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Abstract
In this article, we study a homogeneous infinite order Dirichlet and Neumann
boundary fractional equations in a bounded domain. The fractional time derivative is
considered in a Riemann-Liouville sense. Constraints on controls are imposed. The
existence results for equations are obtained by applying the classical Lax-Milgram
Theorem. The performance functional is in quadratic form. Then we show that the
optimal control problem associated to the controlled fractional equation has a
unique solution. Interpreting the Euler-Lagrange first order optimality condition with
an adjoint problem defined by means of the right fractional Caputo derivative, we
obtain an optimality system. The obtained results are well illustrated by examples.
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1 Introduction
The fractional calculus is nowadays an excellent mathematical tool which opens the gates
for finding hidden aspects of the dynamics of the complex processes which appear natu-
rally in many branches of science and engineering. The methods and techniques of this
type of calculus are continuously generalized and improved especially during the last few
decades. The recent trend in the mathematical modeling of several phenomena indicates
the popularity of fractional calculus modeling tools due to the nonlocal characteristic
of fractional-order differential and integral operators, which are capable of tracing the
past history of many materials and processes; see, for instance, [–] and the references
therein.

The study of fractional optimal control involving first and second order operators has
recently attracted the attention of many researchers and modelers see, for instance, [–,
, , ] and the references therein.

In this paper we try to extend the previous results. We consider here a different type
of evolution equations, namely, fractional partial differential equations involving infinite
order operators see Bahaa and Kotarski [] and papers therein. Such an infinite order
system can be treated as a generalization of the mathematical model for a plasma con-
trol process. The existence and uniqueness of solutions for such equations are proved.
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Fractional optimal control is characterized by the adjoint problem. By using this charac-
terization, particular properties of fractional optimal control are proved.

This paper is organized as follows. In Section , we introduce Sobolev spaces with in-
finite order and we introduce some definitions and preliminary results. In Section , we
formulate the fractional Dirichlet problem for infinite order equations. In Section , we
show that our fractional optimal control problem holds and gives the optimality system for
the optimal control. In Section , we formulate the fractional Neumann problem. In Sec-
tion , we formulate the minimization problem and we state some illustrated examples.
In Section  we state our conclusion of the paper.

2 Sobolev spaces with infinite order and fractional derivatives
The object of this section is to give the definition of some function spaces of infinite order,
and the chains of the constructed spaces which will be used later; see Dubinskii [, ].

Let � be a bounded open set of Rn with a smooth boundary �. We define the infinite
order Sobolev space H∞{aα , }(�) of functions φ(x) defined on � as follows:

H∞{aα , }(�) =

{
φ(x) ∈ C∞(�) :

∞∑
|α|=

aα

∥∥Dαφ
∥∥

 < ∞
}

,

where C∞(�) is the space of infinitely differentiable functions, aα ≥  is a numerical se-
quence and ‖ · ‖ is the canonical norm in the space L(�), and

Dαφ(x) :=
(

∂

∂x

)α

· · ·
(

∂

∂xn

)αn

· φ(x, . . . , xn),

Dα =
∂ |α|

(∂x)α · · · (∂xn)αn
,

α = (α, . . . ,αn) being a multi-index for differentiation, |α| =
∑n

i= αi.
The space H–∞{aα , }(�) is defined as the formal conjugate space to the space H∞{aα ,

}(�), namely

H–∞{aα , }(�) =

{
ψ(x) ∈ L(�) : ψ(x) =

∞∑
|α|=

(–)|α|aαDαψα(x)

}
,

where ψα ∈ L(�) and
∑∞

|α|= aα‖ψα‖
 < ∞.

The duality pairing of the spaces H∞{aα , }(�) and H–∞{aα , }(�) is postulated by the
formula

(φ,ψ) =
∞∑

|α|=

aα

∫
�

ψα(x)Dαφ(x) dx,

where

φ ∈ H∞{aα , }(�), ψ ∈ H–∞{aα , }(�).

From Bahaa and Kotarski [], H∞{aα , }(�) is everywhere dense in L(�) with topo-
logical inclusions and H–∞{aα , }(�) denotes the topological dual space with respect to



Bahaa Advances in Difference Equations  (2016) 2016:250 Page 3 of 16

L(�), so we have the following chain of inclusions:

H∞{aα , }(�) ⊆ L(�) ⊆ H–∞{aα , }(�).

The space H∞
 {aα , }(�) is proper subspace of H∞{aα , }(�) consisting of all the func-

tions φ ∈ H∞{aα , }(�) such that φ|� = .
Clearly, H∞

 {aα , }(�) is dense in L(�). Constructing the corresponding negative space
H–∞

 {aα , }(�).
Then we have the following chains:

H∞
 {aα , }(�) ⊆ H∞{aα , }(�) ⊆ L(�),

H∞
 {aα , }(�) ⊆ L(�) ⊆ H–∞

 {aα , }(�).
(.)

We shall use the following notation:

Q = QT = �× ], T[, � an open subset of Rn,

� = �T = �× ], T[,

� = boundary of �, � = lateral boundary of Q.

We now introduce L(, T ; L(�)) which we shall denoted by L(Q), denotes the space of
measurable functions t → φ(t) such that

‖φ‖L(Q) =
(∫ T



∥∥φ(t)
∥∥

 dt
) 


< ∞,

endowed with the scalar product (f , g) =
∫ T

 (f (t), g(t))L(�) dt, L(Q) is a Hilbert space.
In the same manner we define the spaces L(, T ; H∞{aα , }(�)), and L(, T ; H–∞{aα ,

}(�)), as their formal conjugates.
Also, we have the following chain of inclusions:

L(, T ; H∞{aα , }(�)
) ⊆ L(Q) ⊆ L(, T ; H–∞{aα , }(�)

)
,

L(, T ; H∞
 {aα , }(�)

) ⊆ L(Q) ⊆ L(, T ; H–∞
 {aα , }(�)

)
.

The following definitions and lemmas can be found in Agrawal [, ] and Mophou
[, ].

Definition . Let f : R+ → R be a continuous function on R+ and β > . Then the ex-
pression:

Iβ
+ f (t) =


�(β)

∫ t


(t – s)β–f (s) ds, t > ,

is called the Riemann-Liouville integral of order β .

Definition . Let f : R+ → R. The left Riemann-Liouville fractional derivative of order
β of f is defined by

Dβ
+ f (t) =


�(n – β)

dn

dtn

∫ t


(t – s)n–β–f (s) ds, t > ,
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where β ∈ (n – , n), n ∈ N . When β is an integer the left derivative are replaced with D,
the ordinary differential operator.

Definition . Let f : R+ → R. The left Caputo fractional derivative of order β of f is
defined by

Dβ
 f (t) =


�(n – β)

∫ t


(t – s)n–β–f (n)(s) ds, t > ,

where β ∈ (n – , n), n ∈ N .

The Caputo fractional derivative is a sort of regularization in the time origin for the
Riemann-Liouville fractional derivative.

Lemma . Let T > , u ∈ Cm([, T]), p ∈ (m – , m), m ∈ N and v ∈ C([, T]). Then for
t ∈ [, T] the following properties hold:

Dp
+v(t) =

d
dt

I–p
+ v(t), m = ,

Dp
+Ip

+v(t) = v(t);

Ip
+Dp

u(t) = u(t) –
m–∑
k=

tk

k!
u(k)();

lim
t→+

Dp
u(t) = lim

t→+
Ip

+u(t) = .

From now on we set

Dβ f (t) =


�( – β)

∫ T

t
(s – t)–β f ′(s) ds.

Remark . –Dβ f (t) is the so-called right fractional Caputo derivative. It represents the
future state of f (t). For more details on the derivative we refer to Agrawal [, ] and
Mophou [, ]. Note also that when T = +∞, Dβ f (t) is the Weyl fractional integral of
order β of f ′.

Lemma . [] Let  < β < . Then for any φ ∈ C∞(Q) we have

∫ T



∫
�

(
Dβ

+y(x, t) + Ay(x, t)
)
φ(x, t) dx dt

=
∫

�

φ(x, T)I–β
+ y(x, T) dx –

∫
�

φ(x, )I–β
+ y

(
x, +)

dx

+
∫ T



∫
∂�

y
∂φ

∂ν
d� dt –

∫ T



∫
∂�

∂y
∂ν

φ d� dt

+
∫ T



∫
�

y(x, t)
(
–Dβφ(x, t) + A∗φ(x, t)

)
dx dt,
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where A is a given operator which is defined by (.) below and

∂y
∂νA

=
∞∑

|α|=

(
Dαy

)
cos(n, x) on �,

cos(n, xk) is the kth direction cosine of n, n being the normal at �.

We also introduce the space

W(, T) :=
{

y; y ∈ L(, T ; H∞
 {aα , }(�)

)
, Dβ

+y(t) ∈ L(, T ; H–∞
 {aα , }(�)

)}

in which a solution of a parabolic equation with an infinite order is contained. The spaces
considered in this paper are assumed to be real.

3 Fractional Dirichlet problem for infinite order system
The object of this section is to formulate the following mixed initial-boundary value frac-
tional Dirichlet evolution problem for infinite order system which defines the state of the
system model:

Dβ
+y(t) + Ay(t) = f (t), t ∈ [, T], (.)

I–β
+ y

(
+)

= y, x ∈ �, (.)

y(x, t) = , x ∈ �, t ∈ (, T), (.)

where  < β < , y ∈ H∞
 {aα , }(�), the function f belongs to L(Q). The fractional integral

I–β
+ and the derivative Dβ

+ are understood here in the Riemann-Liouville sense, � has the
same properties as in Section  and I–β

+ y(+) = limt→+ I–β
+ y(t). The operator A in the

state equation (.) is an infinite order parabolic operator; see Dubinskii [, ], Bahaa
and Kotarski [], A is given by

Ay =

( ∞∑
|α|=

(–)|α|aαDα + 

)
y, (.)

and
∑∞

|α|=(–)|α|aαDα is an infinite order self-adjoint elliptic partial differential operator.
The operator

A ∈L
(
H∞

 {aα , }(�), H–∞
 {aα , }(�)

)
.

For this operator we define the bilinear form as follows.

Definition . For each t ∈ ], t[, we define a family of bilinear forms on H∞
 {aα , }(�)

by

π (t; y,φ) = (Ay,φ)L(�), y,φ ∈ H∞
 {aα , }(�), (.)
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where A maps H∞
 {aα , }(�) onto H–∞

 {aα , }(�) and takes the form (.). Then

π (t; y,φ) = (Ay,φ)L(�)

=

(( ∞∑
|α|=

(–)|α|aαDα + 

)
y,φ(x)

)
L(�)

=
∫

�

∞∑
|α|=

aαDαy(x)Dαφ(x) dx +
∫

�

y(x)φ(x) dx.

Lemma . The bilinear form π (t; y,φ) is coercive on H∞
 {aα , }(�), that is,

π (t; y, y) ≥ λ‖y‖
H∞

 {aα ,}(�), λ > . (.)

Proof It is well known that the ellipticity of A is sufficient for the coerciveness of π (t; y,φ)
on H∞

 {aα , }(�).
Since

π (t;φ,ψ) =
∫

�

∞∑
|α|=

aαDαφDαψ dx +
∫

�

y(x)φ(x) dx,

we get

π (t; y, y) =
∫

�

∞∑
|α|=

aαDαyDαy dx +
∫

�

y(x)y(x) dx

=
∞∑

|α|=

aα

∥∥Dαy(x)
∥∥

L(�) +
∥∥y(x)

∥∥
L(�)

≥ λ‖y‖
H∞

 {aα ,}(�), λ > . �

Also we assume that ∀y,φ ∈ H∞
 {aα , }(�) the function t → π (t; y,φ) is continuously

differentiable in ], T[ and the bilinear form π (t; y,φ) is symmetric,

π (t; y,φ) = π (t;φ, y) ∀y,φ ∈ H∞
 {aα , }(�). (.)

The Equations (.)-(.) constitute a fractional Dirichlet problem. First by using the
Lax-Milgram lemma, we will prove sufficient conditions for the existence of a unique so-
lution of the mixed initial-boundary value problem (.)-(.).

Lemma . (see Agrawal [, ] and Mophou [, ]) (Green’s formula) Let y be the solu-
tion of system (.)-(.). Then for any φ ∈ C∞(Q) such that φ(x, T) =  in � and φ =  on
�, we have

∫ T



∫
�

(
Dβ

+y(x, t) + Ay(x, t)
)
φ(x, t) dx dt

= –
∫

�

φ(x, )I–β
+ y

(
x, +)

dx +
∫ T



∫
∂�

y
∂φ

∂ν
d� dt

–
∫ T



∫
∂�

∂y
∂ν

φ d� dt +
∫ T



∫
�

y(x, t)
(
–Dβφ(x, t) + A∗φ(x, t)

)
dx dt.
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Lemma . If (.), (.) holds, then the problem (.)-(.) admits a unique solution y ∈
W(, T).

Proof See Lions, [], Chapter , Theorem ., pp.-. From the coerciveness condi-
tion (.), there exists a unique element y(t) ∈ H∞{aα , }(�) such that

(
Dβ

+y(t),φ
)

L(Q) + π (t; y,φ) = L(φ) for all φ ∈ H∞
 {aα , }(�),

which is equivalent to the existence of a unique solution y(t) ∈ H∞{aα , }(�) for

(
Dβ

+y(t),φ
)

L(Q) +
(
Ay(t),φ

)
L(Q) = L(φ) for all φ ∈ H∞

 {aα , }(�),

i.e. for

(
Dβ

+y(t) + Ay(t),φ(x)
)

L(Q) = L(φ)

which can be written as
∫

Q

(
Dβ

+y(t) + Ay(t)
)
φ(x) dx dt = L(φ) for all φ ∈ H∞

 {aα , }(�). (.)

This is known as the variational fractional Dirichlet problem, where L(φ) is a continuous
linear form on H∞

 {aα , }(�) and takes the form

L(φ) =
∫

Q
f φ dx dt +

∫
�

yφ(x, ) dx,

f ∈ L(Q), y ∈ L(�). (.)

Then equation (.) is equivalent to

∫
Q

(
Dβ

+y(t) + Ay(t)
)
φ(x) dx dt

=
∫

Q
f φ dx dt +

∫
�

yφ(x, ) dx for all φ ∈ H∞
 {aα , }(�)

that is, the PDE

Dβ
+y(t) + Ay(t) = f (.)

‘tested’ against φ(x).
Let us multiply both sides in (.) by φ and applying Green’s formula (Lemma .), we

have
∫

Q

(
Dβ

+y + Ay
)
φ dx dt

=
∫

Q
f φ dx dt –

∫
�

φ(x, )I–β
+ y

(
x, +)

dx
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+
∫ T



∫
∂�

y
∂φ

∂ν
d� dt –

∫ T



∫
∂�

∂y
∂ν

φ d� dt

+
∫ T



∫
�

y(x, t)
(
–Dβφ(x, t) + A∗φ(x, t)

)
dx dt =

∫
Q

f φ dx dt

whence comparing with (.), (.)

∫
�

φ(x, )I–β
+ y

(
x, +)

dx –
∫ T



∫
∂�

y
∂φ

∂ν
d� dt =

∫
�

yφ(x, ) dx.

From this we deduce (.), (.). �

4 Optimization theorem and the control problem
For a control u ∈ L(Q) the state y(u) of the system is given by

Dβ
+y + Ay(u) = u, (x, t) ∈ Q, (.)

y(u)|� = , (.)

I–β
+ y(x, ; u) = y(x), x ∈ �. (.)

The observation equation is given by

z(u) = y(u).

The cost function J(v) is given by

J(v) =
∫

Q

(
y(v) – zd

) dx dt + (Nv, v)L(Q),

where zd is a given element in L(�) and N ∈L(L(Q), L(Q)) is a hermitian positive defi-
nite operator:

(Nu, u) ≥ c‖u‖
L(Q), c > .

Control constraints: We define Uad (set of admissible controls) is closed, convex subset
of U = L(Q).

Control problem: We want to minimize J over Uad i.e. find u such that

J(u) = inf
v∈Uad

J(v). (.)

Under the given considerations we have the following theorem.

Theorem . The problem (.) admits a unique solution given by (.)-(.) and by

∫
Q

(
p(u) + Nu

)
(v – u) dx dt ≥ ,

where p(u) is the adjoint state.
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Proof In a similar manner to Mophou [], Proposition . and Theorem ., and Lions
[], the control u ∈ Uad is optimal if and only if

J ′(u)(v – u) ≥  for all v ∈ Uad.

The above condition, when explicitly calculated for this case, gives

(
y(u) – zd, y(v) – y(u)

)
L(Q) + (Nu, v – u)L(Q) ≥ 

i.e.
∫

Q

(
y(u) – zd

)(
y(v) – y(u)

)
dx dt + (Nu, v – u)L(Q) ≥ . (.)

For the control u ∈ L(Q) the adjoint state p(u) ∈ L(Q) is defined by

–Dβp(u) + A∗p(u) = y(u) – zd in Q,

p(u) =  on �, (.)

p(x, T ; u) =  in �.

Now, multiplying equation (.) by (y(v) – y(u)) ∈ C∞(�) and applying Green’s formula,
we obtain

∫
Q

(
y(u) – zd

)(
y(v) – y(u)

)
dx dt

=
∫

Q

(
–Dβp(u) + A∗p(u)

)(
y(v) – y(u)

)
dx dt

=
∫

�

p(x, )I–β
+

(
y
(
v; x, +)

– y
(
u; x, +))

dx

+
∫

�

p(u)
(

∂y(v)
∂νA

–
∂y(u)
∂νA

)
d� –

∫
�

∂p(u)
∂νA

(
y(v) – y(u)

)
d�

+
∫

Q
p(u)

(
Dβ

+ + A
)(

y(v) – y(u)
)

dx dt.

From (.), (.) we have

(
Dβ

+ + A
)(

y(v) – y(u)
)

= v – u, y(u)|� = , p(u)|� = .

Then we obtain
∫

Q

(
y(u) – zd

)(
y(v) – y(u)

)
dx dt =

∫
Q

p(u)(v – u) dx dt

and hence (.) is equivalent to

∫
Q

p(u)(v – u) dx dt + (Nu, v – u)L(Q) ≥ 
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i.e. ∫
Q

(
p(u) + Nu

)
(v – u) dx dt ≥ 

which completes the proof. �

Example . [] Let n ∈ N∗. and � be a bounded open subset of Rn with boundary ∂�

of class C. For a time T > . We consider the fractional diffusion equation

Dβ
+y(t) – y(t) = v, t ∈ [, T], (.)

I–β
+ y

(
+)

= y, x ∈ �, (.)

y(x, t) = , x ∈ �, t ∈ (, T), (.)

where  < β < , y ∈ H(�) ∩ H
(�), the control v belongs to L(Q). We can minimize

J(v) =
∥∥y(v) – zd

∥∥
L(Q) + N‖v‖

L(Q), zd ∈ L(Q), N > 

subject to system (.)-(.) and the optimal control v will be characterized by system
(.)-(.) with the adjoint system

–Dβ
+p(t) – p(t) = y – zd, t ∈ [, T],

p(x, t) = , x ∈ �, t ∈ (, T),

p(x, T) = , x ∈ �,

and with the optimality condition

v = –
p
N

in Q.

5 Fractional Neumann problem for infinite order system
From (.) we can show that the bilinear form (.) is coercive in H∞{aα , }(�), that is,

π (y, y) ≥ c‖y‖
H∞{aα ,}(�), c >  for all y ∈ H∞{aα , }(�). (.)

From the above coercitivness condition (.) and using the Lax-Milgram lemma we have
the following lemma, which defines the Neumann problem for the operator A with A ∈
L(H∞{aα , }(�), H–∞{aα , }(�)) and enables us to obtain the state of our control problem.

Lemma . If (.) is satisfied then there exists a unique element y ∈ H∞{aα , }(�) satis-
fying the Neumann problem

Dβ
+y + Ay = f in Q, (.)

∂y
∂νA

= h on �, (.)

I–β
+ y

(
+)

= y(x), x ∈ �. (.)
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Proof From the coerciveness condition (.) and using the Lax-Milgram lemma, there ex-
ists a unique element y ∈ H∞{aα , }(�) such that

∫
Q

y
(
–Dβψ + A∗ψ

)
dx dt = M(ψ) for all ψ ∈ H∞{aα , }(�). (.)

This is known as the fractional Neumann problem, where M(ψ) is a continuous linear
form on H∞{aα , }(�) and takes the form

M(ψ) =
∫

Q
f ψ dx dt +

∫
�

yψ(x, ) dx –
∫

�

h
∂ψ

∂νA∗
d�,

f ∈ L(Q), y ∈ L(�), h ∈ H∞{aα , }(�). (.)

The Equation (.) is equivalent to (.). Let us multiply both sides in (.) by ψ and
applying Green’s formula, we have

∫
Q

(
Dβ

+y + Ay
)
ψ dx dt

=
∫

Q
f ψ dx dt –

∫
�

ψ(x, )I–β
+ y

(
x, +)

dx

+
∫ T



∫
∂�

y
∂ψ

∂ν
d� dt –

∫ T



∫
∂�

∂y
∂ν

ψ d� dt

+
∫ T



∫
�

y(x, t)
(
–Dβψ(x, t) + A∗ψ(x, t)

)
dx dt =

∫
Q

f ψ dx dt

whence comparing with (.), (.)

∫
�

ψ(x, )I–β
+ y

(
x, +)

dx +
∫ T



∫
∂�

ψ
∂y
∂ν

d� dt

=
∫

�

yψ(x, ) dx +
∫ T



∫
∂�

hψ d� dt.

From this we deduce (.), (.). �

6 Minimization theorem and boundary control problem
We consider the space U = L(�) (the space of controls), for every control u ∈ U , the state
of the system y(u) ∈ H∞{aα , }(�) is given by the solution of

Dβ
+y(u) + Ay(u) = f in Q, (.)

∂y(u)
∂νA

= u on �, (.)

I–β
+ y(x, ; u) = y(x), x ∈ �. (.)

For the observation, we consider the following two cases:
(i)

z(u) = y(u), (.)
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(ii) observation of final state

z(u) = y(x, T ; u). (.)

Case (i) For the observation (.), the cost function is given by

J(v) =
∫

Q

(
y(v) – zd

) dx dt + (Nv, v)L(�), zd ∈ L(Q), (.)

where N ∈L(L(�), L(�)), N is a hermitian positive definite:

(Nu, u)L(�) ≥ c‖u‖
L(�), c > . (.)

Control constraints: We define Uad (set of admissible controls) is closed, convex dense
subset of U = L(�).

Control problem: We wish to find

inf
v∈Uad

J(v). (.)

Under the given considerations we have the following theorem.

Theorem . Assume that (.) holds and the cost function being given by (.). The op-
timal control u of problem (.) is characterized by (.), (.), (.) together with

–Dβp(u) + A∗p(u) = y(u) – zd in Q, (.)

∂p(u)
∂νA∗

=  on �, (.)

p(x, T ; u) = , x ∈ �, (.)

and the optimality condition is

∫
�

(
p(u) + Nu

)
(v – u) d� ≥  ∀v ∈ Uad, (.)

where p(u) is the adjoint state.

Proof By similar manner as in Mophou [], Proposition . and Theorem . and Lions
[], the control u ∈ Uad is optimal if and only if

J ′(u)(v – u) ≥  ∀v ∈ Uad

which is equivalent to

(
y(u) – zd, y(v) – y(u)

)
L(Q) + (Nu, v – u)U ≥ . (.)
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The adjoint state is given by the solution of the adjoint Neumann problem (.), (.),
(.). Now, multiplying the equation in (.) by y(v) – y(u) and applying Green’s formula,
with taking into account the conditions in (.), (.), we obtain

∫
Q

(
y(u) – zd

)(
y(v) – y(u)

)
dx dt

=
∫

Q

(
–Dβp(u) + A∗p(u)

)(
y(v) – y(u)

)
dx dt

= –
∫

�

p(x, )I–β
+

(
y
(
v; x, +)

– y
(
u; x, +))

dx +
∫

�

p(u)
(

∂

∂νA
y(v) –

∂

∂νA
y(u)

)
d�

–
∫

�

∂

∂νA∗
p(u)

(
y(v) – y(u)

)
d� +

∫
Q

p(u)
(
Dβ

+ + A
)(

y(v) – y(u)
)

dx dt

=
∫

�

p(u)(v – u) d�. (.)

Hence we substituted from (.) in (.), we get

∫
�

p(u)(v – u) d� + (Nu, v – u)L(�) ≥ 

i.e.
∫

�

(
p(u) + Nu

)
(v – u) d� ≥  ∀v ∈ Uad

which completes the proof. �

Example . In the case of no constraints on the control (Uad = U ). Then (.) reduce to

p + Nu =  on �.

The optimal control is obtained by the simultaneous solution of the following system of
partial differential equations:

Dβ
+ + Ay = f , –Dβp + A∗p = y – zd in Q,

∂y
∂νA

∣∣∣∣
�

+ N–p|� = ,
∂p

∂νA∗
=  on �,

I–β
+ y(x, ) = y(x), p(x, T) = , x ∈ �,

further

u = –N–(P|�).

Example . Take

Uad =
{

u|u ∈ L(�), u ≥  almost everywhere on �
}

.
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The optimal control is obtained by the solution of the problem

Dβ
+y + Ay = f , –Dβp + A∗p = y – zd in Q,

∂y
∂νA

≥ ,
∂p
∂ν∗

A
=  on �,

p + N
∂y

∂νA
≥ ,

∂y
∂νA

[
p + N

∂y
∂νA

]
=  on �,

I–β
+ y(x, ) = y(x), p(x, T) = , x ∈ �,

hence

u =
∂y

∂νA

∣∣∣∣
�

.

Case (ii) for observation of final state (.), the cost function is given by

J(v) =
∫

�

(
y(x, T ; v) – zd

) dx + (Nv, v)L(�), zd ∈ L(�).

The adjoint state is defined by

–Dβp(u) + A∗p(u) =  in Q,

∂p(u)
∂νA∗

=  on �,

p(x, T ; u) = y(x, T ; u) – zd(x), x ∈ �,

and the optimality condition is

∫
�

(p + Nu)(v – u) d� ≥  ∀v ∈ Uad, (.)

where p(u) is the adjoint state.

Example . Take the case of no constraints on the control (Uad = U ). Then (.) reduces
to

p + Nu =  on �.

The optimal control is obtained by the simultaneous solution of the following system of
partial differential equations:

Dβ
+y + Ay = f , –Dβp + A∗p =  in Q,

∂y
∂νA

∣∣∣∣
�

+ N–p|� = ,
∂p
∂ν∗

A
=  on �,

I–β
+ y(x, ) = y(x), p(x, T) = y(x, T ; u) – zd(x), x ∈ �,
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further

u = –N–(P|�).

Example . Take

Uad =
{

u|u ∈ L(�), u ≥  almost everywhere on �
}

.

Then (.) is equivalent to

u ≥ , p(u) + Nu ≥ , u
(
p(u) + Nu

)
=  on �.

7 Conclusions
An analytical scheme for fractional optimal control of infinite order systems is considered.
The fractional derivatives were defined in the Riemann-Liouville sense. The analytical re-
sults were given in terms of the Euler-Lagrange equations for the fractional optimal control
problems. The formulation presented and the resulting equations are very similar to those
for classical optimal control problems. The optimization problem presented in this paper
constitutes a generalization of the optimal control problem of parabolic systems with the
Dirichlet and Neumann boundary conditions considered in Lions [], Lions and Magenes
[] to fractional optimal control problem for infinite order systems. Also the main result
of the paper contains necessary and sufficient conditions of optimality for infinite order
systems that give a characterization of optimal control (Theorems . and .).
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