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Abstract
In this paper, we introduce new concepts of Hahn difference operator, the
qk ,ωk-Hahn difference operator. We aim to establish a calculus of differences based
on the qk ,ωk-Hahn difference operator. We construct a right inverse of the
qk ,ωk-Hahn operator and study some of its properties. As applications, we establish
existence and uniqueness results for first- and second-order impulsive qk ,ωk-Hahn
difference equations.
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1 Introduction and preliminaries
Many physical phenomena are described by equations involving nondifferentiable func-
tions, e.g., generic trajectories of quantum mechanics []. Several different approaches to
deal with nondifferentiable functions are followed in the literature, including the time scale
approach, the fractional approach, and the quantum approach.

Quantum difference operators are receiving an increase of interest due to their appli-
cations see, e.g., [–]. Roughly speaking, a quantum calculus substitutes the classical
derivative by a difference operator, which allows one to deal with sets of nondifferentiable
functions.

In [], Hahn introduced the quantum difference operator Dq,ω , where q ∈ (, ) and
ω >  are fixed. The Hahn operator unifies (in the limit) the two best-known and most-
used quantum difference operators: the Jackson q-difference derivative Dq, where q ∈ (, )
(cf. [, , ]); and the forward difference Dω where ω >  (cf. [–]). The Hahn differ-
ence operator is a successful tool for constructing families of orthogonal polynomials and
investigating some approximation problems (cf. [–]).

The aim of this paper is to introduce new concepts of Hahn’s difference operator, the
qk ,ωk-Hahn difference operator, to establish a calculus based on this operator and to con-
struct the associated integral. The steps are parallel to []. While some properties are
straightforward extensions of classical results, some others need special treatments. As
applications of the qk ,ωk-Hahn difference operator we establish existence and uniqueness
results for first- and second-order impulsive fractional differential equations.

Impulsive differential equations serve as basic models to study the dynamics of pro-
cesses that are subject to sudden changes in their states. Recent development in this field
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has been motivated by many applied problems, such as control theory, population dynam-
ics, and medicine. For some recent works on the theory of impulsive differential equations,
we refer the interested reader to the monographs [–]. Impulsive quantum difference
equations have been established by Tariboon and Ntouyas in [] by improving the classi-
cal quantum calculus which does not work when there exists at least one impulsive point
appearing between two different points in the definition of q-derivative. For recent re-
sults on the topics of initial and boundary value problems of impulsive quantum difference
equations, we refer the reader to [].

We organize this paper as follows. In Section , some basic formulas of Hahn’s differ-
ence operator and the associated Jackson-Nörlund integral calculus are briefly reviewed.
Our results are formulated and proved in Section . Applications to impulsive fractional
difference equations are given in Section .

2 Preliminaries
Let q ∈ (, ) and ω > . Define

ω :=
ω

 – q
(.)

and let I be a real interval containing ω.

Definition . (Hahn’s difference operator []) Let f : I → R. The Hahn difference oper-
ator of f is defined by

Dq,ωf (t) =

⎧
⎨

⎩

f (t)–f (qt+ω)
t(–q)–ω

, t �= ω,

f ′(ω), t = ω,
(.)

provided that f is differentiable at ω.

The function f is called q,ω-differentiable on I , if Dq,ωf (t) exists for all t ∈ I .
Note that when q →  we obtain the forward ω-difference operator

D,ωf (t) =
f (t + ω) – f (t)

ω
, (.)

and when ω =  we obtain the Jackson q-difference operator

Dq,f (t) =

⎧
⎨

⎩

f (t)–f (qt)
t(–q) , t �= ,

f ′(), t = ,
(.)

provided that f ′() exists. Here f is supposed to be defined on a q-geometric set A ⊂ R,
for which qt ∈ A whenever t ∈ A.

Hence, we can state that the Dq,ω operator generalizes (in the limit) the forward ω-
difference and the Jackson q-difference operators [, ].

Notice also that, under appropriate conditions,

lim
q→,ω→

Dq,ωf (t) = f ′(t).

The Hahn difference operator has the following properties.
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Lemma . ([]) Let f , g : I → R be q,ω-differentiable at t ∈ I . Then the following state-
ments are true:

(i) Dq,ω(f + g)(t) = Dq,ωf (t) + Dq,ωg(t),
(ii) Dq,ωfg(t) = g(t)Dq,ωf (t) + f (qt + ω)Dq,ωg(t),

(iii) Dq,ωcf (t) = cDq,ωf (t), for any constant c ∈R,
(iv) Dq,ω( f

g )(t) = g(t)Dq,ω f (t)–f (t)Dq,ωg(t)
g(t)g(qt+ω) , for g(t)g(qt + ω) �= ,

(v) f (tq + ω) = f (t) + ((qt + ω) – t)Dq,ωf (t), t ∈ I .

Let h(t) = qt + ω, t ∈ I . Note that h is a contraction, h(I) ⊆ I , h(t) < t for t > ω, h(t) > t
for t < ω, and h(ω) = ω.

We use the standard notation of the q-number as [α]q = –qα

–q for α ∈R.

Lemma . ([]) Let k ∈ N and t ∈ I . Then

hk(t) = h ◦ h ◦ · · · ◦ h(t)
︸ ︷︷ ︸

i-times

= qkt + ω[k]q, t ∈ I. (.)

Next, we define the notion of a q,ω-integral, known as the Jackson-Nörlund integral.

Definition . ([]) Let f : I → R be a function and a, b,ω ∈ I . The q,ω-integral of f
from a to b is defined by

∫ b

a
f (s) dq,ωs =

∫ b

ω

f (s) dq,ωs –
∫ a

ω

f (s) dq,ωs, (.)

where

∫ t

ω

f (s) dq,ωs =
(
t( – q) – ω

)
∞∑

k=

qkf
(
tqk + ω[k]q

)
, t ∈ I, (.)

provided that the series converges at t = a and t = b.

The function f is q,ω-integrable over I if it is q,ω-integrable over [a, b], for all a, b ∈ I .
Note that in the integral formulas (.) and (.), when ω → , we obtain the Jackson

q-integral

∫ b

a
f (s) dqs =

∫ b


f (s) dqs –

∫ a


f (s) dqs,

where

∫ t


f (s) dqs = t( – q)

∞∑

k=

qkf
(
tqk), t ∈ I

(see, e.g., []); while if q →  we obtain the Nörlund sum,

∫ b

a
f (s)�ωs =

∫ b

+∞
f (s)�ωs –

∫ a

+∞
f (s)�ωs,
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where

∫ t

+∞
f (s)�ωs = –ω

+∞∑

k=

f (t + kω)

(see, e.g., [, , ]).
The following properties of Jackson-Nörlund integration can be found in [].

Lemma . Let f , g : I → R be q,ω-integrable on I , K ∈R, and a, b, c ∈ I . Then the follow-
ing formulas hold:

(i)
∫ a

a f (t) dq,ωt = ,
(ii)

∫ b
a Kf (t) dq,ωt = K

∫ b
a f (t) dq,ωt,

(iii)
∫ b

a f (t) dq,ωt = –
∫ a

b f (t) dq,ωt,
(iv)

∫ b
a f (t) dq,ωt =

∫ b
c f (t) dq,ωt +

∫ c
a f (t) dq,ωt,

(v)
∫ b

a (f (t) + g(t)) dq,ωt =
∫ b

a f (t) dq,ωt +
∫ b

a g(t) dq,ωt,
(vi)

∫ b
a f (t)Dq,ωg(t) dq,ωt = [f (t)g(t)]b

a –
∫ b

a Dq,ωf (t)g(qt + ω) dq,ωt.

Property (vi) of the above lemma is known as q,ω-integration by parts.
The next result is the fundamental theorem of Hahn calculus.

Lemma . ([]) Let f : I →R be continuous at ω and define F(t) :=
∫ t
ω

f (s) dq,ωs. Then
F is continuous at ω. In addition, Dq,ωF(t) exists for every t ∈ I and

Dq,ωF(t) = f (t). (.)

On the other hand,

∫ b

a
Dq,ωf (s) dq,ωs = f (b) – f (a) for all a, b ∈ I. (.)

Existence and uniqueness results for first-order abstract Hahn difference equations were
studied in [], by using the method of successive approximation.

3 New concepts of Hahn calculus
Let there be a dense interval Jk = [tk , tk+] ⊆R and given constants  < qk < , ωk >  and

θk =
ωk

 – qk
+ tk . (.)

Note that if tk = , qk = q, and ωk = ω, then θk = ω, where ω is defined in (.).

Definition . Let f be a function defined on Jk . The qk ,ωk-Hahn difference operator is
given by

tk Dqk ,ωk f (t) =
f (t) – f (qkt + ( – qk)tk + ωk)

( – qk)(t – tk) – ωk
, t �= θk , (.)

and tk Dqk ,ωk f (θk) = f ′(θk) provided that f is differentiable at θk .
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We say that f is qk ,ωk-differentiable on Jk provided tk Dqk ,ωk f (t) exists for all t ∈ Jk . Note
that if ωk =  in (.), then tk Dqk ,f = tk Dqk f , where tk Dqk is the qk-derivative of the function
f (t) which was first established in [] by

tk Dqk f (t) =
f (t) – f (qkt + ( – qk)tk)

( – qk)(t – tk)
. (.)

It is easy to see that if tk =  and qk = q, then (.) is reduced to the Jackson q-difference
operator in (.).

Example . Let f (t) = t for t ∈ Jk = [, ] and constants qk = /, ωk = . Then θk = 
and the qk ,ωk-Hahn derivative on Jk is given by

D 
 ,f (t) =

t – ( 
 t + )

( 
 )(t – ) – 

=
t – t – 

(t – )
, t �= ,

and D 
 ,f () = .

It is easy to prove the following results.

Theorem . Let f , g : Jk → R be qk ,ωk-differentiable at t ∈ Jk . Then the following formu-
las hold:

(i) tk Dqk ,ωk (f + g)(t) = tk Dqk ,ωk f (t) + tk Dqk ,ωk g(t),
(ii) tk Dqk ,ωk fg(t) = g(t)tk Dqk ,ωk f (t) + f (qkt + ( – qk)tk + ωk)tk Dqk ,ωk g(t),

(iii) tk Dqk ,ωk cf (t) = ctk Dqk ,ωk f (t), for any constant c ∈R,
(iv) tk Dqk ,ωk ( f

g )(t) = g(t)tk Dqk ,ωk f (t)–f (t)tk Dqk ,ωk g(t)
g(t)g(qk t+(–qk )tk +ωk ) , for g(t)g(qkt + ( – qk)tk + ωk) �= .

Next, we define the higher-order qk ,ωk-derivative of functions.

Definition . Let f be a function defined on Jk . We define the second-order qk ,ωk-
derivative tk D

qk ,ωk
f provided tk Dqk ,ωk f is qk ,ωk-differentiable on Jk with tk D

qk ,ωk
f =

tk Dqk ,ωk (tk Dqk ,ωk f ) : Jk → R. In addition, we define the higher-order qk ,ωk-derivative
tk Dn

qk ,ωk
f : Jk →R, with tk Dn

qk ,ωk
f = tk Dqk ,ωk (tk Dn–

qk ,ωk
f ) and tk D

qk ,ωk
f = f .

The new definition of qk ,ωk-integral is given as follows.

Definition . Assume f : Jk →R is a function and a, b ∈ Jk . We define the qk ,ωk-integral
of f from a to b by

∫ b

a
f (s)tk dqk ,ωk s :=

∫ b

θk

f (s)tk dqk ,ωk s –
∫ a

θk

f (s)tk dqk ,ωk s, (.)

where

∫ t

θk

f (s)tk dqk ,ωk s =
[
(t – tk)( – qk) – ωk

]
∞∑

i=

qi
kf

(
qi

kt +
(
 – qi

k
)
tk + ωk[i]qk

)
(.)
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for t ∈ Jk , provided that the series converge at t = a and t = b. The function f is called
qk ,ωk-integrable on Jk and we say that f is qk ,ωk-integrable over [a, b] for all a, b ∈ Jk .

Note that if tk = , qk = q, and ωk = ω, then (.) and (.) are reduced to (.) and (.),
respectively.

As customary, the following properties should be to stated. However, the proof is easy
and we omit it.

Theorem . Let f , g : Jk → R be qk ,ωk-integrable on Jk , K ∈ R, and a, b, c ∈ Jk . Then the
following formulas hold:

(i)
∫ a

a f (s)tk dqk ,ωk s = ,
(ii)

∫ b
a Kf (s)tk dqk ,ωk s = K

∫ b
a f (s)tk dqk ,ωk s,

(iii)
∫ b

a f (s)tk dqk ,ωk s = –
∫ a

b f (s)tk dqk ,ωk s,
(iv)

∫ b
a f (s)tk dqk ,ωk s =

∫ b
c f (s)tk dqk ,ωk s +

∫ c
a f (s)tk dqk ,ωk s,

(v)
∫ b

a (f (s) + g(s))tk dqk ,ωk s =
∫ b

a f (s)tk dqk ,ωk s +
∫ b

a g(s)tk dqk ,ωk s.

Lemma . Let h be the transformation

h(t) := qkt + ( – qk)tk + ωk , t ∈ Jk , (.)

and θk ∈ Jk is defined by (.). Then the ith-order iteration of h is given by

hi(t) = h ◦ h ◦ · · · ◦ h(t)
︸ ︷︷ ︸

i-times

= qi
kt +

(
 – qi

k
)
tk + ωk[i]qk , t ∈ Jk . (.)

In addition, the sequence {hi(t)}∞i= is an increasing (a decreasing) sequence in i when t < θk

(θk < t) with

lim
i→∞ hi(t) = θk , t ∈ Jk . (.)

Proof By directly computation, it is easy to show that (.) holds. For t ∈ Jk and i ∈ N, we
have

hi+(t) – hi(t) = qi
k( – qk)(tk – t) + ωk

(
[i + ]qk – [i]qk

)

= qi
k( – qk)(θk – t).

If t < θk or θk < t, then we see that the sequence {hi(t)}∞i= is increasing or decreasing, re-
spectively. Therefore, equation (.) is true for all t ∈ Jk . �

Now, we will state and prove the fundamental theorem of qk ,ωk-Hahn calculus.

Theorem . Suppose that the function f : Jk →R is continuous at θk ∈ Jk . We define

F(t) :=
∫ t

θk

f (s)tk dqk ,ωk s, t ∈ Jk . (.)

Then we have, for t, a, b ∈ Jk ,
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(i) tk Dqk ,ωk F(t) = f (t),
(ii)

∫ t
θk tk Dqk ,ωk f (s)tk dqk ,ωk s = f (t) – f (θk),

(iii)
∫ b

a tk Dqk ,ωk f (s)tk dqk ,ωk s = f (b) – f (a).

Proof From (.), we observe that

F
(
qkt + ( – qk)tk + ωk

)

=
[((

qkt + ( – qk)tk + ωk
)

– tk
)
( – qk) – ωk

]

×
∞∑

i=

qi
kf

((
qkt + ( – qk)tk + ωk

)
qi

k +
(
 – qi

k
)
tk + ωk[i]qk

)

=
[(

qk(t – tk) + ωk
)
( – qk) – ωk

]
∞∑

i=

qi
kf

(
qi+

k t +
(
 – qi+

k
)
tk + ωk[i + ]qk

)
.

Then, by (.), we have

tk Dqk ,ωk F(t) =
F(t) – F(qkt + ( – qk)tk + ωk)

( – qk)(t – tk) – ωk

=
∞∑

i=

qi
k

[

f
(
qi

kt +
(
 – qi

k
)
tk + ωk[i]qk

)

–
(qk(t – tk) + ωk)( – q) – ωk

( – qk)(t – tk) – ωk
f
(
qi+

k t +
(
 – qi+

k
)
tk + ωk[i + ]qk

)
]

=
∞∑

i=

qi
k
[
f
(
qi

kt +
(
 – qi

k
)
tk + ωk[i]qk

)

– qkf
(
qi+

k t +
(
 – qi+

k
)
tk + ωk[i + ]qk

)]

= f (t).

This shows that (i) holds.
To prove (ii), by Definitions ., ., and Lemma ., we get

∫ t

θk
tk Dqk ,ωk f (s)tk dqk ,ωk s

=
[
(t – tk)( – qk) – ωk

]
∞∑

i=

qi
k(tk Dqk ,ωk f )

(
qi

kt +
(
 – qi

k
)
tk + ωk[i]qk

)

=
[
(t – tk)( – qk) – ωk

]
∞∑

i=

qi
k

× f (qi
kt + ( – qi

k)tk + ωk[i]qk ) – f (qk(qi
kt + ( – qi

k)tk + ωk[i]qk ) + ( – qk)tk + ωk)
( – qk)(qi

kt + ( – qi
k)tk + ωk[i]qk – tk) – ωk

=
∞∑

i=

(
f
(
qi

kt +
(
 – qi

k
)
tk + ωk[i]qk

)
– f

(
qi+

k t +
(
 – qi+

k
)
tk + ωk[i + ]qk

))

= f (t) – f (θk).



Tariboon et al. Advances in Difference Equations  (2016) 2016:255 Page 8 of 19

Now, we show that (iii) holds. From (ii) for any a, b ∈ Jk , we obtain

∫ b

a
tk Dqk ,ωk f (s)tk dqk ,ωk s =

∫ b

θk
tk Dqk ,ωk f (s)tk dqk ,ωk s –

∫ a

θk
tk Dqk ,ωk f (s)tk dqk ,ωk s

= f (b) – f (a).

This completes the proof. �

Lemma . Let f , g : Jk → R be qk ,ωk-integrable on Jk . Then the following integration by
parts formula holds:

∫ b

a
g(s)tk Dqk ,ωk f (s)tk dqk ,ωk s

=
[
f (s)g(s)

]b
a –

∫ b

a
f
(
qks + ( – qk)tk + ωk

)
tk Dqk ,ωk g(s)tk dqk ,ωk s.

Proof By Theorem . we have

∫ b

a
tk Dqk ,ωk

[
f (s)g(s)

]
tk dqk ,ωk s = (fg)(b) – (fg)(a).

On the other hand, by (ii) of Theorem . and (v) of Theorem .,

∫ b

a
tk Dqk ,ωk

[
f (s)g(s)

]
tk dqk ,ωk s

=
∫ b

a
g(s)tk Dqk ,ωk f (s)tk dqk ,ωk s

+
∫ b

a
f
(
qks + ( – qk)tk + ωk

)
tk Dqk ,ωk g(s)tk dqk ,ωk s.

Combining these two equalities we get the desired formula. �

Lemma . Let θk ∈ Jk , α ∈ R, and β ∈ R \ {–}. Then for t ∈ Jk the following formulas
hold:

(i) tk Dqk (t – θk)α = [α]qk (t – θk)α–,
(ii)

∫ t
θk

(s – θk)β tk dqk ,ωk s = ( –qk
–qβ+

k
)(t – θk)β+.

Proof From Definition ., for t �= θk , we have

tk Dqk ,ωk (t – θk)α =
(t – θk)α – (qkt + ( – qk)tk + ωk – θk)α

( – qk)(t – tk) – ωk

=
(t – θk)α – qα

k (t – θk)α

( – qk)(t – θk)

= [α]qk (t – θk)α–.

For t = θk , we obtain tk Dqk ,ωk  = . Therefore the formula (i) holds.
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Now, we are going to prove (ii). For β ∈ R \ {–}, Definition . implies

∫ t

θk

(s – θk)β tk dqk ,ωk s =
[
(t – tk)( – qk) – ωk

]

×
∞∑

i=

qi
k
(
qi

kt +
(
 – qi

k
)
tk + ωk[i]qk – θk

)β

= ( – qk)[t – θk]
∞∑

i=

qi
k
(
qi

k(t – θk)
)β

=
(

 – qk

 – qβ+
k

)

(t – θk)β+.

The proof is completed. �

Corollary . For a, b ∈ Jk , the following formula holds:

∫ b

a
(s – θk)β tk dqk ,ωk s =

(
 – qk

 – qβ+
k

)
[
(b – θk)β+ – (a – θk)β+]. (.)

Example . From Corollary . for a, b ∈ Jk , we have the following cases:
(i) If β = , then

∫ b
a tk dqk ,ωk s = b – a.

(ii) If β = , then
∫ b

a (s – θk)tk dqk ,ωk s = (b–a)
+qk

[b + a – θk].

(iii)
∫ b

tk
(s – tk)tk dqk ,ωk s = (b–tk )–ωk (b–tk )

+qk
.

(i) and (ii) are obvious. To prove (iii), from (i) and (ii) we obtain

∫ b

tk

(s – tk)tk dqk ,ωk s =
∫ b

tk

(s – θk)tk dqk ,ωk s – (tk – θk)
∫ b

tk
tk dqk ,ωk s

=
(b – tk)
 + qk

[b + tk – θk] – (tk – θk)(b – tk)

=
(b – tk)
 + qk

[

b – tk –
ωk

 – qk

]

+
ωk

 – qk
(b – tk)

=
(b – tk) – ωk(b – tk)

 + qk
.

Theorem . Let f be the qk ,ωk-integrable function on Jk . Then we have

∫ t

θk

∫ s

θk

f (r)tk dqk ,ωk rtk dqk ,ωk s =
∫ t

θk

∫ t

qk r+(–qk )tk +ωk

f (r)tk dqk ,ωk stk dqk ,ωk r. (.)

Proof By Definition ., we have

∫ t

θk

∫ s

θk

f (r)tk dqk ,ωk rtk dqk ,ωk s

=
∫ t

θk

[
(s – tk)( – qk) – ωk

]
∞∑

i=

qi
kf

(
qi

ks +
(
 – qi

k
)
tk + ωk[i]qk

)
tk dqk ,ωk s
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= ( – qk)
∞∑

i=

qi
k

∫ t

θk

(s – θk)f
(
qi

ks +
(
 – qi

k
)
tk + ωk[i]qk

)
tk dqk ,ωk s

= ( – qk)(t – θk)
∞∑

i=

qi
k

( ∞∑

j=

qj
k
(
qj

kt +
(
 – qj

k
)
tk + ωk[j]qk – θk

)

× f
(
qi

k
(
qj

kt +
(
 – qj

k
)
tk + ωk[j]qk

)
+

(
 – qi

k
)
tk + ωk[i]qk

)
)

= ( – qk)(t – θk)
∞∑

i=

∞∑

j=

qi+j
k f

(
qi+j

k t +
(
 – qi+j

k
)
tk + ωk[i + j]qk

)
.

Indeed,

∞∑

i=

∞∑

j=

qi+j
k f

(
qi+j

k t +
(
 – qi+j

k
)
tk + ωk[i + j]qk

)

=
∞∑

i=

[
qi

kf
(
qi

kt +
(
 – qi

k
)
tk + ω[i]qk

)
+ qi+

k f
(
qi+

k t +
(
 – qi+

k
)
tk + ω[i + ]qk

)

+ qi+
k f

(
qi+

k t +
(
 – qi+

k
)
tk + ω[i + ]qk

)

+ qi+
k f

(
qi+

k t +
(
 – qi+

k
)
tk + ω[i + ]qk

)
+ · · · ]

= f (t) + q
kf

(
qkt + ( – qk)tk + ωk[]qk

)
+ q

k f
(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)

+ qf
(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)
+ · · · + qkf

(
qkt + ( – qk)tk + ωk[]qk

)

+ q
kf

(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)
+ qf

(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)
+ · · ·

+ q
kf

(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)
+ q

k f
(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)

+ q
k f

(
q

k t +
(
 – q

k
)
tk + ωk[]qk

)
+ · · · + q

kf
(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)
+ · · ·

= f (t) + qk( + qk)f
(
qkt + ( – qk)tk + ωk[]qk

)

+ q
k
(
 + qk + q

k
)
f
(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)

+ q
k
(
 + qk + q

k + q
k
)
f
(
q

kt +
(
 – q

k
)
tk + ωk[]qk

)
+ · · ·

=
∞∑

n=

qn
k

(
 – qn+

k
 – qk

)

f
(
qn

k t +
(
 – qn

k
)
tk + ωk[n]qk

)
.

Hence, we obtain
∫ t

θk

∫ s

θk

f (r)tk dqk ,ωk rtk dqk ,ωk s

= ( – qk)(t – θk)
∞∑

i=

qn
k
(
 – qn+

k
)
(t – θk)f

(
qn

k t +
(
 – qn

k
)
tk + ωk[n]qk

)

=
∫ t

θk

(
t – qkr – ( – qk)tk – ωk

)
f (r)tk dqk ,ωk stk dqk ,ωk r

=
∫ t

θk

∫ t

qk r+(–qk )tk +ωk

f (r)tk dqk ,ωk stk dqk ,ωk r.

This completes the proof. �
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4 Impulsive qk,ωk-Hahn difference equations
In this section, we use our results on qk ,ωk-Hahn calculus to establish existence and
uniqueness results for impulsive qk ,ωk-Hahn difference equations of the first and second
order. Let J = [t, t], Jk = (tk , tk+] for k = , , . . . , m be subintervals of J = [, T] such that
θk ∈ Jk for k = , , , . . . , m. Let PC(J ,R) = {x : J → R : x(t) is continuous everywhere ex-
cept for some tk at which x(t+

k ) and x(t–
k ) exist and x(t–

k ) = x(tk), k = , , . . . , m}. PC(J ,R) is
a Banach space with the norm ‖x‖PC = sup{|x(t)| : t ∈ J}.

4.1 First-order impulsive qk,ωk-Hahn difference equations
In this subsection, we study the existence and uniqueness of solutions for the following
initial value problem for first-order impulsive qk ,ωk-Hahn difference equation

⎧
⎪⎪⎨

⎪⎪⎩

tk Dqk ,ωk x(t) = f (t, x(t)), t ∈ J , t �= tk ,

�x(tk) = ϕk(x(tk)), k = , , . . . , m,

x() = α,

(.)

where α ∈ R,  = t < t < t < · · · < tk < · · · < tm < tm+ = T , f : J × R → R is a continuous
function, ϕk ∈ C(R,R), �x(tk) = x(t+

k ) – x(tk), k = , , . . . , m, and quantum numbers  <
qk < , ωk >  such that θk ∈ Jk for k = , , , . . . , m.

Lemma . Let x ∈ PC(J ,R) satisfying (.). The impulsive qk ,ωk-Hahn difference initial
value problem (.) is equivalent to the integral equation

x(t) = α +
∑

t<tk <t

∫ tk

tk–

f
(
s, x(s)

)
tk– dqk–,ωk– s +

∑

t<tk <t
ϕk

(
x(tk)

)

+
∫ t

tk

f
(
s, x(s)

)
tk dqk ,ωk s, (.)

with
∑

t<t
= .

Proof For t ∈ J, applying q,ω-integral from t to t in the first equation of (.) and using
Theorem .(iii), we obtain

x(t) = α +
∫ t

t

f
(
s, x(s)

)
t dq,ω s.

Since θ ∈ J, we have t ≥ θ and also, for t = t,

x(t) = α +
∫ t

t

f
(
s, x(s)

)
t dq,ω s.

For t ∈ J, taking the q,ω-integral to the first equation of (.) with k =  and applying
Theorem .(iii) again, we have

x(t) = x
(
t+

)

+
∫ t

t

f
(
s, x(s)

)
t dq,ω s.
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From the impulsive condition x(t+
 ) = x(t) + ϕ(x(t)), we get

x(t) = α +
∫ t

t

f
(
s, x(s)

)
t dq,ω s +

∫ t

t

f
(
s, x(s)

)
t dq,ω s + ϕ

(
x(t)

)
.

For t ∈ J, the q,ω-integration and impulsive condition imply

x(t) = x
(
t+

)

+
∫ t

t

f
(
s, x(s)

)
t dq,ω s

= α +
∫ t

t

f
(
s, x(s)

)
t dq,ω s +

∫ t

t

f
(
s, x(s)

)
t dq,ω s +

∫ t

t

f
(
s, x(s)

)
t dq,ω s

+ ϕ
(
x(t)

)
+ ϕ

(
x(t)

)
.

From the above process, for any t ∈ Jk , k = , , . . . , m, we obtain the desired result in (.).
Conversely, for any t ∈ Jk , k = , , . . . , m, applying qk ,ωk-derivative to (.) and using

Theorem .(i), we have

tk Dqk ,ωk x(t) = f
(
t, x(t)

)
.

By direct computation, we have �x(tk) = ϕk(x(tk)) and also x() = α. The proof is com-
pleted. �

Now, we are in a position to prove an existence and uniqueness result for the problem
(.), via Banach contraction mapping principle.

Theorem . Suppose that the following assumptions are fulfilled:

(H) the continuous function f : J ×R →R satisfies

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ L|x – y|, L > ,∀t ∈ J , x, y ∈ R;

(H) the continuous functions ϕk : R →R, k = , , . . . , m satisfy

∣
∣ϕk(x) – ϕk(y)

∣
∣ ≤ L|x – y|, L > ,∀x, y ∈ R.

If

LT + mL < , (.)

then the impulsive qk ,ωk-Hahn difference initial value problem (.) has a unique solution
on J .

Proof Let us define an operator A : PC(J ,R) → PC(J ,R) by

Ax(t) = α +
∑

t<tk <t

∫ tk

tk–

f
(
s, x(s)

)
tk– dqk–,ωk– s +

∑

t<tk <t
ϕk

(
x(tk)

)

+
∫ t

tk

f
(
s, x(s)

)
tk dqk ,ωk s,
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with
∑

t<t
= . Let supt∈J |f (t, )| = M and max{|ϕk()| : k = , , . . . , m} = M. Choosing

a positive constant r such that

r ≥ |α| + MT + mM

 – (LT + mL)
,

and setting a ball Br = {x ∈ PC(J ,R) : ‖x‖ ≤ r}, we will show that ABr ⊂ Br . For any x ∈ Br

and t ∈ J , we have

∣
∣Ax(t)

∣
∣ ≤ |α| +

∑

t<tk<t

∫ tk

tk–

∣
∣f

(
s, x(s)

)∣
∣tk– dqk–,ωk– s +

∑

t<tk <t

∣
∣ϕk

(
x(tk)

)∣
∣

+
∫ t

tk

∣
∣f

(
s, x(s)

)∣
∣tk dqk ,ωk s

≤ |α| +
∑

t<tk<T

∫ tk

tk–

(∣
∣f

(
s, x(s)

)
– f (t, )

∣
∣ +

∣
∣f (t, )

∣
∣
)

tk– dqk–,ωk– s

+
∑

t<tk <T

(∣
∣ϕk

(
x(tk)

)
– ϕk()

∣
∣ +

∣
∣ϕk()

∣
∣
)

+
∫ T

tm

(∣
∣f

(
s, x(s)

)
– f (t, )

∣
∣ +

∣
∣f (t, )

∣
∣
)

tm dqm ,ωm s

≤ |α| + (Lr + M)
∑

t<tk <T

∫ tk

tk–
tk– dqk–,ωk– s

+ m(Lr + M) + (Lr + M)
∫ T

tm
tm dqm ,ωm s

= |α| + MT + mM + r(LT + mL) ≤ r.

This means that ‖Ax‖ ≤ r, which yields ABr ⊂ Br .
For x, y ∈ PC(J ,R) and for each t ∈ J , we have

∣
∣Ax(t) – Ay(t)

∣
∣ ≤

∑

t<tk <t

∫ tk

tk–

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣tk– dqk–,ωk– s

+
∑

t<tk <t

∣
∣ϕk

(
x(tk)

)
– ϕk

(
y(tk)

)∣
∣

+
∫ t

tk

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣tk dqk ,ωk s

≤ L‖x – y‖
∑

t<tk <T

∫ tk

tk–
tk– dqk–,ωk– s

+ mL‖x – y‖ + L‖x – y‖
∫ T

tm
tm dqm ,ωm s

= (LT + mL)‖x – y‖,

which leads to ‖Ax – Ay‖ ≤ (LT + mL)‖x – y‖. As LT + mL < , it follows from the
Banach contraction mapping principle that A is a contraction. Hence, we deduce that A
has a fixed point which is the unique solution of (.) on J . This completes the proof. �
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Example . Consider the first-order impulsive qk ,ωk-Hahn difference initial value prob-
lem of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tk D k+
k+ , 

k+
x(t) = 

(t+) ( x(t)+|x(t)|
|x(t)|+ )e–t + 

 , t ∈ J , t �= tk = k,

�x(tk) = |x(tk )|
(+k)(|x(tk )|+) , k = , , . . . , ,

x() = 
 .

(.)

Here J = [, ], qk = (k + )/(k + ), ωk = /(k + ), k = , , . . . , , m = , T = , f (t, x) =
(/(t + ))((x + |x|)/(|x| + ))e–t + (/), and ϕk(x) = (|x|)/(( + k)(|x| + )). Observe
that θk = ωk/( – qk) + tk = (k + k + )/(k + ) ∈ Jk , k = , , . . . , . Since |f (t, x) – f (t, y)| ≤
(/)|x – y| and |ϕk(x) – ϕk(y)| ≤ (/)|x – y|, then (H) and (H) are satisfied with L =
/ and L = /, respectively. We can show that

LT + mL =



+



=




< .

Therefore, by Theorem ., we deduce that the problem (.) has a unique solution on
[, ].

4.2 Second-order impulsive qk,ωk-Hahn difference equations
In this subsection, we consider the second-order initial value problem of the impulsive
qk ,ωk-Hahn difference equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tk D
qk ,ωk

x(t) = f (t, x(t)), t ∈ J , t �= tk ,

�x(tk) = ϕk(x(tk)), k = , , . . . , m,

tk Dqk ,ωk x(t+
k ) – tk– Dqk–,ωk– x(tk) = ϕ∗

k (x(tk)), k = , , . . . , m,

x() = α, t Dq,ω x() = β ,

(.)

where α,β ∈ R,  = t < t < t < · · · < tk < · · · < tm < tm+ = T , f ∈ C(J × R,R), ϕk ,ϕ∗
k ∈

C(R,R), �x(tk) = x(t+
k ) – x(tk), k = , , . . . , m, and the numbers  < qk < , ωk >  such that

θk ∈ Jk for k = , , , . . . , m.

Lemma . A function x ∈ PC(J ,R) is the solution of (.) if and only if x satisfies the
integral equation

x(t) = α + βt +
∑

t<tk<t

(∫ tk

tk–

∫ s

tk–

f
(
u, x(u)

)
tk– dqk–,ωk– utk– dqk–,ωk– s + ϕk

(
x(tk)

)
)

+ t
[ ∑

t<tk <t

(∫ tk

tk–

f
(
s, x(s)

)
tk– dqk–,ωk– s + ϕ∗

k
(
x(tk)

)
)]

–
∑

t<tk<t
tk

(∫ tk

tk–

f
(
s, x(s)

)
tk– dqk–,ωk– s + ϕ∗

k
(
x(tk)

)
)

+
∫ t

tk

∫ s

tk

f
(
u, x(u)

)
tk dqk ,ωk utk dqk ,ωk s, (.)

with
∑

t<t
= .
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Proof For t ∈ J, taking q,ω-integral for the first equation of (.) and using the second
initial condition, we get

t Dq,ω x(t) = t Dq,ω x() +
∫ t

t

f
(
s, x(s)

)
t dq,ω s

= β +
∫ t

t

f
(
s, x(s)

)
t dq,ω s, (.)

which leads to

t Dq,ω x(t) = β +
∫ t

t

f
(
s, x(s)

)
t dq,ω s.

For t ∈ J, the q,ω-integration for (.) and the first initial condition of (.) imply

x(t) = α + βt +
∫ t

t

∫ s

t

f
(
u, x(u)

)
t dq,ω ut dq,ω s.

In particular, for t = t, we have

x(t) = α + βt +
∫ t

t

∫ s

t

f
(
u, x(u)

)
t dq,ω ut dq,ω s.

Let us consider the interval J = (t, t]. By the q,ω-integration for (.) with respect to
t ∈ J, we have

t Dq,ω x(t) = t Dq,ω x
(
t+

)

+
∫ t

t

f
(
s, x(s)

)
t dq,ω s.

From the second impulsive condition of (.), that is, t Dq,ω x(t+
 ) = t Dq,ω x(t) +

ϕ∗
 (x(t)), we obtain

t Dq,ω x(t) = β +
∫ t

t

f
(
s, x(s)

)
t dq,ω s +

∫ t

t

f
(
s, x(s)

)
t dq,ω s + ϕ∗


(
x(t)

)
. (.)

For t ∈ J, taking the q,ω-integration for (.) and using Example .(i), we get

x(t) = x
(
t+

)

+
[

β +
∫ t

t

f
(
s, x(s)

)
t dq,ω s + ϕ∗


(
x(t)

)
]

(t – t)

+
∫ t

t

∫ s

t

f
(
u, x(u)

)
t dq,ω ut dq,ω s.

Applying the first impulsive condition of (.), that is, x(t+
 ) = x(t) + ϕ(x(t)), we obtain

x(t) = α + βt +
∫ t

t

∫ s

t

f
(
u, x(u)

)
t dq,ω ut dq,ω s + ϕ

(
x(t)

)

+
[

β +
∫ t

t

f
(
s, x(s)

)
t dq,ω s + ϕ∗


(
x(t)

)
]

(t – t)

+
∫ t

t

∫ s

t

f
(
u, x(u)

)
t dq,ω ut dq,ω s
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= α + βt +
∫ t

t

∫ s

t

f
(
u, x(u)

)
t dq,ω ut dq,ω s + ϕ

(
x(t)

)

+
[∫ t

t

f
(
s, x(s)

)
t dq,ω s + ϕ∗


(
x(t)

)
]

(t – t)

+
∫ t

t

∫ s

t

f
(
u, x(u)

)
t dq,ω ut dq,ω s.

Repeating the above method, for t ∈ J , we obtain (.) as desired.
Conversely, it can easily be shown by direct computation that the integral equation (.)

satisfies the impulsive initial value problem (.). This completes the proof. �

From Example .(iii) with b = tk+, we set the notation

�(k) =
(tk+ – tk) – ωk(tk+ – tk)

 + qk
.

Also, we use the notations

	(U) = U

(m+∑

k=

�(k – ) + T(tm – t) +
m∑

k=

tk(tk – tk–)

)

+ mU + U

(

mT +
m∑

k=

tk

)

, (.)

where U ∈ {L, N}.

Theorem . Assume that the conditions (H) and (H) of Theorem . are satisfied. Fur-
ther, we suppose that:

(H) The continuous functions ϕ∗
k : R →R, k = , , . . . , m, satisfies

∣
∣ϕ∗

k (x) – ϕ∗
k (y)

∣
∣ ≤ L|x – y|, L > ,∀x, y ∈R.

If

	(L) < , (.)

where 	(L) is defined by (.), then the impulsive qk ,ωk-Hahn difference initial value prob-
lem (.) has a unique solution on J .

Proof In view of Lemma ., we define an operator Q : PC(J ,R) → PC(J ,R) by

Qx(t) = α + βt +
∑

t<tk<t

(∫ tk

tk–

∫ s

tk–

f
(
u, x(u)

)
tk– dqk–,ωk– utk– dqk–,ωk– s + ϕk

(
x(tk)

)
)

+ t
[ ∑

t<tk <t

(∫ tk

tk–

f
(
s, x(s)

)
tk– dqk–,ωk– s + ϕ∗

k
(
x(tk)

)
)]

–
∑

t<tk<t
tk

(∫ tk

tk–

f
(
s, x(s)

)
tk– dqk–,ωk– s + ϕ∗

k
(
x(tk)

)
)

+
∫ t

tk

∫ s

tk

f
(
u, x(u)

)
tk dqk ,ωk utk dqk ,ωk s,
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with
∑

t<t
= . By transforming the impulsive initial value problem (.) into a fixed point

problem x = Qx, we will show that the operator Q has a fixed point which is a unique
solution of problem (.) via the Banach contraction mapping principle.

Setting supt∈J |f (t, )| = N, max{|ϕk()| : k = , , . . . , m} = N, and max{|ϕ∗
k ()| : k =

, , . . . , m} = N, we will prove that QBR ⊂ BR, where BR = {x ∈ PC(J ,R) : ‖x‖ ≤ R} and
the positive constant R satisfies

R ≥ |α| + |β|T + 	(N)
 – 	(L)

. (.)

For x ∈ BR, taking into account Example .(iii), we get

∣
∣Qx(t)

∣
∣ ≤ |α| + |β|T

+
∑

t<tk <T

(∫ tk

tk–

∫ s

tk–

(∣
∣f

(
u, x(u)

)
– f (u, )

∣
∣

+
∣
∣f (u, )

∣
∣
)

tk– dqk–,ωk– utk– dqk–,ωk– s +
(∣
∣ϕk

(
x(tk)

)
– ϕk()

∣
∣ +

∣
∣ϕk()

∣
∣
)
)

+ T
[ ∑

t<tk<T

(∫ tk

tk–

(∣
∣f

(
s, x(s)

)
– f (s, )

∣
∣ +

∣
∣f (s, )

∣
∣
)

tk– dqk–,ωk– s

+
(∣
∣ϕ∗

k
(
x(tk)

)
– ϕ∗

k ()
∣
∣ +

∣
∣ϕ∗

k ()
∣
∣
)
)]

+
∑

t<tk <T

tk

(∫ tk

tk–

(∣
∣f

(
s, x(s)

)
– f (s, )

∣
∣ +

∣
∣f (s, )

∣
∣
)

tk– dqk–,ωk– s

+
(∣
∣ϕ∗

k
(
x(tk)

)
– ϕ∗

k ()
∣
∣ +

∣
∣ϕ∗

k ()
∣
∣
)
)

+
∫ T

tm

∫ s

tm

(∣
∣f

(
u, x(u)

)
– f (u, )

∣
∣ +

∣
∣f (u, )

∣
∣
)

tm dqm ,ωm utm dqm ,ωm s

≤ |α| + |β|T +
m∑

k=

(
(LR + N)�(k – ) + LR + N

)

+ T

[ m∑

k=

(
(tk – tk–)(LR + N) + LR + N

)
]

+
m∑

k=

tk
(
(tk – tk–)(LR + N) + LR + N

)
+ (LR + N)�(m)

= |α| + |β|T + R	(L) + 	(N) ≤ R.

Then we have ‖Qx‖ ≤ R, which implies QBR ⊂ BR.
Finally, for x, y ∈ PC(J ,R) and for each t ∈ J , we get

∣
∣Qx(t) – Qy(t)

∣
∣ ≤

∑

t<tk <T

(∫ tk

tk–

∫ s

tk–

∣
∣f

(
u, x(u)

)
– f

(
u, y(u)

)∣
∣tk– dqk–,ωk– utk– dqk–,ωk– s

+
∣
∣ϕk

(
x(tk)

)
– ϕk

(
y(tk)

)∣
∣

)
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+ T
[ ∑

t<tk<T

(∫ tk

tk–

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣tk– dqk–,ωk– s

+
∣
∣ϕ∗

k
(
x(tk)

)
– ϕ∗

k
(
y(tk)

)∣
∣

)]

+
∑

t<tk <T

tk

(∫ tk

tk–

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣tk– dqk–,ωk– s

+
∣
∣ϕ∗

k
(
x(tk)

)
– ϕ∗

k
(
y(tk)

)∣
∣

)

+
∫ T

tm

∫ s

tm

∣
∣f

(
u, x(u)

)
– f

(
u, y(u)

)∣
∣tm dqm ,ωm utm dqm ,ωm s

≤
m∑

k=

[
L�(k – )‖x – y‖ + L‖x – y‖]

+ T

[ m∑

k=

[
(tk – tk–)L‖x – y‖ + L‖x – y‖]

]

+
m∑

k=

tk
[
(tk – tk–)L‖x – y‖ + L‖x – y‖] + L�(m)‖x – y‖

= 	(L)‖x – y‖.

It follows that ‖Qx – Qy‖ ≤ 	(L)‖x – y‖. As 	(L) < , we deduce from the Banach con-
traction mapping principle that Q is a contraction. Therefore, we see that the operator Q
has a fixed point which is a unique solution of the impulsive qk ,ωk-Hahn difference initial
value problem (.) on J . The proof is completed. �

Example . Consider the second-order impulsive qk ,ωk-Hahn difference initial value
problem of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tk D
k+

k+ , k+
k+

x(t) = 
t+ ( x(t)+|x(t)|

+|x(t)| ) e– cos t

 + 
 , t ∈ J , t �= tk = k,

�x(tk) = |x(tk )|
(k+)(+|x(tk )|) + 

 , k = , , . . . , ,

tk D k+
k+ , k+

k+
x(t+

k ) – tk– D k+
k+ , k

k+
x(tk) = | sin x(tk )|

(
√

k+)
+ 

 , k = , , . . . , ,

x() = 
 , t D 

 , 


x() = 
 .

(.)

Here J = [, ], qk = (k + )/(k + ), ωk = (k + )/(k + ), k = , , . . . , , m = , T =
, α = /, β = /, f (t, x) = (/(t + ))((x + |x|)/( + |x|))(e– cos t/) + (/), ϕk(x) =
(|x|/((k + )( + |x|))) + (/), and ϕ∗

k (x) = (| sin x|)/((
√

k + )) + (/). Observe that
θk = ωk/( – qk) + tk = (k + k + )/(k + ) ∈ Jk , k = , , . . . , . Also, we can find that
∑

k= �(k – ) = ..
Since |f (t, x) – f (t, y)| ≤ (/)|x – y|, |ϕk(x) –ϕk(y)| ≤ (/)|x – y|, and |ϕ∗

k (x) –ϕ∗
k (y)| ≤

(/)|x – y|, (H), (H), and (H) are satisfied with L = /, L = /, and L = /,
respectively. From the above information, we find that

	(L) = . < .
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Therefore, by Theorem ., we deduce that the problem (.) has a unique solution on
[, ].
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