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Abstract
This paper is concerned with a periodic nonlinear competition model governed by
impulsive differential equation with infinitely distributed delays and feedback
controls. By means of coincidence degree theory and Lyapunov functional, a set of
sufficient criteria are obtained to guarantee the existence and globally asymptotic
stability of a unique positive periodic solution of the model. Furthermore, applying
our main results to some important competition models which have been well
studied in the literature, we establish some new criteria to supplement and generalize
some well-known results.
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1 Introduction
Lotka [] and Volterra [] proposed the following famous two-species model:

ẋ(t) = x(t)
[
r – ax(t) – bx(t)

]
,

ẋ(t) = x(t)
[
r – ax(t) – bx(t)

]
.

(.)

It is a classical Lotka-Volterra competition model when b > , a > . Here, x(t), x(t)
denote the population density of two competing species. r, r represent the intrinsic
growth rate of the two competing species; a, b are the rate of intra-specific competi-
tion, b, a are the rate of inter-specific competition, respectively. The well-known model
(.) and a lot of its generalized forms have been investigated widely (see [–] and the
references cited therein).

In , Chattopadhyay [] introduced the effect of toxic substances into the competi-
tion model,

ẋ(t) = x(t)
[
r – ax(t) – bx(t) – cx(t)x(t)

]
,

ẋ(t) = x(t)
[
r – ax(t) – bx(t) – cx(t)x(t)

]
,

(.)

where cx
 (t)x(t) and cx(t)x

(t) describe the effect of toxic. Tineo [] and He [] stud-
ied the above autonomous or non-autonomous model and established some good results.
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Furthermore, according to the experiments results, Ayala et al. [] established the fol-
lowing competition model:

ẋi(t) = rixi(t)

[

 –
(

xi(t)
Ki

)θi

–
n∑

j=,j �=i

aij
xj(t)
Kj

]

, i = , , . . . , n, (.)

where xi(t) are the population density of competing species Xi at time t, ri represent the in-
trinsic exponential growth rate of competing species Xi, Ki denote the environment carry-
ing capacity of competing species Xi in the absence of competition, θi provide a nonlinear
measure of intra-specific interference, and aij (i �= j) measure the strength of inter-specific
competition. For more excellent work on the system (.), see [–].

In some real life situations, one wishes to change the position of the existing peri-
odic solution (or almost periodic solution) but to keep its stability. So, it is important
to control the ecological balance of the system. One of the approaches for the realiza-
tion of it is to introduce some feedback control variables so as to get a population sta-
bility at another periodic solution (or another almost periodic solution). For example,
the implementation of the feedback control mechanism can be introduced by some bi-
ological control scheme or by the harvesting procedure. Recently, the feedback control
method of the ecological system has been widely applied to control the ecological bal-
ance in theory and in practice; see [, , , , , , , ]. In [], Chen proposed a
periodic n-species Lotka-Volterra competition system with infinite delays and feedback
controls,

ẋi(t) = xi(t)

[

ri(t) – aii(t)xi(t) –
n∑

j=

aij(t)
∫ ∞


Kij(θ )xj(t – θ ) dθ

– bi(t)
∫ ∞


Hi(θ )ui(t – θ ) dθ

]

, (.)

u̇i(t) = –ci(t)ui(t) + di(t)
∫ ∞


Ri(θ )xi(t – θ ) dθ , i = , , . . . , n,

here ui(t) denote the control variables. They obtained sufficient conditions for the global
asymptotic stability of the system (.).

As we know, impulsive differential equations are more appropriate for characterizing
ecological evolutionary process (for example, seasonal births of some wild animals). Many
excellent results can be found in [, , –] and the references therein. In [], Wang
et al. studied the following generalized n-species Gilpin-Ayala impulsive competition sys-
tem:

ẋi(t) = xi(t)

[

ri(t) –
N∑

j=

aij(t)xαij
j (t) –

N∑

j=

bij(t)xαij
j
(
t – τij(t)

)

–
N∑

j=

cij(t)xαii
i (t)xαij

j (t)

]

, t �= tk , (.)

�xi(tk) = xi
(
t+
k
)

– xi
(
t–
k
)

= pi
kxi
(
t–
k
)
, i = , , . . . , N , k ∈ N .
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In the real world, time delay is common, because the process of a reproduction of the
species is not instantaneous or the entire history of the species affects the present birth
rate. So, time delay is introduced into the population models, which is a more realistic
method to understand the population dynamics. For the effect of these kinds of delays on
the asymptotic behavior of populations, we can refer to [, –, –, –].

Motivated by the above excellent work, in this paper, we investigated the following im-
pulsive nonlinear competition model with infinitely distributed delays and feedback con-
trols:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = xi(t)[ri(t) –
∑n

j= aij(t)xαij
j (t) –

∑n
j= bij(t)xβij

j (t – τij(t))
–
∑n

j=
∫ t

–∞ cij(t, θ )xγij
j (θ ) dθ –

∑n
j= dij(t)xαii

i (t)xαij
j (t)

–
∫ t

–∞ fi(t, θ )ui(θ ) dθ ], t �= tk ,
u̇i(t) = –αi(t)ui(t) +

∫ t
–∞ gi(t, θ )xαii

i (θ ) dθ , t ≥ ,
�xi = xi(t+

k ) – xi(t–
k ) = pikxi(t–

k ), i = , , . . . , n, k ∈ N ,

(.)

where xi(t) are the density of the competing species Xi, ui(t) denote the control vari-
ables. The terms bij(t)xβij

j (t – τij(t)) and
∫ t

–∞ cij(t, θ )xγij
j (θ ) dθ describe the negative feed-

back crowding and the effect of all the past life history of the species on its present birth
rate, respectively. pikxi(tk) represent the population xi(t) at tk annual birth pulse. xi(t+

k ) and
xi(t–

k ) are the right and the left limit of xi at tk , respectively. The model (.) incorporates
many important competition models which have been extensively studied in the literature
[, , –].

In this paper, for the system (.) we always assume that:

(H) ri(t), aij(t), bij(t), dij(t), αi(t) are all nonnegative and continuous ω-periodic functions
for all t ∈ R+; αij, βij, γij are all positive constants;

(H) cij(t + ω, s + ω) = cij(t, s), fi(t + ω, s + ω) = fi(t, s), gi(t + ω, s + ω) = gi(t, s),
∫ t

–∞ cij(t, s) ds,
∫ t

–∞ fi(t, s) ds,
∫ t

–∞ gi(t, s) ds are continuous with respect to t; cij(t + s, t), fi(t + s, t), gi(t +
s, t) are integrable with respect to s on [, +∞); and

∫ +∞

∫ 

–s cij(u + s, u) du ds < +∞,
∫ +∞


∫ 

–s fi(u + s, u) du ds < +∞,
∫ +∞


∫ 

–s gi(u + s, u) du ds < +∞;
(H) τij(t) is continuously differentiable for t ≥  such that τij(t + ω) = τij(t) ≥ , and  –

τ̇ij(t) >  on  ≤ t < +∞;
(H) tk satisfies tk < tk+ and limk→∞ tk = ∞. pik > –, and there exists a positive integer q

such that tk+q = tk + ω, pi(k+q) = pik ≥ .

Without loss of generality, we always assume that tk �=  and [,ω] ∩ tk = {tl, t, . . . , tm},
then q = m.

For the sake of convenience, we shall use some notations:

f L = min
t∈[,ω]

f (t), f M = max
t∈[,ω]

f (t), f̄ =

ω

∫ ω


f (t) dt,

where f (t) is a continuous ω-periodic function, and

c̄ij =

ω

∫ ω



∫ t

–∞
cij(t, s) ds dt,

	̄i =

ω

m∑

k=

ln( + pik),
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cM
ij = max

t∈[,ω]

∫ +∞


cij(t + s, t) ds,

gM
i = max

t∈[,ω]

∫ +∞


gi(t + s, t) ds,

Mi =
(

r̄i + 	̄i

āii + b̄ii + c̄ii

)/αii

exp
{

[R̄i + r̄i + 	̄i]ω + |	̄i|ω
}

,

Ai =
(

r̄i + 	̄i

āii

)/αii

exp
{

[R̄i + r̄i + 	̄i]ω + |	̄i|ω
}

,

Bi =
(

r̄i + 	̄i

b̄ii

)/βii

exp
{

[R̄i + r̄i + 	̄i]ω + |	̄i|ω
}

,

Ci =
(

r̄i + 	̄i

c̄ii

)/γii

exp
{

[R̄i + r̄i + 	̄i]ω + |	̄i|ω
}

,

(·)n×m is an n × m matrix,

σ –
ij (t) is the inverse function of t – τij(t).

The system (.) describes the multi species population dynamics. The existence and
global asymptotic stability of positive periodic solutions of the ecological system are ba-
sic and important questions in the theory of mathematical ecology. Therefore, the main
purpose of this paper is to obtain a set of sufficient conditions which guarantee the exis-
tence and globally asymptotic stability of a unique positive periodic solution of the system
(.). To do this, the approach in this paper is based on coincidence degree theory and
constructing a proper Lyapunov functional. Our results generalize and supplement those
given by Chen [], Yang and Xu [], Xu et al. [, ], Gopalsamy [], Weng [], Fan et
al. [, ], Zhao [], Stamova [], Li et al. [].

The paper is organized as follows: In Section , with the help of Gaines and Mawhin’s
continuation theorem, some sufficient conditions are established, which guarantee the
existence of positive periodic solutions of the system (.). In Section , by constructing a
proper Lyapunov functional, some sufficient conditions are derived for the existence of a
unique globally stable periodic solution of the system (.). In Section , some examples
are given to show the feasibility and the effectiveness of the obtained results.

2 Existence of positive periodic solutions
With respect to some basic concepts of coincidence degree theory, one can refer to Gaines
and Mawhin [], and so, here we shall not restate these concepts, only we give some
lemmas Gaines and Mawhin [], which would be necessary for this section.

Lemma . ([]) Set L be a Fredholm mapping of index zero and N be L-compact on 
̄.
Suppose:

(i) for each λ ∈ (, ), x ∈ ∂
 ∩ Dom L, Lx �= λN(x,λ);
(ii) QN(x) �=  for each x ∈ ∂
 ∩ Ker L;

(iii) deg{JQN(x),
 ∩ Ker L, } �= .
Then the equation Lx = Nx has at least one solution in Dom L ∩ 
̄.

Theorem . In addition to (H)-(H), assume further that:
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(H) the system of algebraic equations

{
r̄i + 	̄i –

∑n
j=(āiju

αij
j + b̄iju

βij
j + c̄iju

γij
j + d̄iju

αii
i uαij

j ) – f̄ivj = ,
ᾱivi – ḡiu

αii
i = ,

has finite solutions u∗ = (u∗
 , . . . , u∗

n, v∗
 , . . . , v∗

n)T ∈ Rn
+ with u∗

i > , v∗
i >  and

∑
u∗ sgn Jg(u∗) �= ;

(H) αL
i > , αii = βii = γii;

(H) r̄i + 	̄i >
∑n

j=,j �=i(āijM
αij
j + b̄ijM

βij
j + c̄ijM

γij
j ) +

∑n
j= d̄ijM

αii
i Mαij

j .

Then the system (.) has at least one positive ω-periodic solution, say x∗ = (x∗
 , . . . , x∗

n, u∗
 ,

. . . , u∗
n)T , and there exist positive constants χi, μi such that χi ≤ x∗

i (t), u∗
i (t) ≤ μi, i =

, , . . . , n.

Proof Let

xi(t) = exp
{

yi(t)
}

, i = , , . . . , n.

On substituting the above equality into (.), we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẏi(t) = ri(t) –
∑n

j= aij(t) exp{αijyj(t)} –
∑n

j= bij(t) exp{βijyj(t – τij(t))}
–
∑n

j=
∫ t

–∞ cij(t, θ ) exp{γijyj(θ )}dθ –
∑n

j= dij(t) exp{αiiyi(t) + αijyj(t)}
–
∫ t

–∞ fi(t, θ )ui(θ ) dθ , t �= tk ,
u̇i(t) = –αi(t)ui(t) +

∫ t
–∞ gi(t, θ ) exp{αiiyi(θ )}dθ , t ≥ ,

�yi = yi(t+
k ) – yi(t–

k ) = ln( + pik), i = , , . . . , n, k ∈ N .

(.)

Set

y(t) =
(
y(t), y(t), . . . , yn(t)

)T , u(t) =
(
u(t), u(t), . . . , un(t)

)T ,

X =
{

U(t) =
(
y(t)T , u(t)T)T ∈ PC

[
R, Rn]|U(t + ω) = U(t)

}
,

‖U‖X = sup
t∈[,ω]

{∥∥y(t)
∥
∥} + sup

t∈[,ω]

{∥∥u(t)
∥
∥},

here ‖ · ‖ is any norm in Rn, and

Z = X × Rnq, ‖z‖Z = ‖U‖X + ‖v‖, z = (U , v) ∈ Z,

where ‖ · ‖ is any given norm of Rnq, U ∈ X, v ∈ Rnq. Then X and Z are both Banach
spaces. Define

Dom L =
{

U(t) =
(
x(t)T , u(t)T)T ∈ X ∩ PC[R, Rn]},

L : Dom L → Z, U → (
U̇ ,�U(t), . . . ,�U(tq)

)
,

N : X → Z, NU =
(
�(t), C, . . . , Cq

)
,

where

�U(tk) =

(
x(t+

k ) – x(tk)


)

,
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�(t) =
(
φ(t), . . . ,φn(t),ϕ(t), . . . ,ϕn(t)

)T ,

Ci =
(
ln( + pi), . . . , ln( + pni), , . . . , 

)T ∈ Rn, i = , , . . . , q,

φi(t) = ri(t) –
n∑

j=

aij(t) exp
{
αijyj(t)

}
–

n∑

j=

bij(t) exp
{
βijyj

(
t – τij(t)

)}

–
n∑

j=

∫ t

–∞
cij(t, θ ) exp

{
γijyj(θ )

}
dθ –

n∑

j=

dij(t) exp
{
αiiyi(t) + αijyj(t)

}

–
∫ t

–∞
fi(t, θ )ui(θ ) dθ ,

ϕi(t) = –αi(t)ui(t) +
∫ t

–∞
gi(t, θ ) exp

{
αiiyi(θ )

}
dθ ,

then

Ker L =
{

U|U ∈ X, U = h, h ∈ Rn},

Im L =

{

z
∣∣
∣z = (f , C, . . . , Cq) ∈ Z :

∫ ω


f (s) ds +

q∑

k=

Ck = 

}

,

and dim Ker L = codim Im L. Since Im L is closed in Z, L is a Fredholm mapping of index
zero. Define

Px =

ω

∫ ω


U(t) dt, U ∈ X,

Qz = Q(f , C, C, . . . , Cq) =

(

ω

[∫ ω


f (s) ds +

q∑

k=

Ck

]

, , , . . . , 

)

.

It is easy to show that P, Q are continuous projectors such that Im P = Ker L, Ker Q =
Im L = Im(I – Q). If z = (f , C, C, . . . , Cq) ∈ Im L, then there exists U(t) ∈ X satisfying

U̇(t) = f (t), t �= tk , k ∈ N ,

x
(
t+
k
)

– x
(
t–
k
)

= Ck .

Namely,

U(t) =
∫ t


f (s) ds +

∑

t>tk

Ck + U().

Since U(t) ∈ Ker P, we have
∫ ω

 U(s) ds = . By the above equation, we have

∫ ω



∫ t


f (s) ds dt +

∫ ω



∑

t>tk

Ck dt + ωU() = ,

so

U(t) =
∫ t


f (s) ds +

∑

t>tk

Ck –

ω

∫ ω



∫ t


f (s) ds dt –


ω

q∑

k=

(ω – tk)Ck .
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It follows that the generalized inverse (to L) KP : Im L → Ker P ∩ Dom L is given by

KPz =
∫ t


f (s) ds +

∑

t>tk

Ck –

ω

∫ ω



∫ t


f (s) ds dt –


ω

q∑

k=

(ω – tk)Ck .

Obviously, QN and KP(I – Q)N are continuous. It follows from the Ascoli-Arzela theo-
rem that KP(I – Q)N(
̄) is compact for any open bounded 
 ⊂ X, thus, N is L-compact
on 
̄. Now consider the operator equation LU = λNU , λ ∈ (, ), that is,

⎧
⎪⎨

⎪⎩

ẏi(t) = λφi(t), t �= tk ,
u̇i(t) = λϕi(t), t ≥ ,
�yi = yi(t+

k ) – yi(t–
k ) = λ ln( + pik), i = , , . . . , n, k ∈ N .

(.)

Integrating on both sides of (.) over the interval [,ω], we obtain

∫ ω



[ n∑

j=

aij(t) exp
{
αijyj(t)

}
+

n∑

j=

bij(t) exp
{
βijyj

(
t – τij(t)

)}

+
n∑

j=

∫ t

–∞
cij(t, θ ) exp

{
γijyj(θ )

}
dθ +

n∑

j=

dij(t) exp
{
αiiyi(t) + αijyj(t)

}

+
∫ t

–∞
fi(t, θ )ui(θ ) dθ

]

dt = ω[r̄i + 	̄i], (.)

∫ ω


αi(t)ui(t) dt =

∫ ω



∫ t

–∞
gi(t, θ ) exp

{
αiiyi(θ )

}
dθ dt. (.)

Since U(t) ∈ X, there exist ξi,ηi, ξ̄i, η̄i ∈ [,ω], i = , , . . . , n such that

yi(ξi) = min
t∈[,ω]

{
yi(t)

}
, yi(ηi) = max

t∈[,ω]

{
yi(t)

}
,

ui(ξ̄i) = min
t∈[,ω]

{
ui(t)

}
, ui(η̄i) = max

t∈[,ω]

{
ui(t)

}
.

(.)

It follows from (.) that

∫ ω



[
aii(t) exp

{
αiiyi(t)

}
+ bii(t) exp

{
βiiyi

(
t – τii(t)

)}

+
∫ t

–∞
cii(t, θ ) exp

{
γiiyi(θ )

}
dθ

]
dt ≤ ω[r̄i + 	̄i],

which implies that

yi(ξi) ≤ 
αii

ln

{
r̄i + 	̄i

āii + b̄ii + c̄ii

}
. (.)

By (.) and (.), we have

∫ ω



∣
∣ẏi(t)

∣
∣dt ≤ [R̄i + r̄i + 	̄i]ω. (.)
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So, according to (.) and (.), we obtain

yi(t) ≤ yi(ξi) +
∫ ω



∣∣ẏi(t)
∣∣dt + |	̄i|ω

≤ 
αii

ln

{
r̄i + 	̄i

āii + b̄ii + c̄ii

}
+ [R̄i + r̄i + 	̄i]ω + |	̄i|ω := ln Mi. (.)

From (.), it follows that

∫ ω


ui(t) dt ≤ 

αL
i

exp
{
αiiyi(ηi)

}∫ ω



∫ t

–∞
gi(t, θ ) dθ dt

≤ 
αL

i
exp
{
αiiyi(ηi)

}
ḡiω, (.)

∫ ω


αi(t)ui(t) dt ≤ Mαii

i

∫ ω



∫ t

–∞
gi(t, θ ) dθ dt ≤ Mαii

i ḡiω, (.)

that is,

ui(ξ̄i) ≤ Mαii
i

ḡi

αL
i

,
∫ ω



∣∣u̇i(t)
∣∣dt ≤ Mαii

i ḡiω, (.)

thus

ui(t) ≤ ui(ξ̄i) +
∫ ω



∣∣u̇i(t)
∣∣dt ≤ Mαii

i

[
ḡi

αL
i

+ ḡiω

]
:= Li. (.)

On the other hand, from (.), (.), and (.), we have

ω[r̄i + 	̄i] ≤
[

āii + b̄ii + c̄ii +
f M
i

αL
i

ḡi

]
ω exp

{
αiiyi(ηi)

}
+

n∑

j=,j �=i

(
āij exp

{
αijyj(ηj)

}

+ b̄ij exp
{
βijyj(ηj)

}
+ c̄ij exp

{
γijyj(ηj)

})
ω

+
n∑

j=

d̄ij exp
{
αiiyi(ηi) + αijyj(ηj)

}
ω,

then
[

āii + b̄ii + c̄ii +
f M
i

αL
i

ḡi

]
exp
{
αiiyi(ηi)

}

≥ [r̄i + 	̄i] –
n∑

j=,j �=i

(
āijM

αij
j + b̄ijM

βij
j + c̄ijM

γij
j
)

–
n∑

j=

d̄ijM
αii
i Mαij

j := Pi,

that is,

yi(ηi) ≥ 
αii

ln
Pi

āii + b̄ii + c̄ii + f M
i
αL

i
ḡi

. (.)
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This together with (.), leads to

yi(t) ≥ yi(ηi) –
∫ ω



∣∣ẏi(t)
∣∣dt – |	̄i|ω

≥ 
αii

ln
Pi

āii + b̄ii + c̄ii + f M
i
αL

i
ḡi

– [R̄i + r̄i + 	̄i]ω – |	̄i|ω := ln mi. (.)

It follows from (.) that

ui(η̄i)ᾱiω ≥
∫ ω


αi(t)ui(t) dt ≥ mαii

i ḡiω,

then

ui(η̄i) ≥ ḡi

ᾱi
mαii

i , (.)

which, together with (.), leads to

ui(t) ≥ ui(η̄i) –
∫ ω



∣
∣u̇i(t)

∣
∣dt ≤ mαii

i
ḡi

ᾱi
– Mαii

i ḡiω := li. (.)

From (.), (.), (.), and (.), it follows that

ln mi ≤ yi(t) ≤ ln Mi, li ≤ ui(t) ≤ Li,

clearly, mi, Mi, li, Li are independent of λ. We take D = {U ∈ X|‖U‖ < H}, H =
max≤i≤n{| ln mi| + | ln Mi| + |li| + |Li|} + H, H is taken sufficiently large.

Now we check the conditions of Lemma .. From (.), (.), (.), and (.), it is
easily derive that, for each λ ∈ (, ), U ∈ ∂D ∩ Dom L, LU �= λNU . This satisfies condition
(i) of Lemma ..

Next let us consider the algebraic equations

{
r̄i + 	̄i –

∑n
j=(āiju

αij
j + b̄iju

βij
j + c̄iju

γij
j + d̄iju

αii
i uαij

j ) – μf̄ivj = ,
ᾱivi – ḡiu

αii
i = ,

(.)

for U ∈ Rn, μ ∈ [, ]. Similar to the argument of (.), (.), (.), and (.), we can
derive

mi ≤ ui(t) ≤ Mi, li ≤ vi(t) ≤ Li. (.)

When U ∈ ∂D ∩ Ker L, U is a constant vector in Rn with ‖U‖ = H . Then

QNU =

⎛

⎜
⎝

⎛

⎜
⎝

(
r̄i + 	̄i –

∑n
j=(āiju

αij
j + b̄iju

βij
j + c̄iju

γij
j

+ d̄iju
αii
i uαij

j ) – f̄ivj

)

n×

(ᾱivi – ḡiu
αii
i )n×

⎞

⎟
⎠ , , . . . , 

⎞

⎟
⎠ �= ,
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it follows from (.) that U ∈ ∂D ∩ Ker L, QNU �= . This proves that condition (ii) of
Lemma . is satisfied. Define

H(μ, U) = μQNU + ( – μ)G(U), μ ∈ [, ],

G(U) =

⎛

⎜
⎝

(
r̄i + 	̄i –

∑n
j=(āiju

αij
j + b̄iju

βij
j + c̄iju

γij
j

+ d̄iju
αii
i uαij

j ) – f̄ivj

)

n×

(ᾱivi – ḡiu
αii
i )n×

⎞

⎟
⎠ ,

from U ∈ ∂D ∩ Ker L and μ ∈ [, ], it follows that H(μ, U) �= . Moreover, we take J = I .
According to Theorem ., one has

deg
(
JQN(U), D ∩ Ker L, 

)
= deg

(
H(U), D ∩ Ker L, 

) �= .

Now we have to prove that D satisfy all the conditions of Lemma .. Therefore, we
know that the system (.) has at least one ω-periodic solution (y∗

 (t), . . . , y∗
n(t), u∗

 (t), . . . ,
u∗

n(t))T ∈ D. By x∗
i (t) = ey∗

i (t), then we know that (x∗
 (t), x∗

(t), . . . , x∗
n(t), u∗

 (t), u∗
(t), . . . , u∗

n(t))T

is a positive ω-periodic solution of the system (.). The proof of Theorem . is com-
pleted. �

Theorem . In addition to (H)-(H), assume further that:

(H) the system of algebraic equations

{
r̄i + 	̄i –

∑n
j=(āiju

αij
j + b̄iju

βij
j + c̄iju

γij
j + d̄iju

αii
i uαij

j ) – f̄ivj = ,
ᾱivi – ḡiu

αii
i = ,

has finite solutions u∗ = (u∗
 , . . . , u∗

n, v∗
 , . . . , v∗

n)T ∈ Rn
+ with u∗

i > , v∗
i >  and

∑
u∗ sgn Jg(u∗) �= ;

(H) αL
i > ;

(H) if one of the following conditions is satisfied:

r̄i + 	̄i >
n∑

j=,j �=i

(
āijA

αij
j + b̄ijA

βij
j + c̄ijA

γij
j
)

+
n∑

j=

d̄ijA
αii
i Aαij

j ,

r̄i + 	̄i >
n∑

j=,j �=i

(
āijB

αij
j + b̄ijB

βij
j + c̄ijB

γij
j
)

+
n∑

j=

d̄ijB
αii
i Bαij

j ,

r̄i + 	̄i >
n∑

j=,j �=i

(
āijC

αij
j + b̄ijC

βij
j + c̄ijC

γij
j
)

+
n∑

j=

d̄ijC
αii
i Cαij

j .

Then the system (.) has at least one positive ω-periodic solution (x∗
 , . . . , x∗

n, u∗
 , . . . , u∗

n)T .

Proof The proof is the same as that of Theorem . with only slight changes, that is, (.) in
the proof of Theorem . can be replaced by one of the following inequalities, respectively:

yi(ξi) ≤ 
αii

ln

{
r̄i + 	̄i

āii

}
, yi(ξi) ≤ 

βii
ln

{
r̄i + 	̄i

b̄ii

}
, yi(ξi) ≤ 

γii
ln

{
r̄i + 	̄i

c̄ii

}
,

so, the details of the following proof are omitted here. �



Lu Advances in Difference Equations  (2016) 2016:282 Page 11 of 24

Remark . After the above proof of Theorem . and Theorem ., we note that the
criteria for the existence of positive periodic solutions of the system (.) are independent
of the delays. Furthermore, it is not necessary for τij(t) to remain nonnegative. Namely,
the results of Theorem . and Theorem . are still valid for both advanced type systems
and mixed type systems.

3 Global asymptotic stability
The aim of this section is to establish a set of sufficient conditions on the global asymp-
totic stability of a unique positive periodic solution of the system (.). We say a positive
periodic solution (x∗

 (t), x∗
(t), . . . , x∗

n(t), u∗
 (t), u∗

(t), . . . , u∗
n(t))T of the system (.) is globally

asymptotically stable if it attracts any other positive solution of the system (.). In addi-
tion, if the positive periodic solution (x∗

 (t), x∗
(t), . . . , x∗

n(t), u∗
 (t), u∗

(t), . . . , u∗
n(t))T is glob-

ally asymptotically stable, then it is unique.
The following lemma, borrowed from [], would be basic to establish the main results.

Lemma . Let h be a real number and f be a nonnegative function defined on [h; +∞)
such that f is integrable on [h; +∞) and is uniformly continuous on [h; +∞), then
limt→+∞ f (t) = .

From Theorem . (or Theorem .) we know that the system (.) has at least one pos-
itive periodic solution (x∗

 (t), x∗
(t), . . . , x∗

n(t), u∗
 (t), u∗

(t), . . . , u∗
n(t))T and there exist positive

constants χi, μi such that χi ≤ x∗
i (t), u∗

i (t) ≤ μi, i = , , . . . , n. So, we take a positive con-
stant λ which satisfies  < λ ≤ min{χi}. Let

zi(t) = xi(t)/λ, i = , , . . . , n, (.)

then the system (.) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

żi(t) = zi(t)[ri(t) –
∑n

j= λαij aij(t)zαij
j (t) –

∑n
j= λβij bij(t)zβij

j (t – τij(t))
–
∑n

j=
∫ t

–∞ λγij cij(t, θ )zγij
j (θ ) dθ –

∑n
j= λαii+αij dij(t)zαii

i (t)zαij
j (t)

–
∫ t

–∞ fi(t, θ )ui(θ ) dθ ], t �= tk ,
u̇i(t) = –αi(t)ui(t) + λαii

∫ t
–∞ gi(t, θ )zαii

i (θ ) dθ , t ≥ ,
�zi = zi(t+

k ) – zi(t–
k ) = pikzi(t–

k ), i = , , . . . , n, k ∈ N .

(.)

It is clear that z∗(t) = (z∗
 (t), z∗

(t), . . . , z∗
n(t), u∗

 (t), u∗
(t), . . . , u∗

n(t))T is the periodic solution
of the system (.). And if the periodic solution of the system (.) is globally asymptot-
ically stable, then the periodic solution of the system (.) is also globally asymptotically
stable.

Theorem . In addition to the conditions in Theorem . (or in Theorem .), assume
further that:

(H) αii ≥ {αji,βji,γji},  ≤ j, i ≤ n;
(H) if there exist constants ρi > , δi >  such that

inf
t∈[,+∞)

{
�i(t),�i(t)

}
> , i = , , . . . , n,
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where

�i(t) = ρiλ
αii aii(t) +

n∑

j=

ρiλ
αii Mαij

j dij(t) – δiλ
αii

∫ +∞


gi(t + θ , t) dθ

–
n∑

j=,j �=i

ρjλ
αji aji(t) –

n∑

j=

ρjλ
αji Mαjj

j dji(t) –
n∑

j=

ρjλ
βji

bji(σ –
ji (t))

 – τ̇ji(σ –
ji (t))

–
n∑

j=

ρjλ
λji

∫ +∞


cji(t + θ , t) dθ ;

�i(t) = δiαi(t) – ρi

∫ +∞


fi(t + θ , t) dθ .

Then the system (.) has a unique globally asymptotically stable positive periodic solu-
tion (x∗

 (t), x∗
(t), . . . , x∗

n(t), u∗
 (t), u∗

(t), . . . , u∗
n(t))T .

Proof For any positive solution (z(t), z(t), . . . , zn(t), u(t), u(t), . . . , un(t))T and positive
periodic solution (z∗

 (t), z∗
(t), . . . , z∗

n(t), u∗
 (t), u∗

(t), . . . , u∗
n(t))T of the system (.). Now we

construct a Lyapunov functional,

V (t) = V(t) + V(t) + V(t) + V(t) + V(t) + V(t), (.)

where

V(t) =
n∑

i=

ρi
∣
∣ln zi(t) – ln z∗

i (t)
∣
∣,

V(t) =
n∑

i=

δi
∣∣ui(t) – u∗

i (t)
∣∣,

V(t) =
n∑

i=

ρi

n∑

j=

λβij

∫ t

t–τij(t)

bij(σ –
ij (s))

 – τ̇ij(σ –
ij (s))

∣∣zβij
j (s) – z∗βij

j (s)
∣∣ds,

V(t) =
n∑

i=

ρi

n∑

j=

λλij

∫ +∞



∫ t

t–θ

cij(s + θ , s)
∣
∣zλij

j (s) – z∗λij
j (s)

∣
∣ds dθ ,

V(t) =
n∑

i=

ρi

∫ +∞



∫ t

t–θ

fi(s + θ , s)
∣∣ui(s) – u∗

i (s)
∣∣ds dθ ,

V(t) =
n∑

i=

δiλ
αii

∫ +∞



∫ t

t–θ

gi(s + θ , s)
∣
∣zαii

i (s) – z∗αii
i (s)

∣
∣ds dθ .

Calculating the upper right derivative of V (t) along the solution of (.), it follows that,
for t �= tk ,

D+V(t) =
n∑

i=

ρi

{
sgn
(
zi(t) – z∗

i (t)
)
(

żi(t)
zi(t)

–
ż∗

i (t)
z∗

i (t)

)}

=
n∑

i=

ρi

{

sgn
(
zi(t) – z∗

i (t)
)
[

–
n∑

j=

λαij aij(t)
(
zαij

j (t) – z∗αij
j (t)

)
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–
n∑

j=

λβij bij(t)
(
zβij

j
(
t – τij(t)

)
– z∗βij

j
(
t – τij(t)

))

–
n∑

j=

∫ t

–∞
λγij cij(t, θ )

(
zγij

j (θ ) – z∗γij
j (θ )

)
dθ

–
n∑

j=

λαii+αij dij(t)
(
zαii

i (t)zαij
j (t) – z∗αii

i (t)z∗αij
j (t)

)

–
∫ t

–∞
fi(t, θ )

(
ui(θ ) – u∗

i (θ )
)

dθ

]}

≤ –
n∑

i=

ρiλ
αii aii(t)

∣∣zαii
i (t) – z∗αii

i (t)
∣∣

+
n∑

i=

ρi

{ n∑

j=,j �=i

λαij aij(t)
∣∣zαij

j (t) – z∗αij
j (t)

∣∣

+
n∑

j=

λβij bij(t)
∣
∣zβij

j
(
t – τij(t)

)
– z∗βij

j
(
t – τij(t)

)∣∣

+
n∑

j=

∫ t

–∞
λγij cij(t, θ )

∣
∣zγij

j (θ ) – z∗γij
j (θ )

∣
∣dθ

+
n∑

j=

λαii+αij dij(t)zαii
i (t)

∣∣zαij
j (t) – z∗αij

j (t)
∣∣

–
n∑

j=

λαii+αij dij(t)z∗αij
j (t)

∣∣zαii
i (t) – z∗αii

i (t)
∣∣

+
∫ t

–∞
fi(t, θ )

∣∣ui(θ ) – u∗
i (θ )

∣∣dθ

}

,

D+V(t) =
n∑

i=

δi

{
–αi(t)

∣∣ui(t) – u∗
i (t)
∣∣ + λαii

∫ t

–∞
gi(t, θ )

∣∣zαii
i (θ ) – z∗αii

i (θ )
∣∣dθ

}
,

D+V(t) =
n∑

i=

ρi

n∑

j=

λβij
bij(σ –

ij (t))
 – τ̇ij(σ –

ij (ts))
∣
∣zβij

j (t) – z∗βij
j (t)

∣
∣

–
n∑

i=

ρi

n∑

j=

λβij bij(t)
∣∣zβij

j
(
t – τij(t)

)
– z∗βij

j
(
t – τij(t)

)∣∣,

D+V(t) =
n∑

i=

ρi

n∑

j=

λλij

∫ +∞


cij(t + θ , t)

∣∣zλij
j (t) – z∗λij

j (t)
∣∣dθ

–
n∑

i=

ρi

n∑

j=

λλij

∫ +∞


cij(t, t – θ )

∣
∣zλij

j (t – θ ) – z∗λij
j (t – θ )

∣
∣dθ ,

D+V(t) =
n∑

i=

ρi

∫ +∞


fi(t + θ , t)

∣
∣ui(t) – u∗

i (t)
∣
∣dθ

–
n∑

i=

ρi

∫ +∞


fi(t, t – θ )

∣
∣ui(t – θ ) – u∗

i (t – θ )
∣
∣dθ ,



Lu Advances in Difference Equations  (2016) 2016:282 Page 14 of 24

D+V(t) =
n∑

i=

δiλ
αii

∫ +∞


gi(t + θ , t)

∣∣zαii
i (t) – z∗αii

i (t)
∣∣dθ

–
n∑

i=

δiλ
αii

∫ +∞


gi(t, t – θ )

∣∣zαii
i (t – θ ) – z∗αii

i (t – θ )
∣∣dθ .

Substituting the above results into (.), and by easily computing, for t �= tk , we have

D+V (t) ≤
n∑

i=

ρi

{

–λαii aii(t)
∣∣zαii

i (t) – z∗αii
i (t)

∣∣

+
n∑

j=,j �=i

λαij aij(t)
∣∣zαij

j (t) – z∗αij
j (t)

∣∣

+
n∑

j=

λβij
bij(σ –

ij (t))
 – τ̇ij(σ –

ij (t))
∣∣zβij

j (t) – z∗βij
j (t)

∣∣

+
n∑

j=

λλij

∫ +∞


cij(t + θ , t)

∣
∣zλij

j (t) – z∗λij
j (t)

∣
∣dθ

+
n∑

j=

λαii+αij dij(t)zαii
i (t)

∣∣zαij
j (t) – z∗αij

j (t)
∣∣

–
n∑

j=

λαii+αij dij(t)z∗αij
j (t)

∣
∣zαii

i (t) – z∗αii
i (t)

∣
∣

+
∫ +∞


fi(t + θ , t)

∣
∣ui(t) – u∗

i (t)
∣
∣dθ

}

+
n∑

i=

δi

{
–αi(t)

∣∣ui(t) – u∗
i (t)
∣∣

+ λαii

∫ +∞


gi(t + θ , t)

∣∣zαii
i (t) – z∗αii

i (t)
∣∣dθ

}

=
n∑

i=

{

–ρiλ
αii aii(t)

∣
∣zαii

i (t) – z∗αii
i (t)

∣
∣

+
n∑

j=,j �=i

ρjλ
αji aji(t)

∣∣zαji
i (t) – z∗αji

i (t)
∣∣

+
n∑

j=

ρjλ
βji

bji(σ –
ji (t))

 – τ̇ji(σ –
ji (t))

∣
∣zβji

i (t) – z∗βji
i (t)

∣
∣

+
n∑

j=

ρjλ
λji

∫ +∞


cji(t + θ , t)

∣∣zλji
i (t) – z∗λji

i (t)
∣∣dθ

+
n∑

j=

ρjλ
αjj+αji dji(t)zαjj

j (t)
∣∣zαji

i (t) – z∗αji
i (t)

∣∣

– ρi

n∑

j=

λαii+αij dij(t)z∗αij
j (t)

∣
∣zαii

i (t) – z∗αii
i (t)

∣
∣
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+ ρi

∫ +∞


fi(t + θ , t)

∣∣ui(t) – u∗
i (t)
∣∣dθ

}

+ δi

{
–αi(t)

∣∣ui(t) – u∗
i (t)
∣∣

+ λαii

∫ +∞


gi(t + θ , t)

∣
∣zαii

i (t) – z∗αii
i (t)

∣
∣dθ

}

≤
n∑

i=

{

–

[

ρiλ
αii aii(t) +

n∑

j=

ρiλ
αii Mαij

j dij(t)

– δiλ
αii

∫ +∞


gi(t + θ , t) dθ

]
∣∣zαii

i (t) – z∗αii
i (t)

∣∣

+

[ n∑

j=,j �=i

ρjλ
αji aji(t) +

n∑

j=

ρjλ
αji Mαjj

j dji(t)

]
∣∣zαji

i (t) – z∗αji
i (t)

∣∣

+
n∑

j=

ρjλ
βji

bji(σ –
ji (t))

 – τ̇ji(σ –
ji (t))

∣
∣zβji

i (t) – z∗βji
i (t)

∣
∣

+
n∑

j=

ρjλ
λji

∫ +∞


cji(t + θ , t) dθ

∣∣zλji
i (t) – z∗λji

i (t)
∣∣dθ

–
[
δiαi(t) – ρi

∫ +∞


fi(t + θ , t) dθ

]∣∣ui(t) – u∗
i (t)
∣∣
}

.

From (.) we know z∗
i (t) ≥ . Since y = |ax – bx| is an increasing function when a ≥ 

and x > . By αii ≥ {αji,βji,γji},  ≤ j, i ≤ n, we have

∣∣zαji
i (t) – z∗αji

i (t)
∣∣≤ ∣∣zαii

i (t) – z∗αii
i (t)

∣∣,
∣
∣zβji

i (t) – z∗βji
i (t)

∣
∣≤ ∣∣zαii

i (t) – z∗αii
i (t)

∣
∣,

∣
∣zγji

i (t) – z∗γji
i (t)

∣
∣≤ ∣∣zαii

i (t) – z∗αii
i (t)

∣
∣,

so, for t �= tk , we get

D+V (t) ≤ –
n∑

i=

{[

ρiλ
αii aii(t) +

n∑

j=

ρiλ
αii Mαij

j dij(t) – δiλ
αii

∫ +∞


gi(t + θ , t) dθ

–
n∑

j=,j �=i

ρjλ
αji aji(t) –

n∑

j=

ρjλ
αji Mαjj

j dji(t) –
n∑

j=

ρjλ
βji

bji(σ –
ji (t))

 – τ̇ji(σ –
ji (t))

–
n∑

j=

ρjλ
λji

∫ +∞


cji(t + θ , t) dθ

]
∣
∣zαii

i (t) – z∗αii
i (t)

∣
∣

+
[
δiαi(t) – ρi

∫ +∞


fi(t + θ , t) dθ

]∣
∣ui(t) – u∗

i (t)
∣
∣
}

≤ –
n∑

i=

{
�i(t)

∣∣zαii
i (t) – z∗αii

i (t)
∣∣ + �i(t)

∣∣ui(t) – u∗
i (t)
∣∣}.
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By the assumption (H), there exist enough small positive constants κ such that

ϕi(t) ≥ κ , φi(t) ≥ κ .

Therefore,

D+V (t) ≤ –κ

n∑

i=

(∣∣zαii
i (t) – z∗αii

i (t)
∣
∣ +
∣
∣ui(t) – u∗

i (t)
∣
∣). (.)

On the other hand, for t = tk , k ∈ N ,

V
(
t+
k
)

– V
(
t–
k
)

=
n∑

i=

[∣∣ln( + pik)
(
zi
(
t–
k
))

– ln( + pik)
(
zi ∗
(
t–
k
))∣∣

–
∣∣ln
(
zi
(
t–
k
))

– ln
(
z∗

i
(
t–
k
))∣∣] = .

Integrating both sides of (.) on interval [, t],

V (t) + κ

∫ t



n∑

i=

(∣∣zαii
i (s) – z∗αii

i (s)
∣∣ +
∣∣ui(s) – u∗

i (s)
∣∣)ds ≤ V (). (.)

It follows from (.) that

∫ t



n∑

i=

(∣∣zαii
i (s) – z∗αii

i (s)
∣∣ +
∣∣ui(s) – u∗

i (s)
∣∣)ds ≤ V ()

κ
< +∞, for t ≥ ,

 ≤ V (t) ≤ V (),

(.)

which implies that

n∑

i=

(∣∣zαii
i (s) – z∗αii

i (s)
∣
∣ +
∣
∣ui(s) – u∗

i (s)
∣
∣) ∈ L[, +∞).

By Theorem ., (.), and (.), it is easy to derive that zi(t), ui(t), i = , , . . . , n are
uniformly bounded on [, +∞). This together with (.) leads to żi(t), ż∗

i (t), u̇i(t), u̇∗
i (t),

i = , , . . . , n, being also uniformly bounded on [, +∞). Thus, we know that
∑n

i=(|zαii
i (t) –

z∗αii
i (t)|+ |ui(t)–u∗

i (t)|) are uniformly continuous on [, +∞). According to Lemma ., one
has

lim
t→+∞

n∑

i=

(∣∣zαii
i (t) – z∗αii

i (t)
∣∣ +
∣∣ui(t) – u∗

i (t)
∣∣) = , i = , , . . . , n.

Therefore

lim
t→+∞

∣∣zi(t) – zi(t)
∣∣ = , lim

t→+∞
∣∣ui(t) – u∗

i (t)
∣∣ = , i = , , . . . , n.

This completes the proof of Theorem .. �
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Corollary . In addition to the conditions in Theorem . (or in Theorem .), assume
further that:

(H)′ αii ≥ {αji,βji,γji},  ≤ j, i ≤ n;
(H)′ if there exist constants ρi > , δi >  such that

ρiλ
αii aL

ii +
n∑

j=

ρiλ
αii Mαij

j dL
ij

> δiλ
αii gM

i +
n∑

j=,j �=i

ρjλ
αji aM

ji +
n∑

j=

ρjλ
αji Mαjj

j dM
ji

+
n∑

j=

ρjλ
βji

bM
ji

 – τ̇M
ji

+
n∑

j=

ρjλ
λji cM

ji ,

δiα
L
i > ρif M

i .

Then the system (.) has a unique globally asymptotically stable positive periodic solu-
tion (x∗

 (t), x∗
(t), . . . , x∗

n(t), u∗
 (t), u∗

(t), . . . , u∗
n(t))T .

4 Applications
In order to show the feasibility and the effectiveness of the results obtained, we will give
some important competition models which have been well studied in the literature, and
apply our main results to those examples, and we establish some new criteria to supple-
ment and generalize some well-known results.

Example . Consider the following impulsive competition system with delays and feed-
back controls:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = xi(t)[ri(t) –
∑n

j= aij(t)xj(t) –
∑n

j= bij(t)xj(t – τij(t))
–
∑n

j= cij(t)
∫ t

–∞ Kij(t – θ )xj(θ ) dθ

– ηi(t)
∫ t

–∞ Hi(t – θ )ui(θ ) dθ ], t �= tk ,
u̇i(t) = –αi(t)ui(t) + βi(t)

∫ t
–∞ Li(t – θ )xi(θ ) dθ , t ≥ ,

�xi = xi(t+
k ) – xi(t–

k ) = pikxi(t–
k ), i = , , . . . , n, k ∈ N ,

(.)

where ri(t), aij(t), bij(t), cij(t), αi(t), βi(t), ηi(t) are all nonnegative and continuous ω-
periodic functions; τij(t) is continuously differentiable such that τij(t + ω) = τij(t) ≥ , and
 – τ̇ij(t) > . There exists a positive integer q such that tk+q = tk +ω, pi(k+q) = pik ≥ ; Kij, Hi,
Li are integrable, ω-periodic and are normalized such that

∫ +∞
 Kij(θ ) dθ =

∫ +∞
 Li(θ ) dθ =

∫ +∞
 Hi(θ ) dθ =  and

∫ +∞
 θKij(θ ) dθ < ∞,

∫ +∞
 θLi(θ ) dθ < ∞,

∫ +∞
 θHi(θ ) dθ < ∞.

It is clear that the system (.) is a special case of the system (.), and by Theorem .
and Theorem ., we have the following results.

Theorem . Assume that αL
i >  and

(a) r̄i + 	̄i >
∑n

j=,j �=i
āij+b̄ij+c̄ij
ājj+b̄jj+c̄jj

(r̄j + 	̄j) exp{[R̄j + r̄j + 	̄j]ω + |	̄j|ω}.

Then the system (.) has at least one positive ω-periodic solutions. Moreover, if there
exist constants ρi > , δi >  such that
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(b) inft∈[,+∞){�i(t),�i(t)} > , i = , , . . . , n, where

�i(t) = ρiaii(t) – δi

∫ +∞


βi(t + θ )Li(θ ) dθ

–
n∑

j=,j �=i

ρjaji(t) –
n∑

j=

ρj
bji(σ –

ji (t))
 – τ̇ji(σ –

ji (t))

–
n∑

j=

ρj

∫ +∞


cji(t + θ )Kji(θ ) dθ ,

�i(t) = δiαi(t) – ρi

∫ +∞


ηi(t + θ )Hi(θ ) dθ ;

or
(b)′ if there exist constants ρi > , δi > , i = , , . . . , n such that

ρiaL
ii > δiβ

M
i +

n∑

j=,j �=i

ρjaM
ji +

n∑

j=

ρj
bM

ji

 – τ̇M
ji

+
n∑

j=

ρjcM
ji ,

δiα
L
i > ρiη

M
i .

Then the system (.) has a unique globally asymptotically stable positive periodic solu-
tion (x∗

 (t), x∗
(t), . . . , x∗

n(t), u∗
 (t), u∗

(t), . . . , u∗
n(t))T .

Remark . If τij(t) = τij, the system (.) is the system () in [], our criteria on the
existence of positive periodic solution are different from those in [], which generalize
one of the main results in [].

Example . Consider the following n-species Lotka-Volterra competition system of in-
tegro differential equations:

ẋi(t) = xi(t)

[

ri(t) –
n∑

j=

aij(t)xj(t) –
n∑

j=

bij(t)
∫ t

–∞
Kij(t – θ )xj(θ ) dθ

]

, (.)

where ri(t), aij(t), bij(t), i = , , . . . , n, are all nonnegative and continuous ω-periodic func-
tions; Kij are integrable, ω-periodic and normalized functions such that

∫ +∞
 Kij(θ ) dθ = 

and
∫ +∞

 θKij(θ ) dθ < ∞.

According to Theorem . and Theorem ., we have the following results.

Theorem . Assume that:

(a) r̄i >
∑n

j=,j �=i
āij+b̄ij
ājj+b̄jj

r̄j exp{(R̄j + r̄j)ω};
(b) there exist constants ρi > , i = , , . . . , n such that

inf
t∈[,+∞)

{

ρiaii(t) –
n∑

j=,j �=i

ρjaji(t) –
n∑

j=

ρj

∫ +∞


bji(t + θ )Kji(θ ) dθ

}

> ;

or
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(b)′ if there exist constants ρi > , i = , , . . . , n such that

ρiaL
ii >

n∑

j=,j �=i

ρjaM
ji +

n∑

j=

ρjbM
ji .

Then the system (.) has a unique globally asymptotically stable positive periodic solu-
tion (x∗

 (t), x∗
(t), . . . , x∗

n(t))T .

Remark . If aij(t) =  (i �= j), then the system (.) is the system (.) considered by Xu
et al. []. Xu et al. [] studied the global asymptotic stability of the positive solution of
the system. Obviously, our criteria on global asymptotic stability of the system are weaker
than those in [], which improve the main results in [].

In particular, when bii(t) = , the system (.) reduced to the following system:

ẋi(t) = xi(t)

[

ri(t) – aii(t)xi(t) –
n∑

j=,j �=i

bij(t)
∫ t

–∞
Kij(t – θ )xj(θ ) dθ

]

. (.)

Gopalsamy [] also studied the existence of globally stable periodic solution of the
above model and proved the following results.

(a) The delay kernels Kij (it = j) are piecewise (locally) continuous such that the series
∑∞

r= Kij(u + rω) converges uniformly with respect to u on [,ω].
(b) rL

i >  and bL
ij > .

(c) rL
i >
∑n

j=,j �=i
bM

ij
aL

jj
rM

j .

(d) There exists a positive constant m >  such that aL
ii >
∑n

j=,j �=i bM
ji + m.

Then the system (.) has a unique globally asymptotically stable positive ω-periodic
solution.

It is clear that our conditions on the global asymptotic stability of the system (.) are
different and are weaker than those in [], as criterion (d) implies with ρi = . So Theo-
rem . supplements and generalizes Theorem . and Theorem . obtained by [].

Example . Consider the n-species non-autonomous Lotka-Volterra competition sys-
tem with infinite delays and feedback controls

⎧
⎪⎨

⎪⎩

ẋi(t) = xi(t)[ri(t) – ai(t)xi(t) –
∑n

j= aij(t)
∫ t

–∞ Kij(t – θ )xj(θ ) dθ

– bi(t)
∫ t

–∞ Hi(t – θ )ui(θ ) dθ ],
u̇i(t) = –ci(t)ui(t) + di(t)

∫ t
–∞ Ri(t – θ )xi(θ ) dθ ,

(.)

where ri(t), ai(t), bi(t), aij(t), ci(t), di(t), i = , , . . . , n, are all nonnegative and continu-
ous ω-periodic functions; Kij, Hi, Ri are integrable, ω-periodic, and normalized such that
∫ +∞

 Kij(θ ) dθ =
∫ +∞

 Ri(θ ) dθ =
∫ +∞

 Hi(θ ) dθ =  and
∫ +∞

 θKij(θ ) dθ < ∞,
∫ +∞

 θRi(θ ) dθ <
∞,
∫ +∞

 θHi(θ ) dθ < ∞.

Theorem . Assume that cL
i >  and

(a) r̄i >
∑n

j=,j �=i
āij

āj+ājj
r̄j exp{(R̄j + r̄j)ω}.

Then the system (.) has at least one positive ω-periodic solutions. Moreover, if there
exist constants ρi > , δi >  such that
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(b) inft∈[,+∞){�i(t),�i(t)} > , i = , , . . . , n, where

�i(t) = ρiai(t) – δi

∫ +∞


di(t + θ )Ri(θ ) dθ

–
n∑

j=

ρj

∫ +∞


aji(t + θ )Kji(θ ) dθ ,

�i(t) = δici(t) – ρi

∫ +∞


bi(t + θ )Hi(θ ) dθ ;

or
(b)′ if there exist constants ρi > , δi > , i = , , . . . , n such that

ρiaL
i > δidM

i +
n∑

j=

ρjaM
ji , δicL

i > ρibM
i .

Then the system (.) has a unique globally asymptotically stable positive periodic solu-
tion (x∗

 (t), x∗
(t), . . . , x∗

n(t), u∗
 (t), u∗

(t), . . . , u∗
n(t))T .

Remark . Chen [] investigated the global asymptotic stability of the model (.). It
is easy to see our results supplement those in [].

Furthermore, when aii(t) = , Weng [] also considered the existence and global stabil-
ity of a positive periodic solution of a special model. If ρi = , δi = , then the conditions
(b) are equivalent to conditions (.) of []. Hence, Theorem . is more up to date, it
generalizes the main results in [].

Example . Consider the following Lotka-Volterra competition system with several de-
viating arguments:

ẋi(t) = xi(t)

[

ri(t) –
n∑

j=

aij(t)xj(t) –
n∑

j=

bij(t)xj
(
t – τij(t)

)
]

, (.)

where ri(t), aij(t), bij(t), i = , , . . . , n, are all nonnegative and continuous ω-periodic func-
tions; τij(t) are continuously differentiable such that τij(t + ω) = τij(t) ≥ , and  – τ̇ij(t) > .

By Theorem . and Theorem ., we have the following results.

Theorem . Assume that:

(a) r̄i >
∑n

j=,j �=i
āij+b̄ij
ājj+b̄jj

r̄j exp{(R̄j + r̄j)ω};
(b) there exist constants ρi >  such that

inf
t∈[,+∞)

{

ρiaii(t) –
n∑

j=,j �=i

ρjaji(t) –
n∑

j=

ρj
bji(σ –

ji (t))
 – τ̇ji(σ –

ji (t))

}

> , i = , , . . . , n;

or
(b)′ if there exist constants ρi > , i = , , . . . , n such that

ρiaL
ii >

n∑

j=,j �=i

ρjaM
ji +

n∑

j=

ρj
bM

ji

 – τ̇M
ji

.
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Then the system (.) has an ω-periodic solution, which is globally asymptotically stable.

Remark . When τij(t) = τij, the system (.) was investigated by Fan et al. [, ]. The
conditions on global asymptotic stability in [, ] should be set with ρi = .

Remark . When bij(t) = , Zhao [] studied the existence and global attractivity of
a positive periodic solution of the model. Our results are more easily verified and more
general than those in []. In particular, when n = , the special model reduced to the
classical logistic equation. Our results generalize some well-known results.

Example . Consider the following Lotka-Volterra competition system with infinite de-
lays:

ẋi(t) = xi(t)

[

ri(t) – ai(t)xi(t) –
n∑

j=

aij(t)xj
(
t – τij(t)

)

–
n∑

j=

bij(t)
∫ t

–∞
Kij(t – θ )xj(θ ) dθ

]

, (.)

where ri(t), ai(t), aij(t), bij(t), i = , , . . . , n, are all nonnegative and continuous ω-periodic
functions; τij(t) is continuously differentiable such that τij(t + ω) = τij(t) ≥ , and  –
τ̇ij(t) > ; Kij are integrable, ω-periodic, and normalized such that

∫ +∞
 Kij(θ ) dθ =  and

∫ +∞
 θKij(θ ) dθ < ∞.

Theorem . Assume that:

(a) r̄i >
∑n

j=,j �=i
āij+b̄ij

āj+ājj+b̄jj
r̄j exp{(R̄j + r̄j)ω};

(b) there exist constants ρi > , i = , , . . . , n, such that

inf
t∈[,+∞)

{

ρiai(t) –
n∑

j=

ρj
aji(σ –

ji (t))
 – τ̇ji(σ –

ji (t))
–

n∑

j=

ρj

∫ +∞


bji(t + θ )Kji(θ ) dθ

}

> ;

or
(b)′ if there exist constants ρi > , i = , , . . . , n such that

ρiaL
i >

n∑

j=,j �=i

ρj
aM

ji

 – τ̇M
ji

+
n∑

j=

ρjbM
ji .

Then the system (.) has an ω-periodic solution, which is globally asymptotically stable.

Remark . Xu et al. [] studied the global asymptotic stability of the system (.). Ob-
viously, our criteria are more easily verifiable than those in [].

Example . Consider the following n-species delay impulsive Lotka-Volterra competi-
tion system:

{
ẋi(t) = xi(t)[ri(t) – aii(t)xi(t) –

∑n
j=,j �=i aij(t)xj(t – τij(t))], t �= tk ,

�xi = xi(t+
k ) – xi(t–

k ) = bikxi(t–
k ), i = , , . . . , n, k ∈ N ,

(.)
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where ri(t), aii(t), aij(t) are all nonnegative and continuous ω-periodic functions; τij(t) is
continuously differentiable such that τij(t + ω) = τij(t) ≥ , and  – τ̇ij(t) > . There exists a
positive integer q such that tk+q = tk + ω, bi(k+q) = bik ≥ .

Theorem . Assume that:

(a) r̄i + 	̄i >
∑n

j=,j �=i
āij
ājj

(r̄j + 	̄j) exp{[R̄j + r̄j + 	̄j]ω + |	̄j|ω};
(b) there exist constants ρi > , i = , , . . . , n such that

inf
t∈[,+∞)

{

ρiaii(t) –
n∑

j=,j �=i

ρj
aji(σ –

ji (t))
 – τ̇ji(σ –

ji (t))

}

> , i = , , . . . , n;

or
(b)′ if there exist constants ρi > , i = , , . . . , n such that

ρiaL
ii >

n∑

j=,j �=i

ρj
aM

ji

 – τ̇M
ji

.

Then the system (.) has a unique globally asymptotically stable positive periodic solu-
tion.

Remark . Stamova [] explored the existence and global asymptotic stability of pos-
itive periodic solutions of the model (.). Our results are different from those in [].
The case ri(t) <  is considered by Li et al. []. Therefore, our results supplement some
well-known results in [].

5 Concluding remarks
In this paper, we study an impulsive nonlinear periodic competition model with delays
and feedback controls. In mathematical ecology, the system (.) describes a system of
the dynamics of an n-species model in which each individual competes with all the others
of the model for a common resource, and the intra-species competition involves deviat-
ing arguments τij(t) such that  ≤ τij(t) ≤ τ where τ is a constant and time delays extend
over the entire past as denoted by Kij, Hi, Ri in (.). By means of coincidence degree the-
ory, a set of sufficient conditions for the global existence of positive periodic solution of
the system (.) are established, and constructing the suitable Lyapunov functional, some
easily verifiable weaker sufficient conditions for the global asymptotic stability of positive
periodic solution of the system (.) are obtained. Our results supplement and generalize
some well-known results which have been well studied in the literature.
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