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Abstract
In this paper, we formulate a delayed phytoplankton-zooplankton model with
impulsive diffusion on phytoplankton. Using the discrete dynamical system
determining the stroboscopic map, we obtain the zooplankton-extinction periodic
solution which is globally attractive. The conditions of the permanence are given by
using the theory on the delay and impulsive differential equation. Finally, some
numerical simulations are presented to illustrate the results.
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1 Introduction
Plankton, including phytoplankton and zooplankton, are an important food source for or-
ganisms in an aquatic environment. Phytoplankton perform a great service for the earth by
absorbing the carbon dioxide from the surrounding environments and releasing the oxy-
gen into the atmosphere [, ]. As a primary producer, phytoplankton are most favorable
food sources for fish and other aquatic animals []. An obvious feature of the phytoplank-
ton is a rapid appearance and disappearance resulting in the formation of bloom, which
causes a great harm to the human health and zooplankton population [, ]. Therefore, it
is necessary to investigate the effect of zooplankton and phytoplankton on the occurrence
of bloom.

Many mathematical models have been formulated to describe the dynamical interaction
between zooplankton and phytoplankton [–]. In [], deterministic and stochastic mod-
els of nutrient-phytoplankton-zooplankton interaction are proposed to investigate the im-
pact of toxin-producing phytoplankton upon persistence of the populations. The author
of [] formulated a toxin-producing phytoplankton-zooplankton model with stochastic
perturbation and investigated the global stability of the positive equilibrium by means of
constructing suitable Lyapunov functions. Chowdhury et al. [] proposed a mathemati-
cal model of NTP-TPP-zooplankton with constant and variable zooplankton migration.
The asymptotic dynamics of the system around the biologically feasible equilibria was ex-
plored through local stability analysis. The authors of [] analyzed a mathematical model
for the interactions between phytoplankton and zooplankton in a periodic environment
and obtained the permanent condition.
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As we know, population dispersal has a great effect on the dynamics [–]. Hong et
al. [] investigated a single species model with intermittent unilateral diffusion in two
patches. The global attractivity of positive periodic solution and the extinction of species
were established by using Lyapunov function approach. Shao [] formulated a delayed
predator-prey system with impulsive diffusion between two patches:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx
dt = x(r – ax – by),

dx
dt = x(r – ax),

dy
dt = y(–r + ax(t – τ) – by(t – τ)),

t �= nT ,

�x = d(x – x),
�x = d(x – x),�y = ,

t = nT ,

(.)

with the initial condition

x(s) = φ(s), x(s) = φ(s), y(s) = φ(s),

φ = (φ,φ,φ) ∈ C
(
[–τ , ], R

+
)
,φi() > , i = , , ,

where phytoplankton are structured into two patches connected by impulsive diffusion.
Wang and Jia [] proposed a single species model with impulsive diffusion and pulsed
harvesting at the different fixed time as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = x(a – bxθ

 ),
dx
dt = x(a – bxθ

 ),
t �= (n + l – )T , t �= nT ,

�x = –px,
�x = –px,

t = (n + l – )T ,

�x = d(x – x),
�x = d(x – x),�y = ,

t = nT ,

(.)

where the system is composed of two patches connected by diffusion. xi (i = , ) is the
density of species in the ith patch. Wang et al. [] proposed a single species model with
impulsive diffusion between two patches and obtained a globally stable positive periodic
solution by using the discrete dynamical system generated by a monotone, concave map
for the population. However, little information is available about the application of impul-
sive diffusion to plankton model. In this paper, we will formulate a nonlinear modeling of
the interaction between phytoplankton and zooplankton with impulsive dispersal on the
phytoplankton.

The outline of this paper is as follows: a delayed phytoplankton-zooplankton model with
impulsive diffusion is presented in Section . In addition, some important lemmas are also
given in Section . In Sections  and , we obtain the sufficient conditions for global at-
tractivity of zooplankton-extinction periodic solution and the permanence of the system.
Finally, we give some numerical simulations and a brief discussion.

2 Development model and preliminaries
Although phytoplankton are single-celled organisms, they play an important role in the
marine ecosystem. To describe the complex effect of the phytoplankton on zooplankton,
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Roy et al. [] considered a significant number of species of phytoplankton that have the
ability to produce toxic or inhibitory compounds and they formulated the following model:

⎧
⎪⎪⎨

⎪⎪⎩

dP
dt = P{r( – P+αP

K ) – wZ
D+P

},
dP
dt = P{r( – P+αP

K ) – wZ
D+P

},
dZ
dt = Z{ ξP

D+P
– ξP

D+P
– c}.

(.)

Motivated by [, , ], we are concerned with the effects of the phytoplankton-impulsive
diffusion in two patches on the dynamics of a phytoplankton-zooplankton system,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dP
dt = P(r – aPθ

 ) – αPZ,
dP
dt = P(r – aPθ

 ) – αPZ,
dZ
dt = Z(�P + �P – aZ(t – τ ) – μ – βP

K+P
),

t �= nT ,

�P = d(P – P),
�P = d(P – P),�Z = ,

t = nT ,

(.)

with the initial condition

P(s) = φ(s), P(s) = φ(s), Z(s) = φ(s),

φ = (φ,φ,φ) ∈ C
(
[–τ , ], R

+
)
,φi() > , i = , , ,

(.)

where P(t) denotes the concentration of the nontoxic phytoplankton (NPP) and P(t)
is the concentration of the toxin-producing phytoplankton (TPP). Z(t) is the concentra-
tion of the zooplankton. r and r are the intrinsic growth rates of NTP and TPP pop-
ulation, respectively. θi (i = , ) present nonlinear measure of intra-species interference.
ai (i = , ) are the coefficients of intra-specific competition. αi (i = , ) denote the cap-
turing rates of the zooplankton. �i

αi
(i = , ) denote the conversion rate of nutrient into

the production rate of the zooplankton. The term –aZ(t – τ ) denotes the negative feed-
back of zooplankton crowding. T is the impulsive diffusion because of the external per-
turbation. d ( < d < ) is the diffusion rate. μ is the death rate of zooplankton. The term

βP
K+P

(β > , K > ) contributes to the death of zooplankton population, where K is a half-
saturation constant, β denotes the rate of toxin liberation by toxin-producing phytoplank-
ton. �Pi(t+) = Pi(t+) – Pi(t) (i = , ), �Z(t+) = Z(t+) – Z(t), n ∈ N .

For convenience, we first give some lemmas.

Lemma . All the solutions (P(t), P(t), Z(t)) of system (.) with the initial conditions
are positive for all t ≥ .

Lemma . Let (P(t), P(t), Z(t)) be any solution of system (.), there exists a constant
M > , such that Pi(t) ≤ M (i = , ) and Z(t) ≤ M for t large enough.

Proof Define V (t) = θ
�

P(t) + �
α

P(t) + Z(t). When t �= nT , we have

D+V + μV (t) ≤ �

α

(
(r + μ)P – aPθ


)

+
�

α

(
(r + μ)P – aPθ


)

≤ (r + μ)θ�

α(θ + )

(
r + μ

a(θ + )

) 
θ

+
(r + μ)θ�

α(θ + )

(
r + μ

a(θ + )

) 
θ �= ξ .
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For t = nT , V (nT+) ≤ V (nT), hence we obtain

V (t) ≤ V
(
+)

e–μt +
ξ

μ

(
 – e–μt) → ξ

μ

as t → ∞, which shows V (t) is uniformly ultimately bounded. Thus, we have Pi(t) ≤ M
(i = , ), Z(t) ≤ M.

Consider the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dP
dt = P(r – aPθ

 ),
dP
dt = P(r – aPθ

 ),
t �= nT ,

�P = d(P – P),
�P = d(P – P),

t = nT .
(.)

Integrating system (.) on (nT , (n + )T], we have

Pi(t) =
(

P–θi


(
nT+)

e–riθi(t–nT) +
ai

ri

(
 – e–riθi(t–nT))

)– 
θi

,

t ∈ (
nT , (n + )T

]
, i = , . (.)

Similar to [], we derive the difference equation at the impulsive moment according to
system (.).

⎧
⎪⎨

⎪⎩

P(n + )T+ = ( Pθ
 (nT+)

β+γPθ
 (nT+)

)

θ + d(( Pθ

 (nT+)

β+γPθ
 (nT+)

)

θ – ( Pθ

 (nT+)

β+γPθ
 (nT+)

)

θ ),

P(n + )T+ = ( Pθ
 (nT+)

β+γPθ
 (nT+)

)

θ + d(( Pθ

 (nT+)

β+γPθ
 (nT+)

)

θ – ( Pθ

 (nT+)

β+γPθ
 (nT+)

)

θ ),

(.)

where βi = e–riθiT < , γi = ai
ri

( – e–riθiT ), i = , . Equation (.) presents the phytoplankton
concentration between patches after diffusion at the moment t = nT .

To investigate the dynamics of system (.), we define a continuous map F : R
+ → R

+,

⎧
⎪⎨

⎪⎩

F(x) = ( xθ


β+γxθ


)

θ + d(( xθ


β+γxθ


)


θ – ( xθ


β+γxθ


)


θ ),

F(x) = ( xθ


β+γxθ


)

θ + d(( xθ


β+γxθ


)


θ – ( xθ


β+γxθ


)


θ ).

(.)

�

Lemma . [] There exists a unique positive fixed point q = (q, q) of map F and for any
x = (x, x), we have F(x) → q as n → ∞, which implies q = (q, q) is globally asymptoti-
cally stable. Therefore, system (.) has a positive periodic solution (P∗

 (t), P∗
(t)), where

P∗
i (t) =

(
ai

ri
+

(


qθi
i

–
ai

ri

)

e–riθi(t–nT)
)– 

θi
, t ∈ (

nT , (n + )T
]
, i = , . (.)

Thus, system (.) has a zooplankton-extinction periodic solution (P∗
 (t), P∗

(t), ).
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Lemma . [] Let us consider the following equality:

dx
dt

≤ x(t)
(
a – bx(t – τ )

)
, (.)

where a, b, τ > , x(t) >  for t ∈ [–τ , ]. Then we obtain a
b ea–aeaτ ≤ x(t) ≤ a

b eaτ for t large
enough.

3 Global attractivity of the zooplankton-extinction periodic solution
Theorem . The zooplankton-extinction periodic solution (P∗

 (t), P∗
(t), ) is globally at-

tractive if
∑i=

i=�i( ai
ri

+ ( 
qθi

i
– ai

ri
)e–riθiT )– 

θi < μ holds.

Proof From the first two equations of system (.), we have

dP

dt
≤ P(r – aPθ

 ),

dP

dt
≤ P(r – aPθ

 ).
(.)

We consider the comparison system as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du
dt = u(r – auθ

 ),
du
dt = u(r – auθ

 ),
t �= nT ,

�u = d(u – P),
�u = d(u – u),

t = nT .
(.)

From Lemma ., we see that system (.) has a periodic solution (u∗
 (t), u∗

(t)),

u∗
i (t) =

(
ai

ri
+

(


qθi
i

–
ai

ri

)

e–riθi(t–nT)
)– 

θi
, t ∈ (

nT , (n + )T
]
, i = , , (.)

which is globally asymptotically stable. There exist an integer k >  and ε >  such that
Pi(t) ≤ ui(t) ≤ u∗

i (t) + ε for kT ≤ t ≤ (k + )T , that is,

Pi(t) ≤ u∗
i (t) + ε ≤

(
ai

ri
+

(


qθi
i

–
ai

ri

)

e–riθiT
)– 

θi
+ ε

�= κi

(i = , ), kT ≤ t ≤ (k + )T , k > k > . (.)

Again from system (.), we have

dZ
dt

≤ Z
(
�κ + �κ – μ – aZ(t – τ )

)
, t > kT + τ . (.)

From the condition of the Theorem ., we have θκ +θκ < μ for ε small enough. From
system (.) and Lemma ., we easily obtain Z(t) ≤  using the comparison theorem of
impulsive differential equations. Again from the positivity of Z(t), we derive limt→∞ Z(t) =
. Therefore, there exists an integer k > k such that Z(t) < ε for t > kT .
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From the first equations of system (.), we have

{
dP
dt ≥ P(r – αε – aPθ

 ),
dP
dt ≥ P(r – αε – aPθ

 ).
(.)

Integrating the comparison system, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du
dt = u(r – αε – auθ

 ),
du
dt = u(r – αε – auθ

 ),
t �= nT ,

�u = d(u – u),
�u = d(u – u),

t = nT .
(.)

From Lemma ., we get system (.) has a periodic solution (u∗
(t), u∗

(t)) as follows:

u∗
i (t) =

(
ai

ri – αiε
+

(


q∗
θi
i

–
ai

ri – αiε

)

e–(ri–αiε)θi(t–nT)
)– 

θi
,

t ∈ (
nT , (n + )T

]
(i = , ),

which is globally asymptotically stable and q∗i can be computed similar to Lemma ..
By the comparison theorem of impulsive different equations, for any ε > , there exists

an integer k (k > k) such that P(t) ≥ u∗
(t) – ε and P(t) > u∗

(t) – ε, kT < t < (k + )T ,
k > k.

Let ε → , we have Pi(t) → P∗
i (t), i = , . Therefore, the zooplankton-extinction pe-

riodic solution (P∗
 (t), P∗

(t), ) is globally attractive if
∑i=

i= �i( ai
ri

+ ( 
qθi

i
– ai

ri
)e–riθiT )– 

θi < μ

holds. The proof is completed. �

4 Permanence
In this section, we investigate system (.) is permanent if the zooplankton population is
above a certain threshold level for sufficiently large time.

Theorem . System (.) is permanent if θa + θa > μ + βM
K+M holds, where M is a pos-

itive constant.

Proof Let (P(t), P(t), Z(t)) be any solution of system (.) with initial value (.). From
Lemma ., we obtain P(t) < M, P(t) < M, Z(t) < M for t → ∞. Next, we need to prove
there exists a positive constant m >  such that Pi(t) > m (i = , ) and Z(t) > m as t → ∞.

From system (.), we have Pi(t) ≤ κi (i = , ) for t large enough. According to system
(.), we have dZ

dt ≤ Z(t)(�κ + �κ – μ – aZ(t – τ )). According to Lemma ., we derive

Z(t) ≤ (�κ + �κ – μ)
a

e(�κ+�κ–μ)τ �= ϑ . (.)

From system (.), we get

{
dP
dt ≥ P(r – aPθ

 – αPϑ),
dP
dt ≥ P(r – aPθ

 – αϑ).
(.)
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Figure 1 Time series and phase portrait of the zooplankton-extinction periodic solution of system
(2.2) with the parameters r1 = 1.5, a1 = 0.2, α1 = 0.5, θ1 = 0.8, θ2 = 0.3, r2 = 6, a2 = 0.1, α2 = 0.1, β = 0.7,
�1 = 0.1, �2 = 0.1, τ = 0, a3 = 0.8, K = 3, μ = 0.8, d = 0.01, T = 2.42.

We consider the comparison system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dv
dt = v(r – αϑ – avθ

 ),
dv
dt = v(r – αϑ – avθ

 ),
t �= nT ,

�v = d(v – v),
�v = d(v – v),

t = nT .
(.)

From Lemma ., we know that system (.) has a periodic solution (v∗
 (t), v∗

(t)) as follows:

v∗
i (t) =

(
ai

ri – αiϑ
+

(


qθi
i

–
ai

ri – αiϑ

)

e–(ri–αiϑ)θi(t–nT)
)– 

θi
, i = , , (.)

which is globally asymptotically stable, where qi can be obtained similar to Lemma ..
We obtain Pi(t) ≥ vi(t) (i = , ) for nT < t ≤ (n + )T by using the comparison theorem of
the impulsive differential equations. Thus, there exists ε >  such that

Pi(t) ≥
(

ai

ri – αiϑ
+

(


qθi
i

–
ai

ri – αiϑ

)

e–(ri–αiϑ)θi(t–nT)
)– 

θi
– ε

�= mi (i = , ) (.)

for t large enough.
In the following, we will show there exists a positive constant m >  such that Z(t) ≥ m

as t → ∞.
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Figure 2 Time series and phase portrait of the permanence of system (2.2) with the parameters
r1 = 1.5, a1 = 0.2, α1 = 0.5, θ1 = 0.8, θ2 = 0.3, r2 = 6, a2 = 0.1, α2 = 0.1, β = 0.7, �1 = 0.1, �2 = 0.1, τ = 0,
a3 = 0.8, K = 3, μ = 0.8, d = 0.01, T = 2.42.

Again from system (.), we get

dZ
dt

≥ Z
(

�m + �m – μ –
βM

K + M
– aZ(t – τ )

)

. (.)

Considering the following comparison system:

dw
dt

= w
(

�m + �m – μ –
βM

K + M
– aw(t – τ )

)

, (.)

we get

Z(t) ≥ w(t) ≥ A
a

eA–AeAτ , (.)

where A = �m + �m – μ – βM
K+M .

From system (.), we derive

mi > qθi
i – ε (i = , ) (.)

for t large enough. From system (.) and the condition

θa + θa > μ +
βM

K + M
,
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we obtain �m + �m – μ – βM
K+M > . Therefore, there exists ε >  such that Z(t) ≥

A
a

eA–AeAτ – ε
�= m as t → ∞. Define m = min{m, m, m}, we have P(t) ≥ m, P(t) ≥

m, Z(t) ≥ m holding for t → ∞. The proof is completed. �

5 Discussion
To investigate the effect of the phytoplankton diffusion on the dynamics, we formulate
a phytoplankton-zooplankton model with impulsive diffusion. By using impulsive differ-
ential equations, we prove the zooplankton-extinction is globally attractive if

∑i=
i= θi( ai

ri
+

( 
qθi

i
– ai

ri
)e–riθiT )– 

θi < μ, which is simulated in Figure  with parameters r = ., a = .,

α = ., θ = ., θ = ., r = , a = ., α = .,β = .,� = .,� = ., τ = , a =
., K = ,μ = ., d = ., T = .. The phytoplankton and zooplankton coexist when
θa + θa > μ + βM

K+M . Let parameters be r = ., a = .,α = ., θ = ., θ = .,
r = , a = .,α = .,β = .,� = .,� = ., τ = , a = ., K = ,μ = ., d = .,
we can see the phytoplankton and zooplankton oscillate in an impulsive period, which
shows phytoplankton and zooplankton are permanent (see Figure ).
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