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1 Introduction
Concrete nonlinear difference equations and systems have become of some interest re-
cently. Experts have proposed various classes of the equations and systems hoping that
their studies will lead to some new general results or will bring about some new methods
in the theory (see, e.g., [–]). Many of the papers study or are motivated by the study of
symmetric systems (see, e.g., [–, , , , –]). It turned out that some of the equa-
tions and systems can be solved, which motivated some experts to work on the topic (see,
e.g., [, , , –, –]; for some old results see, e.g., [–]). One of the motivations
for the renewed interest in the area has been Stević’s method/idea for transforming some
nonlinear equations into solvable linear ones (see, for example, [, , , ] and numer-
ous related references therein). It also turned out that many classes of nonlinear difference
equations and systems can be transformed to solvable ones by using some tricks and suit-
able changes of variables (see, e.g., [, , , ] and the related references therein).

Numerous recent equations and systems are closely related to product-type ones, which
are solvable for the case of positive initial values (see, e.g., the equation in [], which is a
kind of perturbation of some product-type and the system in []; see also the related ref-
erences therein). If the initial values are not positive, then there appear several problems.
Thus, it is of some interest to describe the product-type systems with complex initial val-
ues which are solvable. A detailed study of the problem has been started recently by Stević
et al. in [, , , , ] (some subclasses of the class of difference equations studied in
[] are also product-type ones). During the investigation we realized that the solvability
of some product-type systems is preserved if some coefficients/multipliers are added. The
first system of this type was studied in []. Based on this idea, quite recently in [] it
has been shown that the solvability of the system studied in [] is preserved if two coeffi-
cients/multipliers are added. On the other hand, it can be seen that there are only several
classes of product-type systems of difference equations which can be practically solved in
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closed form, due to the well-known fact that roots of the polynomials of degree d ≥  can-
not be solved by radicals. Hence, it is of interest to find all the classes of practically solvable
product-type systems of difference equations and present formulas for their solutions in
terms of the initial values and parameters.

Here we present a new class of product-type systems of difference equations which are
solvable under some natural assumptions. Namely, we investigate the solvability of the
system

zn+ = αza
nwb

n–, wn+ = βwc
n–zd

n–, n ∈N, ()

where a, b, c, d ∈ Z, α,β ∈ C and z–, z, w–, w ∈ C. It is interesting that none of the sub-
classes of the class in () has been previously treated in our papers on product-type sys-
tems, so that all the formulas presented here should be new. The formulas are obtained
by further developing the methods in our previous papers, especially the ones in [] and
[].

A solution to system () need not be defined if its initial values belong to the set

U =
{

(z–, z, w–, w) ∈ C
 : z– =  or z =  or w– =  or w = 

}
.

Thus, from now on we will assume that z–, z, w–, w ∈ C \ {}. Since the cases α =  and
β =  are trivial or produce solutions which are not well defined we will also assume that
αβ �= .

Let us also note that we will use the convention
∑l

i=k ai = , when l < k, throughout the
paper.

2 Main results
The main results in this paper are proved in this section.

Theorem  Assume that b, c, d ∈ Z, a = , α,β ∈ C \ {}, and z–, z, w–, w ∈ C \ {}.
Then system () is solvable in closed form.

Proof Since a =  system () is

zn+ = αwb
n–, wn+ = βwc

n–zd
n–, n ∈N. ()

Using the first equation in () in the second one, we obtain

wn+ = βαdwc
n–wbd

n–, n ≥ , ()

from which it follows that

wn+ = βαdwc
n–wbd

n–, n ∈N, ()

and

wn+ = βαdwc
nwbd

n–, n ∈N. ()
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Case bd = . In this case equations () and () become

wn+ = βαdwc
n–, n ∈N, ()

and

wn+ = βαdwc
n, n ∈N, ()

from which it follows that

wn+ =
(
βαd)

∑n–
j= cj

wcn
 =

(
βαd)

∑n–
j= cj(

βwc
–zd

–
)cn

= β
∑n

j= cj
α

d
∑n–

j= cj
wcn+

– zdcn
– , n ∈N, ()

wn =
(
βαd)

∑n–
j= cj

wcn–
 =

(
βαd)

∑n–
j= cj(

βwc
zd


)cn–

= β
∑n–

j= cj
α

d
∑n–

j= cj
wcn

 zdcn–
 , n ≥ . ()

Hence

wn+ = β
–cn+

–c αd –cn
–c wcn+

– zdcn
– , n ∈N, ()

wn = β
–cn
–c αd –cn–

–c wcn
 zdcn–

 , n ≥ , ()

when c �= , and

wn+ = βn+αdnw–zd
–, n ∈N, ()

wn = βnαd(n–)wzd
, n ≥ , ()

when c = .
By using () and () in the first equation in () with n → n and n → n – , respectively,

we get

zn+ = αwb
n– = αβ

b
∑n–

j= cj
wbcn

– , n ≥ , ()

zn = αwb
n– = αβ

b
∑n–

j= cj
wbcn–

 , n ≥ . ()

Hence, from () and () we have

zn+ = αβb –cn
–c wbcn

– , n ≥ , ()

zn = αβb –cn–
–c wbcn–

 , n ≥ , ()

when c �= , and

zn+ = αβbnwb
–, n ≥ , ()

zn = αβb(n–)wb
, n ≥ , ()

when c = .
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Case bd �= . Let γ := βαd

a := c, b = bd, x := . ()

Then () and () can be written as

wn+ = γ x wa
n–wb

n–, n ∈N, ()

and

wn+ = γ x wa
nwb

n–, n ∈ N. ()

By using () with n → n –  into (), we get

wn+ = γ x
(
γ wa

n–wb
n–

)a wb
n–

= γ x+a waa+b
n– wba

n–

= γ x wa
(n–)+wb

(n–)+, ()

for n ≥ , where

a := aa + b, b := ba, x := x + a. ()

Assume that

wn+ = γ xk wak
(n–k)+wbk

(n–k–)+, ()

for some k ≥  and every n ≥ k, where

ak := aak– + bk–, bk := bak–, xk := xk– + ak–. ()

Using () with n → n – k into () we get

wn+ = γ xk
(
γ wa

(n–k–)+wb
(n–k–)+

)ak wbk
(n–k–)+

= γ xk +ak waak +bk
(n–k–)+wbak

(n–k–)+

= γ xk+ wak+
(n–k–)+wbk+

(n–k–)+, ()

for every n ≥ k + , where

ak+ := aak + bk , bk+ := bak , xk+ := xk + ak . ()

Equalities (), (), (), (), along with the induction show that () and () hold
for all natural numbers k and n such that  ≤ k ≤ n. Moreover, because of (), equality
() holds for  ≤ k ≤ n.
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For n = k, () becomes

wn+ = γ xn wan
 wbn

–, n ∈N. ()

Using the equalities w = βwc
–zd

–, an+ = can + bn, and xn+ = xn + an in () it follows that

wn+ =
(
βαd)xn(

βwc
–zd

–
)an wbn

–

= αdxnβxn+ wcan+bn
– zdan

–

= αdxnβxn+ wan+
– zdan

– , n ∈N. ()

Using () in the first equation in (), we get

zn+ = α+bdxn–βbxn wban
– zbdan–

– , n ≥ . ()

By using the same procedure it is proved that

wn+ = γ xk wak
(n–k+)w

bk
(n–k), ()

for all natural numbers k and n such that  ≤ k ≤ n, where (ak)k∈N, (bk)k∈N, (xk)k∈N satisfy
() and ().

For n = k, () becomes

wn+ = γ xn wan
 wbn

 , n ∈N. ()

Since w = βwc
zd

, xn+ = xn + an, and an+ = can + bn, from () we have

wn+ =
(
βαd)xn(

βwc
zd


)an wbn



= αdxnβxn+ wan+
 zdan

 , n ∈N. ()

Using () in the first equation in (), we get

zn+ = α+bdxn–βbxn wban
 zbdan–

 , n ≥ . ()

From the first two equations in () we have

ak = aak– + bak–, k ≥ . ()

From () and since bk = bak–, we see that (bk)k∈N is also a solution of ().
From () with k =  one obtains

a = aa + b, b = ba, x = x + a. ()

From this and since b = bd �= , from the second equation in () we get a = , which
along with the fact x =  and the other two relations in () implies b = x = .
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This and () with k =  imply

 = a = aa– + b–,  = b = ba–,  = x = x– + a–, ()

which along with b �=  and the second equation in () implies a– = . This along with
the other two relations in () implies that we must have b– =  and x– = .

Hence (ak)k≥– and (bk)k≥– are solutions to () satisfying the (shifted) initial conditions

a– = , a = ; b– = , b = , ()

while (xk)k≥– satisfies the third equation in () and

x– = x = , x = . ()

From the third equation in () along with x =  and a = , we have

xk =  +
k–∑

j=

aj =
k–∑

j=

aj. ()

The characteristic equation associated to () is λ – cλ – bd = , from which it follows
that

λ, =
c ± √

c + bd


,

are the corresponding characteristic roots.
If c + bd �= , then

an = cλ
n
 + cλ

n
,

which along with a– =  and a =  yields

an =
λn+

 – λn+


λ – λ
. ()

From this and since bn = ban–, we have

bn = bd
λn

 – λn


λ – λ
. ()

If c + bd �= , which is equivalent to λ �=  �= λ, from () and (), it follows that

xn =
n–∑

j=

λ
j+
 – λ

j+


λ – λ
=

(λ – )λn+
 – (λ – )λn+

 + λ – λ

(λ – )(λ – )(λ – λ)
. ()

If c + bd = , that is, if one of the characteristic roots is one, say λ, then λ = –bd, so that

xn =
n–∑

j=

λ
j+
 – 
λ – 

=


(λ – )

(
λ

λn
 – 

λ – 
– n

)
=

(–bd)n+ + (n + )bd + n
( + bd) . ()
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If c + bd = , then

an = (ĉ + ĉn)
(

c


)n

.

This along with a– =  and a =  yields

an = (n + )
(

c


)n

. ()

Using the relation bn = ban– along with the fact bd = –c/, we get

bn = bdn
(

c


)n–

= –n
(

c


)n+

. ()

From () and (), we have

xn =
n–∑

j=

(j + )
(

c


)j

=
 – (n + )( c

 )n + n( c
 )n+

( – c
 ) , ()

if c �= . If c = , we obtain

xn =
n–∑

j=

(j + ) =
n(n + )


, ()

completing the proof of the result. �

Corollary  Consider system () with b, c, d ∈ Z, a = , and α,β ∈ C \ {}. Assume that
z–, z, w–, w ∈C \ {}. Then the following statements are true.

(a) If bd =  and c �= , then the general solution to system () is given by (), (), (),
and ().

(b) If bd =  and c = , then the general solution to system () is given by (), (), (),
and ().

(c) If bd �= , c + bd �= , and c + bd �= , then the general solution to system () is given
by (), (), (), and (), where the sequence (an)n≥– is given by formula (),
while (xn)n≥– is given by ().

(d) If bd �= , c + bd �= , and c + bd = , then the general solution to system () is given
by (), (), (), and (), where the sequence (an)n≥– is given by formula (),
while (xn)n≥– is given by ().

(e) If bd �= , c + bd = , and c �= , then the general solution to system () is given by
(), (), (), and (), where the sequence (an)n≥– is given by formula (), while
(xn)n≥– is given by ().

(f ) If bd �= , c + bd = , and c = , then the general solution to system () is given by
(), (), (), and (), where the sequence (an)n≥– is given by formula () with
c = , while (xn)n≥– is given by ().

Theorem  Assume that a, c, d ∈ Z, b = , α,β ∈ C \ {}, and z–, z, w–, w ∈ C \ {}.
Then system () is solvable in closed form.
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Proof Since b = , we have

zn+ = αza
n, wn+ = βwc

n–zd
n–, n ∈N. ()

From the first equation in () we get

zn = α
∑n–

j= aj
zan

 , n ∈N. ()

Hence, if a �= , we have

zn = α
–an
–a zan

 , n ∈N, ()

while if a = ,

zn = αnz, n ∈N. ()

Using () in the second equation in (), it follows that

wn+ = βα
d

∑n–
j= aj

zdan–
 wc

n–, n ≥ . ()

Using () twice, we get

wn = βα
d

∑n–
j= aj

zdan–
 wc

n–

= βα
d

∑n–
j= aj

zdan–


(
βα

d
∑n–

j= aj
zdan–

 wc
n–

)c

= β+cα
d

∑n–
j= aj+dc

∑n–
j= aj

zdan–+dcan–
 wc

n–, ()

for every n ≥ , and

wn+ = βα
d

∑n–
j= aj

zdan–
 wc

n–

= βα
d

∑n–
j= aj

zdan–


(
βα

d
∑n–

j= aj
zdan–

 wc
n–

)c

= β+cα
d

∑n–
j= aj+dc

∑n–
j= aj

zdan–+dcan–
 wc

n–, n ≥ . ()

Assume that, for a natural number k, it has been proved that

wn = β
∑k–

j= cj
α

d
∑k–

i= ci ∑n–i–
j= aj

z
d

∑k–
j= cjan–j–

 wck
n–k , ()

for n ≥ k + , and

wn+ = β
∑k–

j= cj
α

d
∑k–

i= ci ∑n–i–
j= aj

z
d

∑k–
j= cjan–j–

 wck
n–k+, ()

for every n ≥ k.
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Using () with n → n – k –  and n → n – k, in () and (), we obtain

wn = β
∑k–

j= cj
α

d
∑k–

i= ci ∑n–i–
j= aj

z
d

∑k–
j= cjan–j–



× (
βα

d
∑n–k–

j= aj
zdan–k–

 wc
n–k–

)ck

= β
∑k

j= cj
α

d
∑k

i= ci ∑n–i–
j= aj

z
d

∑k
j= cjan–j–

 wck+
n–k–, ()

for n ≥ k + , and

wn+ = β
∑k–

j= cj
α

d
∑k–

i= ci ∑n–i–
j= aj

z
d

∑k–
j= cjan–j–



× (
βα

d
∑n–k–

j= aj
zdan–k–

 wc
n–k–

)ck

= β
∑k

j= cj
α

d
∑k

i= ci ∑n–i–
j= aj

z
d

∑k
j= cjan–j–

 wck+
n–k–, ()

for every n ≥ k + .
From (), (), (), (), and the induction it follows that () holds for all natural

numbers k and n such that  ≤ k ≤ n–, while () holds for all k and n such that  ≤ k ≤ n.
By taking k = n –  in (), we get

wn =β
∑n–

j= cj
α

d
∑n–

i= ci ∑n–i–
j= aj

z
d

∑n–
j= cjan–j–

 wcn–
 , n ≥ . ()

By using the relation w = βwc
zd

 in () we get

wn = β
∑n–

j= cj
α

d
∑n–

i= ci ∑n–i–
j= aj

z
d

∑n–
j= cjan–j–


(
βwc

zd

)cn–

= β
∑n–

j= cj
α

d
∑n–

i= ci ∑n–i–
j= aj

z
d

∑n–
j= cjan–j–

 wcn
 , n ∈N. ()

By taking k = n in (), and using the relation w = βwc
–zd

–, we get

wn+ = β
∑n–

j= cj
α

d
∑n–

i= ci ∑n–i–
j= aj

z
d

∑n–
j= cjan–j–

 wcn


= β
∑n–

j= cj
α

d
∑n–

i= ci ∑n–i–
j= aj

z
d

∑n–
j= cjan–j–


(
βwc

–zd
–

)cn

= β
∑n

j= cj
α

d
∑n–

i= ci ∑n–i–
j= aj

z
d

∑n–
j= cjan–j–

 wcn+
– zdcn

– , ()

for n ∈N. It is also easy to check that () holds also for n =  when c �= .
Subcase a �=  �= c, c �= a. In this case we have

wn = β
–cn
–c αd

∑n–
i= ci –an–i–

–a z
d an–cn

a–c
 wcn

 ,

= β
–cn
–c α

d
–a ( –cn–

–c –a an––cn–
a–c

)z
d an–cn

a–c
 wcn

 ,

= β
–cn
–c α

d(a–c+(–a)cn+(c–)an)
(–a)(–c)(a–c) z

d an–cn
a–c

 wcn
 , ()
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for n ∈N, and

wn+ = β
–cn+

–c αd
∑n–

i= ci –an–i–
–a z

ad an–cn
a–c

 wcn+
– zdcn

–

= β
–cn+

–c α
d

–a ( –cn
–c –a an–cn

a–c
)z

ad an–cn
a–c

 wcn+
– zdcn

–

= β
–cn+

–c α
d(a–c+(a+c)(–a)cn–(–c)an+)

(–a)(–c)(a–c) z
ad an–cn

a–c
 wcn+

– zdcn
– , ()

for every n ∈N.
Subcase a �=  �= c, c = a. In this case we have

wn = β
∑n–

j= aj
α

d
∑n–

i= ai ∑n–i–
j= aj

z
d

∑n–
j= ajan–j–

 wan
 ,

= β
–an
–a αd

∑n–
i= ai –an–i–

–a zdnan–
 wan

 ,

= β
–an
–a α

d
–a ( –an–

–a –(n–)an–)zdnan–
 wan

 ,

= β
–an
–a α

d(–nan–+(n–)an)
(a–)(a+) zdnan–

 wan
 , n ≥ , ()

wn+ = β
∑n

j= aj
α

d
∑n–

i= ai ∑n–i–
j= aj

z
d

∑n–
j= ajan–j–

 wan+
– zdan

–

= β
–an+

–a αd
∑n–

i= ai –an–i–
–a zdnan–

 wan+
– zdan

–

= β
–an+

–a α
d

–a ( –an
–a –nan–)zdnan–

 wan+
– zdan

–

= β
–an+

–a α
d(–nan––an+nan+)

(a+)(a–) zdnan–
 wan+

– zdan
– , ()

for every n ∈N.
Subcase a �=  = c. In this case we have

wn = β
∑n–

j= 
α

d
∑n–

i=
∑n–i–

j= aj
z

d
∑n–

j= an–j–

 w,

= βnαd
∑n–

i=
–an–i–

–a z
d an–

a–
 w,

= βnα
d

–a (n––a an––
a–

)z
d an–

a–
 w,

= βnα
d(an–na+n–)

(a–)(a+) z
d an–

a–
 w, n ∈ N, ()

wn+ = β
∑n

j= 
α

d
∑n–

i=
∑n–i–

j= aj
z

d
∑n–

j= an–j–

 w–zd
–

= βn+αd
∑n–

i=
–an–i–

–a z
ad an–

a–
 w–zd

–

= βn+α
d

–a (n–a an–
a–

)z
ad an–

a–
 w–zd

–

= βn+α
d(an++n(–a)–a)

(a–)(a+) z
ad an–

a–
 w–zd

–, ()

for every n ∈N.
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Subcase a = –, c = . In this case we have

wn = β
∑n–

j= 
α

d
∑n–

i=
∑n–i–

j= (–)j
z

d
∑n–

j= (–)n–j–

 w,

= βnzdn
 w, n ∈N, ()

wn+ = β
∑n

j= 
α

d
∑n–

i=
∑n–i–

j= (–)j
z

d
∑n–

j= (–)n–j–

 w–zd
–

= βn+αd
∑n–

i=
–(–)n–i–

 z
d

∑n–
j= (–)

 w–zd
–

= βn+αdnz–dn
 w–zd

–, ()

for every n ∈N.
Subcase a = , c �= . In this case we have

wn = β
∑n–

j= cj
α

d
∑n–

i= ci ∑n–i–
j= z

d
∑n–

j= cj

 wcn


= β
–cn
–c αd

∑n–
i= (n–i–)ci

zd –cn
–c

 wcn


= β
–cn
–c α

d((n–) –cn–
–c –c –(n–)cn–+(n–)cn–

(–c)
)zd –cn

–c
 wcn



= β
–cn
–c α

d(n––nc+cn)
(–c) zd –cn

–c
 wcn

 , n ∈N, ()

wn+ = β
∑n

j= cj
α

d
∑n–

i= ci ∑n–i–
j= z

d
∑n–

j= cj

 wcn+
– zdcn

–

= β
–cn+

–c αd
∑n–

i= (n–i–)ci
zd –cn

–c
 wcn+

– zdcn
–

= β
–cn+

–c αd((n–) –cn
–c –c

∑n–
i= ici–)zd –cn

–c
 wcn+

– zdcn
–

= β
–cn+

–c α
d((n–) –cn

–c –c –ncn–+(n–)cn
(–c)

)zd –cn
–c

 wcn+
– zdcn

–

= β
–cn+

–c α
d(n––(n+)c+cn+cn+)

(–c) zd –cn
–c

 wcn+
– zdcn

– , ()

for every n ∈N.
Subcase a = c = . In this case we have

wn = β
∑n–

j= 
α

d
∑n–

i=
∑n–i–

j= z
d

∑n–
j= 

 w

= βnαd
∑n–

i= (n–i–)zdn
 w

= βnαd(n–)nzdn
 w, n ∈N, ()

wn+ = β
∑n

j= 
α

d
∑n–

i=
∑n–i–

j= z
d

∑n–
j= 

 w–zd
–

= βn+αd
∑n–

i= (n–i–)zdn
 w–zd

–

= βn+αdn
zdn

 w–zd
–, ()

for every n ∈N. �

Corollary  Consider system () with a, c, d ∈ Z, b = , and α,β ∈ C \ {}. Assume that
z–, z, w–, w ∈C \ {}. Then the following statements are true.
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(a) If a �=  �= c and c �= a, then the general solution to system () is given by (), (),
and ().

(b) If a �=  �= c and c = a �= , then the general solution to system () is given by (), (),
and ().

(c) If a �=  = c, then the general solution to system () is given by (), (), and ().
(d) If a = – and c = , then the general solution to system () is given by (), (), and

().
(e) If a =  and c �= , then the general solution to system () is given by (), (), and

().
(f ) If a = c = , then the general solution to system () is given by (), (), and ().

Theorem  Assume that a, b, c ∈ Z, d = , α,β ∈ C \ {}, and z–, z, w–, w ∈ C \ {}.
Then system () is solvable in closed form.

Proof In this case system () becomes

zn+ = αza
nwb

n–, wn+ = βwc
n–, n ∈N. ()

From the second equation in () it easily follows that

wn = β
∑n–

j= cj
wcn

 , n ∈N and wn+ = β
∑n

j= cj
wcn+

– , n ∈N, ()

which, for the case c �= , implies that

wn = β
–cn
–c wcn

 , n ∈N, ()

and

wn+ = β
–cn+

–c wcn+
– , n ∈N, ()

while, for the case c = , we have

wn = βnw, n ∈ N, ()

and

wn+ = βn+w–, n ∈N. ()

Employing () in the first equation in () we obtain

zn = αβ
b
∑n–

j= cj
wbcn–

 za
n–, n ≥ , ()

zn+ = αβ
b
∑n–

j= cj
wbcn

– za
n, n ∈N. ()

Combining () and () it follows that

zn = αβ
b
∑n–

j= cj
wbcn–


(
αβ

b
∑n–

j= cj
wbcn–

– za
n–

)a

= α+aβ
b(+a)

∑n–
j= cj(

wb
wab

–
)cn–

za
n–, ()
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for n ≥ , and

zn+ = αβ
b
∑n–

j= cj
wbcn

–
(
αβ

b
∑n–

j= cj
wbcn–

 za
n–

)a

= α+aβ
b(

∑n–
j= cj+a

∑n–
j= cj)(wab

 wbc
–

)cn–
za

n–, n ∈N. ()

Assume that, for some natural number k we have proved that

zn = α
(+a)

∑k–
j= aj

β
b(+a)

∑k–
i= ai ∑n–i–

j= cj(
wb

wab
–

)∑k–
j= ajcn–j–

zak
n–k , ()

for n ≥ k +  and

zn+ = α
(+a)

∑k–
j= aj

β
b
∑k–

i= ai(
∑n–i–

j= cj+a
∑n–i–

j= cj)(wab
 wbc

–
)∑k–

j= ajcn–j–
zak

n–k+, ()

for every n ≥ k.
By using () with n → n – k into (), and () with n → n – k into (), it follows that

zn = α
(+a)

∑k–
j= aj

β
b(+a)

∑k–
i= ai ∑n–i–

j= cj(
wb

wab
–

)∑k–
j= ajcn–j–

× (
α+aβ

b(+a)
∑n–k–

j= cj(
wb

wab
–

)cn–k–
za

n–k–
)ak

= α
(+a)

∑k
j= aj

β
b(+a)

∑k
i= ai ∑n–i–

j= cj(
wb

wab
–

)∑k
j= ajcn–j–

zak+
n–k–, ()

for n ≥ k +  and

zn+ = α
(+a)

∑k–
j= aj

β
b
∑k–

i= ai(
∑n–i–

j= cj+a
∑n–i–

j= cj)(wab
 wbc

–
)∑k–

j= ajcn–j–

× (
α+aβ

b(
∑n–k–

j= cj+a
∑n–k–

j= cj)(wab
 wbc

–
)cn–k–

za
n–k–

)ak

= α
(+a)

∑k
j= aj

β
b
∑k

i= ai(
∑n–i–

j= cj+a
∑n–i–

j= cj)(wab
 wbc

–
)∑k

j= ajcn–j–
zak+

n–k–, ()

for every n ≥ k + .
From the equalities in (), (), (), (), and by induction we see that () holds for

all natural numbers k and n such that  ≤ k ≤ n – , while () holds for  ≤ k ≤ n.
If we choose k = n –  in () and k = n in () we get

zn = α
(+a)

∑n–
j= aj

β
b(+a)

∑n–
i= ai ∑n–i–

j= cj(
wb

wab
–

)∑n–
j= ajcn–j–

zan–


= α
(+a)

∑n–
j= aj

β
b(+a)

∑n–
i= ai ∑n–i–

j= cj(
wb

wab
–

)∑n–
j= ajcn–j–(

α+aza
 wab

–wb

)an–

= α
(+a)

∑n–
j= aj

β
b(+a)

∑n–
i= ai ∑n–i–

j= cj(
wb

wab
–

)∑n–
j= ajcn–j–

zan
 , ()

for every n ∈N, and

zn+ = α
(+a)

∑n–
j= aj

β
b
∑n–

i= ai(
∑n–i–

j= cj+a
∑n–i–

j= cj)(wab
 wbc

–
)∑n–

j= ajcn–j–
zan



= α
(+a)

∑n–
j= aj

β
b
∑n–

i= ai(
∑n–i–

j= cj+a
∑n–i–

j= cj)(wab
 wbc

–
)∑n–

j= ajcn–j–(
αza

wb
–

)an

= α
∑n

j= aj
β

b
∑n–

i= ai(
∑n–i–

j= cj+a
∑n–i–

j= cj)w
ab

∑n–
j= ajcn–j–

 w
b
∑n

j= ajcn–j

– zan+
 , ()

for every n ∈N.
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Subcase c �= a �=  �= c. In this case we have

zn = α
–an

–a βb(+a)
∑n–

i= ai –cn–i–
–c

(
wb

wab
–

) an–cn
a–c zan



= α
–an

–a β
b(+a)

–c ( –an–
–a –c an––cn–

a–c
)(wb

wab
–

) an–cn
a–c zan



= α
–an

–a β
b(+a)(a–c+cn–an+can–acn)

(–c)(–a)(a–c)
(
wb

wab
–

) an–cn
a–c zan

 , ()

zn+ = α
∑n

j= aj
β

b
∑n–

i= ai(
∑n–i–

j= cj+a
∑n–i–

j= cj)w
ab

∑n–
j= ajcn–j–

 w
b
∑n

j= ajcn–j

– zan+


= α
–an+

–a βb
∑n–

i= ai( –cn–i
–c +a –cn–i–

–c )w
ab an–cn

a–c
 w

b an+–cn+
a–c

– zan+


= α
–an+

–a β
b

–c ( –an
–a –(c+a) an–cn

a–c
)w

ab an–cn
a–c

 w
b an+–cn+

a–c
– zan+



= α
–an+

–a β
b(a–c–a(–c)an+(c+a)(–a)cn)

(–c)(–a)(a–c) w
ab an–cn

a–c
 w

b an+–cn+
a–c

– zan+
 , ()

for every n ∈N.
Subcase a �=  �= c, c = a. In this case we have

zn = α
(+a)

∑n–
j= aj

β
b(+a)

∑n–
i= ai ∑n–i–

j= aj(
wb

wab
–

)∑n–
j= ajan–j–

zan


= α
–an

–a β
b(+a)

∑n–
i= ai –an–i–

–a
(
wb

wab
–

)nan–
zan



= α
–an

–a β
b

–a ( –an–
–a –(n–)an–)(wb

wab
–

)nan–
zan



= α
–an

–a β
b(–nan–+(n–)an)

(a+)(a–)
(
wb

wab
–

)nan–
zan

 , ()

zn+ = α
∑n

j= aj
β

b
∑n–

i= ai(
∑n–i–

j= aj+a
∑n–i–

j= aj)w
ab

∑n–
j= ajan–j–

 w
b
∑n

j= ajan–j

– zan+


= α
–an+

–a β
b
∑n–

i= ai( –an–i
–a +a –an–i–

–a )wbnan–
 wb(n+)an

– zan+


= α
–an+

–a β
b

–a ( –an
–a –nan–)wbnan–

 wb(n+)an

– zan+


= α
–an+

–a β
b(–an–nan–+nan+)

(a+)(a–) wbnan–
 wb(n+)an

– zan+
 , ()

for every n ∈N.
Subcase a �=  = c. In this case we have

zn = α
(+a)

∑n–
j= aj

β
b(+a)

∑n–
i= ai ∑n–i–

j= (wb
wab

–
)∑n–

j= aj
zan



= α
–an

–a βb(+a)
∑n–

i= ai(n–i–)(wb
wab

–
) –an

–a zan


= α
–an

–a β
b(+a)((n–) –an–

–a –a –(n–)an–+(n–)an–
(–a)

)(wb
wab

–
) –an

–a zan


= α
–an

–a β
b(n––na+an)

(a+)(a–)
(
wb

wab
–

) –an
–a zan

 , ()

zn+ = α
∑n

j= aj
β

b
∑n–

i= ai(
∑n–i–

j= +a
∑n–i–

j= )w
ab

∑n–
j= aj

 w
b
∑n

j= aj

– zan+


= α
–an+

–a βb
∑n–

i= ai((+a)n–a–(+a)i)wab –an
–a

 wb –an+
–a

– zan+
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= α
–an+

–a β
b(((+a)n–a) –an

–a –a –nan–+(n–)an
(a+)(–a)

)wab –an
–a

 wb –an+
–a

– zan+


= α
–an+

–a β
b(n–a–na+an+)

(a+)(–a) wab –an
–a

 wb –an+
–a

– zan+
 , ()

for every n ≥ –.
Subcase a = –, c = . In this case we have

zn =
(
wb

w–b
–

)∑n–
j= (–)j

z(–)n



=
(
wb

w–b
–

)nz, ()

zn+ = α
∑n

j=(–)j
β

b
∑n–

i= (–)i(
∑n–i–

j= –
∑n–i–

j= )w
–b

∑n–
j= (–)j

 w
b
∑n

j=(–)j

– z(–)n+



= αβbnw–bn
 wb(n+)

– z–
 , ()

for every n ∈N.
Subcase a =  �= c. In this case we have

zn = α

∑n–

j= 
β

b
∑n–

i=
∑n–i–

j= cj(
wb

wb
–

)∑n–
j= cn–j–

z

= αnβb
∑n–

i=
–cn–i–

–c
(
wb

wb
–

) –cn
–c z

= αnβ
b
–c (n––c –cn–

–c )(wb
wb

–
) –cn

–c z

= αnβ
b(n––nc+cn)

(–c)
(
wb

wb
–

) –cn
–c z, ()

zn+ = α
∑n

j= 
β

b
∑n–

i= (
∑n–i–

j= cj+
∑n–i–

j= cj)w
b
∑n–

j= cn–j–

 w
b
∑n

j= cn–j

– z

= αn+βb
∑n–

i= ( –cn–i
–c + –cn–i–

–c )wb –cn
–c

 wb –cn+
–c

– z

= αn+β
b

–c (n–c –cn
–c – –cn

–c )wb –cn
–c

 wb –cn+
–c

– z

= αn+β
b(n––(n+)c+cn+cn+)

(–c) wb –cn
–c

 wb –cn+
–c

– z, ()

for n ∈N.
Subcase a = c = . In this case we have

zn = α

∑n–

j= 
β

b
∑n–

i=
∑n–i–

j= (wb
wb

–
)∑n–

j= z

= αnβb
∑n–

i= (n–i–)(wb
wb

–
)nz

= αnβb(n–)n(wb
wb

–
)nz, ()

zn+ = α
∑n

j= 
β

b
∑n–

i= (
∑n–i–

j= +
∑n–i–

j= )w
b
∑n–

j= 
 w

b
∑n

j= 
– z

= αn+βb
∑n–

i= (n–i–)wbn
 wb(n+)

– z

= αn+βbn
wbn

 wb(n+)
– z, ()

for every n ∈N, completing the proof. �
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Corollary  Consider system () with a, b, c ∈ Z, d = , and α,β ∈ C \ {}. Assume that
z–, z, w–, w ∈C \ {}. Then the following statements are true.

(a) If c �= a �=  �= c, then the general solution to system () is given by (), (), (), and
().

(b) If c = a �=  �= c, then the general solution to system () is given by (), (), (), and
().

(c) If a �=  = c, then the general solution to system () is given by (), (), (), and
().

(d) If a = – and c = , then the general solution to system () is given by (), (), (),
and ().

(e) If a =  and c �= , then the general solution to system () is given by (), (), (),
and ().

(f ) If a = c = , then the general solution to system () is given by (), (), (), and
().

Theorem  Assume that a, b, c, d ∈ Z, bd �= , α,β ∈C \ {}, and z–, z, w–, w ∈C \ {}.
Then system () is solvable in closed form.

Proof First note that the conditions α,β ∈C \ {} and z–, z, w–, w ∈C \ {} along with
the equations in () imply znwn �=  for n ≥ –. Hence, for every such a solution the first
equation in () yields

wb
n– =

zn+

αza
n

, n ∈ N, ()

while from the second one it follows that

wb
n+ = βbwbc

n–zbd
n–, n ∈N. ()

From () and () one obtains

zn+ = α–cβbza
n+zc

n+z–ac
n zbd

n–, n ∈ N, ()

which is a fourth order product-type difference equation.
Note also that

z = αza
wb

–, z = α
(
αza

wb
–

)awb
 = α+aza

 wab
–wb

. ()

Let δ = α–cβb,

a = a, b = c, c = –ac, d = bd, y = . ()

Then equation () can be written as

zn+ = δy za
n+zb

n+zc
n zd

n–, n ∈N. ()
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Using () with n → n –  into () we get

zn+ = δy
(
δza

n+zb
n zc

n–zd
n–

)a zb
n+zc

n zd
n–,

= δy+a zaa+b
n+ zba+c

n zca+d
n– zda

n–

= δy za
n+zb

n zc
n–zd

n–, ()

for n ∈N, where

a := aa + b, b := ba + c, c := ca + d,

d := da, y := y + a.
()

Assume that, for a k such that  ≤ k ≤ n + , we have proved that

zn+ = δyk zak
n+–kzbk

n+–kzck
n+–kzdk

n–k , ()

for n ≥ k – , and that

ak = aak– + bk–, bk = bak– + ck–,

ck = cak– + dk–, dk = dak–,
()

yk := yk– + ak–. ()

Using () with n → n – k into () one obtains

zn+ = δyk
(
δza

n+–kzb
n+–kzc

n–kzd
n–k–

)ak zbk
n+–kzck

n+–kzdk
n–k

= δyk +ak zaak +bk
n+–k zbak +ck

n+–k zcak +dk
n–k zdak

n–k–

= δyk+ zak+
n+–kzbk+

n+–kzck+
n–k zdk+

n–k–, ()

for n ≥ k, where

ak+ := aak + bk , bk+ := bak + ck ,

ck+ := cak + dk , dk+ := dak ,
()

yk+ := yk + ak . ()

This along with (), (), and the method of induction shows that (), (), and (),
hold for every k and n such that  ≤ k ≤ n + . In fact () holds for  ≤ k ≤ n +  (see
()).

Hence, choosing k = n +  in (), and using () we have

zn+ = δyn+ zan+
 zbn+

 zcn+
 zdn+

–

=
(
α–cβb)yn+(

α+aza
 wab

–wb

)an+(

αza
wb

–
)bn+ zcn+

 zdn+
–

= α(–c)yn++(+a)an++bn+βbyn+ zaan++abn++cn+


× waban++bbn+
– wban+

 zdn+
– , n ∈N. ()
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From () we easily see that (ak)k≥ satisfies the difference equation

ak = aak– + bak– + cak– + dak–. ()

Since bk = ak+ – aak , ck = bk+ – bak , dk = dak–, and from the linearity of equation
() we see that (bk)k∈N, (ck)k∈N, and (dk)k∈N are also solutions to the equation.

System () with k =  yields

a = aa + b, b = ba + c, c = ca + d,

d = da, y = y + a.
()

The condition d = bd �=  along with the fourth equation in () implies a = . Using
this and y =  in the other equalities in () we get b = c = d = y = . Repeating the
procedure for k = , –, –, is easily obtained

a– = , a– = , a– = , a = ;

b– = , b– = , b– = , b = ;

c– = , c– = , c– = , c = ;

d– = , d– = , d– = , d = .

()

Hence, (ak)k≥–, (bk)k≥–, (ck)k≥–, and (dk)k≥– are solutions to () satisfying initial
conditions (), while (yk)k≥– satisfies the following conditions:

y– = y– = y– = y = , y = , ()

and (), from which it follows that

yk =
k–∑

j=

aj. ()

Since equation () is solvable, it follows that closed form formulas for (ak)k≥–,
(bk)k≥–, (ck)k≥–, and (dk)k≥–, can be found. From (), the form of the solution ak ,
and by using some known summation formulas it follows that the formula for (yk)k≥– can
also be found. From these facts and () we see that equation () is solvable too.

From the second equation in (), we have that for every well-defined solution

zd
n– =

wn+

βwc
n–

, n ∈N, ()

while from the first one it follows that

zd
n+ = αdzad

n wbd
n–, n ∈N. ()

From () into () one obtains

wn+ = αdβ–awa
n+wc

n+w–ac
n wbd

n–, n ∈N, ()

which differs from () only by the constant multiplier.
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We have

w = βwc
–zd

– and w = βwc
zd

. ()

As above one obtains, for all natural numbers k and n such that  ≤ k ≤ n + ,

wn+ = ηŷk wak
n+–kwbk

n+–kwck
n+–kwdk

n–k , n ≥ k – , ()

where η = αdβ–a, (ak)k∈N, (bk)k∈N, (ck)k∈N, and (dk)k∈N satisfy () with initial conditions
(), while (ŷk)k∈N satisfies () and (), so that () holds where yk is replaced by ŷk .

From () with k = n +  and by using () we get

wn+ = ηŷn+ wan+
 wbn+

 wcn+
 wdn+

–

=
(
αdβ–a)ŷn+(

βwc
zd


)an+(

βwc
–zd

–
)bn+ wcn+

 wdn+
–

= αdŷn+β (–a)ŷn++an++bn+ wcan++cn+
 zdan+

 wcbn++dn+
– zdbn+

– , ()

for n ∈N.
As above the solvability of () shows that formulas for (ak)k≥–, (bk)k≥–, (ck)k≥–, and

(dk)k≥– can be found, and consequently a formula for (ŷk)k≥–. This fact along with ()
implies that equation () is solvable too. Hence, system () is also solvable in this case,
as desired. �

Corollary  Consider system () with a, b, c, d ∈ Z, bd �= , α,β ∈ C \ {}. Assume that
z–, z, w–, w ∈C \ {}. Then the general solution to system () is given by () and (),
where the sequences (ak)k∈N, (bk)k∈N, (ck)k∈N, and (dk)k∈N satisfy the difference equation
() with initial conditions in (), while (yk)k∈N and (ŷk)k∈N are given by () and satisfy
conditions ().
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22. Stević, S, Iričanin, B, Šmarda, Z: Solvability of a close to symmetric system of difference equations. Electron. J. Differ.

Equ. 2016, Article ID 159 (2016)
23. Jordan, C: Calculus of Finite Differences. Chelsea, New York (1956)
24. Levy, H, Lessman, F: Finite Difference Equations. Dover, New York (1992)
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