) – a(t)x(t) –
b(t)x(t)
 + x(t)

– c(t)x(t)x(t),

ẋ(t)
x(t)

= r(t) –
b(t)x(t)
 + x(t)

– a(t)x(t).
(.)

Let

V (t) = x–α
 (t)xβ

 (t).

From (.), (.), and (.), for t ≥ T, it follows that

V̇ (t) = V (t)
[

–α

(
r(t) – a(t)x(t) –

b(t)x(t)
 + x(t)

– c(t)x(t)x(t)
)

+ β

(
r(t) –

b(t)x(t)
 + x(t)

– a(t)x(t)
)]

= V (t)
[(

–αr(t) + βr(t)
)

+
(

αa(t) –
βb(t)

 + x(t)

)
x(t)

+
(

α
b(t)

 + x(t)
– βa(t)

)
x(t) + αc(t)x(t)x(t)

]

≤ V (t)
[

(–αrL + βrM) +
(

αaM –
βbL

 + (M + ε)

)
x(t)

+ (αbM – βaL)x(t) + αcM(M + ε)(M + ε)
]

≤ –δV (t), t ≥ T.

Integrating this inequality from T to t (≥ T), it follows that

V (t) ≤ V (T) exp
(
–δ(t – T)

)
. (.)

By Lemma . we know that there exists M > M >  such that

xi(t) < M for all i = ,  and t ≥ T. (.)

Therefore, (.) implies that

x(t) < C exp

(
–

δ

β
(t – T)

)
, (.)

where

C = Mα/β(
x(T)

)–α/βx(T) > . (.)

Consequently, we have x(t) →  exponentially as t → +∞. �
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Theorem . In addition to (.), further assume that the inequality

cM <


M

(
rL

rM

(
bL

 + M

)
– aM

)
(.)

holds, then the species x will be driven to extinction, that is, for any positive solution
(x(t), x(t))T of system (.), x(t) →  as t → +∞.

Proof Equation (.) is equivalent to

cMM + aM <
rL

rM

(
bL

 + M

)
. (.)

It follows from (.) that one could choose a small enough ε >  such that

cM(M + ε) + aM <
rL

rM

(
bL

 + (M + ε)

)
. (.)

It follows from (.) and (.) that there exist two constants α, β such that

cM(M + ε) + aM
bL

+(M+ε)

<
β

α
<

rL

rM
,

bM

aL
<

β

α
<

rL

rM
.

(.)

That is,

αaM –
βbL

 + (M + ε)
+ αcM(M + ε) < ,

αbM – βaL < , –αrL + βrM
def= –δ < .

(.)

Let x(t) = (x(t), x(t))T be a solution of system (.) with xi() > , i = , . For the above
ε > , from Lemma . there exists a large enough T such that

x(t) < M + ε for all t ≥ T. (.)

Let

V (t) = x–α
 (t)xβ

 (t).

From (.) and (.), for t ≥ T, it follows that

V̇ (t) = V (t)
[(

–αr(t) + βr(t)
)

+
(

αa(t) –
βb(t)

 + x(t)

)
x(t)

+
(

αb(t)
 + x(t)

– βa(t)
)

x(t) + αc(t)x(t)x(t)
]

≤ V (t)
[

(–αrL + βrM) +
(

αaM –
βbL

 + (M + ε)
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+ αcM(M + ε)
)

x(t) + (αbM – βaL)x(t)
]

≤ –δV (t), t ≥ T.

Integrating this inequality from T to t (≥ T), it follows that

V (t) ≤ V (T) exp
(
–δ(t – T)

)
. (.)

From (.), similarly to the analysis of (.)-(.), we can draw the conclusion that
x(t) →  exponentially as t → +∞. �

Theorem . In addition to (.), further assume that the inequality

cM <


M

(
rL

rM
aL – bM

)
(.)

holds, then the species x will be driven to extinction, that is, for any positive solution
(x(t), x(t))T of system (.), x(t) →  as t → +∞.

Proof Equation (.) is equivalent to

cMM

aL
+

bM

aL
<

rL

rM
. (.)

It follows from (.) that one could choose a small enough ε such that

cM(M + ε) + bM

aL
<

rL

rM
. (.)

It follows from (.) and (.) that there exist two constants α, β such that

cM(M + ε) + bM

aL
<

β

α
<

rL

rM
,

aM
bL

+M

<
β

α
<

rL

rM
.

(.)

That is,

αbM – βaL + αcM(M + ε) < ,

αaM –
βbL

 + M + ε
< , –αrL + βrM

def= –δ < .
(.)

Let x(t) = (x(t), x(t))T be a solution of system (.) with xi() > , i = , . For the above
ε > , from Lemma . there exists a large enough T such that

x(t) < M + ε for all t ≥ T. (.)

Let

V (t) = x–α
 (t)xβ

 (t).
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From (.) and (.), for t ≥ T, it follows that

V̇ (t) = V (t)
[(

–αr(t) + βr(t)
)

+
(

αa(t) –
βb(t)

 + x(t)

)
x(t)

+
(

αb(t)
 + x(t)

– βa(t)
)

x(t) + αc(t)x(t)x(t)
]

≤ V (t)
[

(–αrL + βrM) +
(

αaM –
βbL

 + (M + ε)

)
x(t)

+
(
αbM – βaL + αcM(M + ε)

)
x(t)

]

≤ –δV (t), t ≥ T.

Integrating this inequality from T to t (≥ T), it follows that

V (t) ≤ V (T) exp
(
–δ(t – T)

)
. (.)

From (.), similarly to the analysis of (.)-(.), we can draw the conclusion that
x(t) →  exponentially as t → +∞. �

Lemma . Under the assumption of Theorem . or . or ., let x(t) = (x(t), x(t))T be
any positive solution of system (.), then there exists a positive constant m such that

lim inf
t→+∞ x(t) ≥ m,

where m is a constant independent of any positive solution of system (.), i.e., the first
species x(t) of system (.) is permanent.

Proof The proof of Lemma . is similar to that of Lemma . in [], we omit the details
here. �

Theorem . Assume that the conditions of Theorem . or . or . hold, let x(t) =
(x(t), x(t))T be any positive solution of system (.), then the species x will be driven to
extinction, that is, x(t) →  as t → +∞, and x(t) → x∗

 (t) as t → +∞, where x∗
 (t) is any

positive solution of system (.).

Proof By applying Lemmas . and ., the proof of Theorem . is similar to that of the
proof of Theorem in []. We omit the details here. �

Another interesting thing is to investigate the extinction property of species x in system
(.). For this case, we have the following.

Theorem . Assume that

rMbM < rLaL, rMaM < rL
bL

 + M
(.)

hold, then the species x will be driven to extinction, that is, for any positive solution
(x(t), x(t))T of system (.), x(t) →  as t → +∞ and x(t) → x∗

(t) as t → +∞, where
x∗

(t) is any positive solution of system ẋ(t) = x(t)(r(t) – b(t)x(t)).
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Proof Condition (.) implies that there exist two constants α, β , and a small enough
positive constant ε, such that

rM

rL
<

β

α
<

bL
+M+ε

aM
,

rM

rL
<

β

α
<

aL

bM
.

(.)

That is,

βbM – αaL < , βaM –
αbL

 + M + ε
< ,

αrM – βrL
def= –δ < .

(.)

For the above ε > , from Lemma . there exists a large enough T such that

x(t) < M + ε for all t ≥ T. (.)

Let

V(t) = xα
 (t)x–β

 (t).

It follows from (.) that

V̇(t) = V(t)
[
α

(
r(t) – a(t)x(t) –

b(t)x(t)
 + x(t)

– c(t)x(t)x(t)
)

– β

(
r(t) –

b(t)x(t)
 + x(t)

– a(t)x(t)
)]

= V(t)
[(

αr(t) – βr(t)
)

+
(

–αa(t) +
βb(t)

 + x(t)

)
x(t)

+
(

–
αb(t)

 + x(t)
+ βa(t)

)
x(t) – αc(t)x(t)x(t)

]

≤ V(t)
[

(αrM – βrL) + (–αaL + βbM)x(t)

+
(

–
αbL

 + M + ε
+ βaM

)
x(t)

]

≤ –δV(t).

Integrating this inequality from T to t (≥ T), it follows that

V(t) ≤ V(T) exp
(
–δ(t – T)

)
. (.)

From this, similarly to the analysis of (.)-(.), we have x(t) →  exponentially as
t → +∞. The rest of the proof of Theorem . is similar to that of the proof of Theorem
in []. We omit the details here. �
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3 Numeric example
Now let us consider the following example.

Example 

ẋ(t) = x
(

 –
(
. + . sin(t)

)
x –

.y
y + 

– .xy
)

,

ẏ(t) = y
(

 –
x

 + x
– y

)
.

(.)

Corresponding to system (.), one has

r(t) = , a(t) = . + . sin(t),

b(t) = ., c(t) = .,

r(t) = , a(t) = , b(t) = .

And so,

M =
rM

aL
= , M =

rM

aL
= , (.)

Figure 1 Dynamic behavior of the first component x(t) of the solution (x(t), y(t)) of system (3.1) with
the initial condition (x(0), y(0)) = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (10, 4), and (16, 3), respectively.

Figure 2 Dynamic behavior of the second component y(t) of the solution (x(t), y(t)) of system (3.1)
with the initial condition (x(0), y(0)) = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (10, 4), and (16, 3), respectively.
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consequently

rL
bL

 + M
=  × 

 + 
=  >  ×  = rMaM,

rLaL =  ×  >  × . = rMbM

(.)

hold. Also,

rL –
aM
bL

+M

rM =  –  = ,

rL –
bM

aL
rM = .,

(.)

and so

cM = . <



min{, .}

=


MM
min

{
rL –

aM
bL

+M

rM, rL –
bM

aL
rM

}
. (.)

It follows from Theorem . that the first species of the system (.) is globally attractive,
and the second species will be driven to extinction; numeric simulations (Figures  and )
also support these finds.

4 Conclusion
Stimulated by the work of Yue [], in this paper, a two species non-autonomous competi-
tive system with nonlinear inter-inhibition terms and one toxin producing phytoplankton
is proposed and studied. Series conditions which ensure the extinction of one species and
the global attractivity of the other species are established.

We mention here that in system (.), we did not consider the influence of delay, we leave
this for future investigation.
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