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Abstract
Some sufficient conditions are given such that the following system of difference
equations:

x(1)(n + 1) = max
1≤j≤l1

{
f1j(n, x(1)(n), . . . , x(k)(n))

}
,

x(2)(n + 1) = max
1≤j≤l2

{
f2j(n, x(1)(n), . . . , x(k)(n))

}
,

...

x(k)(n + 1) = max
1≤j≤lk

{
fkj(n, x(1)(n), . . . , x(k)(n))

}
,

n ∈ N0, where k ∈ N, li ∈ N, i = 1, k, x(i)(0) ∈R, i = 1, k, has a unique periodic solution
attracting all the solutions to the system. Our main result considerably generalizes
some recent results in the literature and simplifies their proofs.

MSC: Primary 39A23

Keywords: max-type system of difference equations; existence of periodic solutions;
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1 Introduction
Max-type difference equations and systems have attracted some recent interest (see, for
example, [–], and the references therein). Besides the usual interest in mathematics,
one of the reasons for the interest is their potential application in control theory, neuro-
science, and some other branches of science, which is under present investigation of some
experts in the research fields. The problem of calculating the maximal output among sev-
eral possible ones suggests a great applicable potential whenever there is such a situation
in applications and/or theory. The boundedness character of, usually positive, solutions of
the equations and systems is frequently studied as one of the basic problems in this area
(see, for example, [, , , , , ]). The study of concrete symmetric and close to symmet-
ric systems of difference equations essentially stems [] and [] by Papaschinopoulos and
Schinas. The investigation of max-type systems in this direction was conducted, for exam-
ple, in [–, –]. Many papers on max-type difference equations and systems deal with
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the problem of periodicity of their solutions (see, for example, [, , , , , , , ], and
the references therein), while global attractivity results can be found, for example, in [, ,
, ]. For the solvability of some max-type systems see [] (there has been a renewed
interest in the topic, see, also [] and numerous references therein). The majority of the
above mentioned papers are on concrete max-type systems of difference equations, but
there are a few dealing with some general systems, such as [, ], which are motivated
by important note [].

As usual, throughout the paper, N will denote the set of all natural numbers, i.e., the set
{, , , . . .}, N = N∪ {}, and R will denote the set of all real numbers. If k, l ∈N are such
that k ≤ l, then the notation i = k, l will denote the set of all i ∈N such that k ≤ i ≤ l.

In this paper we consider the following, quite general, max-type system of difference
equations extending the one in [] and related to the ones in [, ]:

x()(n + ) = max
≤j≤l

{
fj

(
n, x()(n), . . . , x(k)(n)

)}
,

...

x(i)(n + ) = max
≤j≤li

{
fij

(
n, x()(n), . . . , x(k)(n)

)}
, ()

...

x(k)(n + ) = max
≤j≤lk

{
fkj

(
n, x()(n), . . . , x(k)(n)

)}
,

n ∈ N, where k ∈ N, li ∈ N, i = , k, x(i)() ∈ R, i = , k, and where the functions fij : N ×
R

k →R, i = , k, j = , li, are ω-periodic in the first variable, that is, satisfy the equalities

fij(n + ω, u, . . . , uk) = fij(n, u, . . . , uk), ()

for every n ∈ N and us ∈ R, s = , k, and some ω ∈ N, and satisfy the following Lipschitz-
type conditions:

∣∣fij(n, u, . . . , uk) – fij(n, v, . . . , vk)
∣∣ ≤

k∑

s=

Lijs|us – vs| ()

for every n ∈N and us, vs ∈R, s = , k, and for some Lijs ≥ , i, s = , k, j = , li, such that

q̂ := max
≤i≤k,≤j≤li

k∑

s=

Lijs < . ()

By R
k∞, we will denote the k-dimensional real vector space with the following norm:

‖	a‖
R

k∞ = max
i=,k

|ai|,

where 	a = (a, . . . , ak) ∈R
k .
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A solution (	x(n))n∈N = (x()(n), . . . , x(k)(n))n∈N to system () is called eventually periodic
with period ω ∈N if there is n ∈N such that

x(i)(n + ω) = x(i)(n),

for every n ≥ n and i = , k (see, e.g., [, , ]). If n = , then such a solution to system
() is called ω-periodic.

Let l∞ω (Nk
) be the space of all ω-periodic vector sequences x = (	x(n))n∈N = (x()(n), . . . ,

x(k)(n))n∈N , with the following norm:

‖x‖ω∞ = max
≤n≤ω–

∥∥	x(n)
∥∥
R

k∞ . ()

It is well known that l∞ω (Nk
) with norm () is a Banach space.

Recently, in [], which was the motivation for this paper of ours, it was shown that,
under some more restrictive conditions than the ones proposed here, for the case k = ,
max-type system () has a unique periodic solution with period ω and that every solution
to the system converges to the periodic solution. A natural question is whether a related
result holds for the case of k-dimensional system (). In this paper we give a positive answer
to the question. Moreover, we also present an elegant and considerably shorter proof of a
more general result which includes the ones in [].

One of the standard methods for showing the existence of a specific type of solutions of
systems of difference equations is application of fixed point theorems. Various results of
this type can be found, for example, in [] and [], and in the related references therein.

Assume that (X, d) is a (non-empty) complete metric space and that operator A : X → X
is a contraction, that is, the following inequality holds:

d(Ax, Ay) ≤ qd(x, y), ()

for every x, y ∈ X and some q ∈ [, ). The Banach fixed point theorem says that under
these conditions operator A has a unique fixed point, that is, a point x∗ ∈ X such that
A(x∗) = x∗.

The idea in the paper is to define a natural operator on the metric (in fact, normed) space
(l∞ω (Nk

),‖ · ‖ω∞ ), which will be a contraction, so that by using the Banach fixed point the-
orem can be shown the existence of a fixed point, which will be a unique periodic solution
to system (). For proving the global attractivity of all solutions to system () to the periodic
one is essentially used a related stronger condition to (), for which there is not needed
any fixed point theorem, but just some estimates.

2 Main result and some remarks
In this section we prove the main result of this paper, and we also give some remarks
related to the proof of the main result and conditions posed in it.

Theorem  Consider system (), where k ∈ N, li ∈ N, i = , k, x(i)() ∈ R, i = , k, the func-
tions fij : N ×R

k →R, i = , k, j = , li, satisfy conditions () and () with some nonnegative
constants Lijs, i, s = , k, j = , li, satisfying condition (). Then system () has a unique ω-
periodic solution attracting all the solutions to the system.
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Proof For brevity, from now on we will write system () in the following form:

x(i)(n + ) = max
≤j≤li

{
fij

(
n, 	x(n)

)}
, n ∈N, i = , k. ()

Let c be a real number such that

 < c ≤  – q̂


, ()

and write system () in the following form:

x(i)(n + ) = cx(i)(n) + max
≤j≤li

{
fij

(
n, 	x(n)

)
– cx(i)(n)

}
, ()

for n ∈N and i = , k.
On the family of all vector sequences, we define the operators Ti, i = , k, as follows:

Ti(z)(n) = max
≤j≤li

{
fij

(
n,	z(n)

)
– cz(i)(n)

}
, ()

for n ∈N and i = , k.
Let

T(z)(n) =

(
ω∑

s=

c–sT(z)(n + s – )
c–ω – 

, . . . ,
ω∑

s=

c–sTk(z)(n + s – )
c–ω – 

)

, ()

for n ∈N.
Since the functions fij, i = , k, j = , li, are ω-periodic in the first variable it immediately

follows that Ti(z)(n + ω) = Ti(z)(n), for every n ∈ N and i = , k, and consequently one
obtains

T(z)(n + ω) = T(z)(n), n ∈N,

for every z ∈ l∞ω (Nk
).

This means that the operator T maps the Banach space l∞ω (Nk
) into itself.

Now we estimate the following expressions:

∣∣Ti(x)(n) – Ti(y)(n)
∣∣ =

∣∣∣max
≤j≤li

{
fij

(
n, 	x(n)

)
– cx(i)(n)

}
– max

≤j≤li

{
fij

(
n, 	y(n)

)
– cy(i)(n)

}∣∣∣,

for n ∈N and i = , k.
For each i ∈ {, . . . , k}, there are j, j ∈ {, . . . , li} (j = j(i), j = j(i)), such that

max
≤j≤li

{
fij

(
n, 	x(n)

)}
= fij

(
n, 	x(n)

)

and

max
≤j≤li

{
fij

(
n, 	y(n)

)}
= fij

(
n, 	y(n)

)
,
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which implies

∣∣Ti(x)(n) – Ti(y)(n)
∣∣ =

∣∣fij
(
n, 	x(n)

)
– cx(i)(n) – fij

(
n, 	y(n)

)
+ cy(i)(n)

∣∣. ()

If, for some i ∈ {, . . . , k},

fij
(
n, 	x(n)

)
– cx(i)(n) – fij

(
n, 	y(n)

)
+ cy(i)(n) ≥ ,

then from (), the choice of j, and (), we have

∣∣Ti(x)(n) – Ti(y)(n)
∣∣ = fij

(
n, 	x(n)

)
– cx(i)(n) – fij

(
n, 	y(n)

)
+ cy(i)(n)

≤ fij
(
n, 	x(n)

)
– cx(i)(n) – fij

(
n, 	y(n)

)
+ cy(i)(n)

≤
k∑

s=

Lijs
∣∣x(s)(n) – y(s)(n)

∣∣ + c
∣∣x(i)(n) – y(i)(n)

∣∣

≤
(

c +
k∑

s=

Lijs

)
∥∥	x(n) – 	y(n)

∥∥
R

k∞ . ()

On the other hand, if for some i ∈ {, . . . , k},

fij
(
n, 	x(n)

)
– cx(i)(n) – fij

(
n, 	y(n)

)
+ cy(i)(n) ≤ ,

then from (), the choice of j, and (), we have
∣∣Ti(x)(n) – Ti(y)(n)

∣∣ = fij
(
n, 	y(n)

)
– cy(i)(n) – fij

(
n, 	x(n)

)
+ cx(i)(n)

≤ fij
(
n, 	y(n)

)
– cy(i)(n) – fij

(
n, 	x(n)

)
+ cx(i)(n)

≤
k∑

s=

Lijs
∣∣x(s)(n) – y(s)(n)

∣∣ + c
∣∣x(i)(n) – y(i)(n)

∣∣

≤
(

c +
k∑

s=

Lijs

)
∥∥	x(n) – 	y(n)

∥∥
R

k∞ . ()

From (), (), and () it follows that
∣∣Ti(x)(n) – Ti(y)(n)

∣∣ ≤ (c + q̂)
∥∥	x(n) – 	y(n)

∥∥
R

k∞ , ()

for every n ∈N and i = , k.
Using () and (), we have

∥∥T(x)(n) – T(y)(n)
∥∥
R

k∞ = max
i=,k

∣∣∣∣∣

ω∑

s=

c–s(Ti(x)(n + s – ) – Ti(y)(n + s – ))
c–ω – 

∣∣∣∣∣

≤ (c + q̂)
ω∑

s=

c–s

c–ω – 
∥∥	x(n) – 	y(n)

∥∥
R

k∞

=
c + q̂
 – c

∥∥	x(n) – 	y(n)
∥∥
R

k∞ , ()

for every n ∈N and x, y ∈ l∞ω (Nk
).
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By taking the supremum in () over the set {n :  ≤ n ≤ ω – }, we get

‖Tx – Ty‖ω∞ ≤ q‖x – y‖ω∞ , ()

for every x, y ∈ l∞ω (Nk
), where

q :=
c + q̂
 – c

< ,

due to condition ().
This means that the operator T is a contraction on l∞ω (Nk

). Hence, by the Banach fixed
point theorem it follows that there is a unique fixed point z ∈ l∞ω (Nk

) of T , that is,

z(i)(n) =
ω∑

s=

c–sTi(z)(n + s – )
c–ω – 

, n ∈N, i = , k, ()

holds. By using (), some calculation and ω-periodicity of z, it is not difficult to see that
z is also a solution to system (), which proves the first statement in the theorem.

Let x be a solution to system () and z be the ω-periodic solution to the system, then by
using the change of variables y = x – z the system becomes

y(i)(n + ) = max
≤j≤li

{
fij

(
n, 	y(n) + 	z(n)

)}
– max

≤j≤li

{
fij

(
n,	z(n)

)}
, ()

for every n ∈N and i = , k.
For each i ∈ {, . . . , k}, there are j, j ∈ {, . . . , k} (j = j(i), j = j(i)), such that

max
≤j≤li

{
fij

(
n, 	y(n) + 	z(n)

)}
= fij

(
n, 	y(n) + 	z(n)

)

and

max
≤j≤li

{
fij

(
n,	z(n)

)}
= fij

(
n,	z(n)

)
,

which implies

y(i)(n + ) = fij
(
n, 	y(n) + 	z(n)

)
– fij

(
n,	z(n)

)
. ()

If for some i ∈ {, . . . , k},

fij
(
n, 	y(n) + 	z(n)

)
– fij

(
n,	z(n)

) ≥ ,

then from (), the choice of j and (), we have

∣∣y(i)(n + )
∣∣ = fij

(
n, 	y(n) + 	z(n)

)
– fij

(
n,	z(n)

)

≤ fij
(
n, 	y(n) + 	z(n)

)
– fij

(
n,	z(n)

)

≤
k∑

s=

Lijs
∣∣y(s)(n)

∣∣ ≤
( k∑

s=

Lijs

)
∥∥	y(n)

∥∥
R

k∞ . ()
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On the other hand, if, for some i ∈ {, . . . , k},

fij
(
n, 	y(n) + 	z(n)

)
– fij

(
n,	z(n)

) ≤ ,

then from (), the choice of j, and (), we have

∣∣y(i)(n + )
∣∣ = fij

(
n,	z(n)

)
– fij

(
n, 	y(n) + 	z(n)

)

≤ fij
(
n,	z(n)

)
– fij

(
n, 	y(n) + 	z(n)

)

≤
k∑

s=

Lijs
∣∣y(s)(n)

∣∣

≤
( k∑

s=

Lijs

)
∥∥	y(n)

∥∥
R

k∞ . ()

From () and () it easily follows that

∥∥	y(n + )
∥∥
R

k∞ ≤ q̂
∥∥	y(n)

∥∥
R

k∞ , n ∈N,

from which one obtains

∥∥	y(n)
∥∥
R

k∞ ≤ q̂n∥∥	y()
∥∥
R

k∞ , n ∈N. ()

From () and the fact q̂ ∈ [, ), it follows that

lim
n→∞

∥∥	y(n)
∥∥
R

k∞ = ,

from which the second statement of the theorem follows, finishing the proof of the theo-
rem. �

Remark  If for some fixed i, j ∈ {, . . . , k} the corresponding function fij does not contain
all variables u, u, . . . , uk , but only some of them, say u, . . . , um, where m < k, then the
function fij which maps the setN ×R

m toR can be regarded, in a natural way, as a function
from the set N ×R

k into R, by using the following extension:

f̃ij(n, u, . . . , uk) = fij(n, u, . . . , um),

for every n ∈N, ui ∈R, i = , k.

Such a situation appears in [] where all the involved functions are defined on the set
N ×R, but they can be naturally prolonged on the set N ×R

 as suggested above.

Remark  It is interesting to note that we cannot choose c =  in the proof of the first
statement in Theorem . Namely, if we do this, then the operators Ti, i = , k, become

Ti(z)(n) = max
≤j≤li

{
fij

(
n,	z(n)

)}
, n ∈N, i = , k,
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and a natural choice for the operator T is

T = (T, . . . , Tk).

From the proof of Theorem  with c = , for T such chosen, it is easily seen that (see
())

∥∥T(x) – T(y)
∥∥

ω∞ ≤ q̂‖x – y‖ω∞ ,

for every x, y ∈ l∞ω (Nk
).

Hence, the operator T : l∞ω (Nk
) → l∞ω (Nk

) is a contraction. By the Banach fixed point
theorem it follows that there is a unique z ∈ l∞ω (Nk

) such that T(z) = z, that is,

z(i)(n + ) = z(i)(n),

for every n ∈ N and i = , k, which is, in fact, the existence of a constant vector solution
to ().

Let (	c)n∈N = ((c, . . . , ck))n∈N be a constant solution to (). Then for each i ∈ {, . . . , k}
there is a ji ∈ {, . . . , li} such that

ci = fiji (n,	c),

for every n ∈N, from which it follows that the values of functions fiji are independent of n.
Note that due to the periodicity of fiji the variable n can essentially take only the values
from the set {, , . . . ,ω – }. This suggests that the following closely related result, which
could be known, holds.

Proposition  Consider the system of equations

ci = max
≤j≤li

{
gij(	c)

}
, i = , k, ()

where k ∈ N, li ∈ N, i = , k, the functions gij : Rk → R, i = , k, j = , li, satisfy the following
Lipschitz-type conditions:

∣∣gij(u, . . . , uk) – gij(v, . . . , vk)
∣∣ ≤

k∑

s=

L̂ijs|us – vs| ()

for every us, vs ∈ R, s = , k, and for some nonnegative numbers L̂ijs, i, s = , k, j = , li, such
that

q := max
≤i≤k,≤j≤li

k∑

s=

L̂ijs < . ()

Then system () has a unique solution in R
k .
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Proof Let

M̂ := max
≤i≤k,≤j≤li

∣∣gij(	)
∣∣,

and the operator T = (T, . . . , Tk) be defined on R
k as follows:

T(	u) =
(

max
≤j≤l

{
gj(	u)

}
, . . . , max

≤j≤lk

{
gkj(	u)

})
.

Then by using () and (), we have

∥∥T(	u)
∥∥
R

k∞ = max
i=,k

∣∣∣max
≤j≤li

{
gij(	u)

}∣∣∣ ≤ max
≤i≤k,≤j≤li

{∣∣gij(	)
∣∣ +

∣∣gij(	u) – gij(	)
∣∣}

≤ max
≤i≤k,≤j≤li

{

M̂ +
k∑

s=

L̂ijs|us|
}

≤ M̂ + q‖	u‖
R

k∞ . ()

Let

r =
M̂

 – q
.

Then from () it follows that T maps the closed ball Br = {	u ∈ R
k : ‖	u‖

R
k∞ ≤ r} into itself.

On the other hand, similar to the proof of Theorem , one obtains

∥∥T(	u) – T(	v)
∥∥
R

k∞ ≤ q‖	u – 	v‖
R

k∞ , ()

for every 	u, 	v ∈ R
k , that is, T : Br → Br is a contraction.

Hence, by the Banach fixed point theorem it follows that there is a unique fixed point of
the operator, that is, a unique solution to system () in Br . Due to () it is also a unique
solution in R

k . �
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10. Stević, S: Global stability of a difference equation with maximum. Appl. Math. Comput. 210, 525-529 (2009)
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